How the olfactory bulb got its glomeruli: a just so story?

Abstract

The nearly 2,000 glomeruli that cover the surface of the olfactory bulb are so distinctive that they were noted specifically in the earliest of Cajal's catalogues. They have variously been considered a functional unit, an organizational unit and a crucial component of the olfactory coding circuit. Despite their central position in olfactory processing, the development of the glomeruli has only recently begun to be investigated with new and powerful genetic tools. Some unexpected findings have been made that may lead to a new understanding of the processes involved in wiring sensory regions of the brain. It may no longer be sufficient to simply invoke genes, spikes and their interplay in the construction of brain circuits. The story of 'how the olfactory bulb got its glomeruli' may be more complex, and more revealing, than has been supposed.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Axonal sorting into glomeruli.
Figure 2: The odorant transduction pathway.
Figure 3: The olfactory glomerulus.

References

  1. 1

    Mori, K., Nagao, H. & Yoshihara, Y. The olfactory bulb: coding and processing of odor molecule information. Science 286, 711–715 (1999).

    CAS  Google Scholar 

  2. 2

    Mori, K., Takahashi, Y. K., Igarashi, K. M. & Yamaguchi, M. Maps of odorant molecular features in the mammalian olfactory bulb. Physiol. Rev. 86, 409–433 (2006).

    CAS  Google Scholar 

  3. 3

    Johnson, B. A. & Leon, M. Chemotopic odorant coding in a mammalian olfactory system. J. Comp. Neurol. 503, 1–34 (2007).

    CAS  PubMed Central  PubMed  Google Scholar 

  4. 4

    Ressler, K. J., Sullivan, S. L. & Buck, L. B. Information coding in the olfactory system: evidence for a stereotyped and highly organized epitope map in the olfactory bulb. Cell 79, 1245–1255 (1994).

    CAS  Google Scholar 

  5. 5

    Vassar, R. et al. Topographic organization of sensory projections to the olfactory bulb. Cell 79, 981–991 (1994).

    CAS  Google Scholar 

  6. 6

    Mombaerts, P. et al. Visualizing an olfactory sensory map. Cell 87, 675–686 (1996).

    CAS  Google Scholar 

  7. 7

    Treloar, H. B., Feinstein, P., Mombaerts, P. & Greer, C. A. Specificity of glomerular targeting by olfactory sensory axons. J. Neurosci. 22, 2469–2477 (2002).

    CAS  Google Scholar 

  8. 8

    Wang, F., Nemes, A., Mendelsohn, M. & Axel, R. Odorant receptors govern the formation of a precise topographic map. Cell 93, 47–60 (1998).

    CAS  Google Scholar 

  9. 9

    Feinstein, P. & Mombaerts, P. A contextual model for axonal sorting into glomeruli in the mouse olfactory system. Cell 117, 817–831 (2004).

    CAS  Google Scholar 

  10. 10

    Feinstein, P., Bozza, T., Rodriguez, I., Vassalli, A. & Mombaerts, P. Axon guidance of mouse olfactory sensory neurons by odorant receptors and the β2 adrenergic receptor. Cell 117, 833–846 (2004).

    CAS  PubMed  Google Scholar 

  11. 11

    Bozza, T., Feinstein, P., Zheng, C. & Mombaerts, P. Odorant receptor expression defines functional units in the mouse olfactory system. J. Neurosci. 22, 3033–3043 (2002).

    CAS  PubMed  Google Scholar 

  12. 12

    Chess, A., Simon, I., Cedar, H. & Axel, R. Allelic inactivation regulates olfactory receptor gene expression. Cell 78, 823–834 (1994).

    CAS  PubMed  Google Scholar 

  13. 13

    Malnic, B., Hirono, J., Sato, T. & Buck, L. B. Combinatorial receptor codes for odors. Cell 96, 713–723 (1999).

    CAS  Google Scholar 

  14. 14

    Mombaerts, P. Odorant receptor gene choice in olfactory sensory neurons: the one receptor–one neuron hypothesis revisited. Curr. Opin. Neurobiol. 14, 31–36 (2004).

    CAS  Google Scholar 

  15. 15

    Tian, H. & Ma, M. Activity plays a role in eliminating olfactory sensory neurons expressing multiple odorant receptors in the mouse septal organ. Mol. Cell Neurosci. 38, 484–488 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  16. 16

    Goodman, C. S. & Shatz, C. J. Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell 72S, 77–98 (1993).

  17. 17

    Katz, L. C. & Shatz, C. J. Synaptic activity and the construction of cortical circuits. Science 274, 1132–1138 (1996).

    Google Scholar 

  18. 18

    Luo, L. & Flanagan, J. G. Development of continuous and discrete neural maps. Neuron 56, 284–300 (2007).

    CAS  Google Scholar 

  19. 19

    Buck, L. & Axel, R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65, 175–187 (1991).

    CAS  Google Scholar 

  20. 20

    Firestein, S. How the olfactory system makes sense of scents. Nature 413, 211–218 (2001).

    CAS  PubMed  Google Scholar 

  21. 21

    Belluscio, L., Lodovichi, C., Feinstein, P., Mombaerts, P. & Katz, L. C. Odorant receptors instruct functional circuitry in the mouse olfactory bulb. Nature 419, 296–300 (2002).

    CAS  PubMed  Google Scholar 

  22. 22

    Illig, K. R. & Eudy, J. D. Contralateral projections of the rat anterior olfactory nucleus. J. Comp. Neurol. 512, 115–123 (2009).

    PubMed Central  PubMed  Google Scholar 

  23. 23

    Yan, Z. et al. Precise circuitry links bilaterally symmetric olfactory maps. Neuron 58, 613–624 (2008).

    CAS  PubMed  Google Scholar 

  24. 24

    Allison, A. C. The structure of the olfactory bulb and its relationship to the olfactory pathways in the rabbit and the rat. J. Comp. Neurol. 98, 309–353 (1953).

    CAS  PubMed  Google Scholar 

  25. 25

    Aungst, J. L. et al. Centre-surround inhibition among olfactory bulb glomeruli. Nature 426, 623–629 (2003).

    CAS  PubMed  Google Scholar 

  26. 26

    Llinas, R. R. The contribution of Santiago Ramon y Cajal to functional neuroscience. Nature Rev. Neurosci. 4, 77–80 (2003).

    CAS  Google Scholar 

  27. 27

    Soucy, E. R., Albeanu, D. F., Fantana, A. L., Murthy, V. N. & Meister, M. Precision and diversity in an odor map on the olfactory bulb. Nature Neurosci. 12, 210–220 (2009).

    CAS  PubMed  Google Scholar 

  28. 28

    Egana, J. I., Aylwin, M. L. & Maldonado, P. E. Odor response properties of neighboring mitral/tufted cells in the rat olfactory bulb. Neuroscience 134, 1069–1080 (2005).

    CAS  PubMed  Google Scholar 

  29. 29

    Fantana, A. L., Soucy, E. R. & Meister, M. Rat olfactory bulb mitral cells receive sparse glomerular inputs. Neuron 59, 802–814 (2008).

    CAS  PubMed  Google Scholar 

  30. 30

    Tsuboi, A. et al. Olfactory neurons expressing closely linked and homologous odorant receptor genes tend to project their axons to neighboring glomeruli on the olfactory bulb. J. Neurosci. 19, 8409–8418 (1999).

    CAS  Google Scholar 

  31. 31

    Zhang, X. et al. High-throughput microarray detection of olfactory receptor gene expression in the mouse. Proc. Natl Acad. Sci. USA 101, 14168–14173 (2004).

    CAS  Google Scholar 

  32. 32

    Mombaerts, P. targeting olfaction. Curr. Op Neurobio. 6, 481–486 (1996).

    CAS  Google Scholar 

  33. 33

    Belluscio, L., Gold, G. H., Nemes, A. & Axel, R. Mice deficient in Golf are anosmic. Neuron 20, 69–81 (1998).

    CAS  PubMed  Google Scholar 

  34. 34

    Baker, H. et al. Targeted deletion of a cyclic nucleotide-gated channel subunit (OCNC1): biochemical and morphological consequences in adult mice. J. Neurosci. 19, 9313–9321 (1999).

    CAS  PubMed  Google Scholar 

  35. 35

    Lin, D. M. et al. Formation of precise connections in the olfactory bulb occurs in the absence of odorant-evoked neuronal activity. Neuron 26, 69–80 (2000).

    CAS  PubMed  Google Scholar 

  36. 36

    Zheng, C., Feinstein, P., Bozza, T., Rodriguez, I. & Mombaerts, P. Peripheral olfactory projections are differentially affected in mice deficient in a cyclic nucleotide-gated channel subunit. Neuron 26, 81–91 (2000).

    CAS  PubMed  Google Scholar 

  37. 37

    Bulfone, A. et al. An olfactory sensory map develops in the absence of normal projection neurons or GABAergic interneurons. Neuron 21, 1273–1282 (1998).

    CAS  PubMed  Google Scholar 

  38. 38

    St. John, J. A., Clarris, H. J., McKeown, S., Royal, S. & Key, B. Sorting and convergence of primary olfactory axons are independent of the olfactory bulb. J. Comp. Neurol. 464, 131–140 (2003).

    Google Scholar 

  39. 39

    Zou, D. J. et al. Postnatal refinement of peripheral olfactory projections. Science 304, 1976–1979 (2004).

    CAS  PubMed  Google Scholar 

  40. 40

    Nakatani, H., Serizawa, S., Nakajima, M., Imai, T. & Sakano, H. Developmental elimination of ectopic projection sites for the transgenic OR gene that has lost zone specificity in the olfactory epithelium. Eur. J. Neurosci. 18, 2425–2432 (2003).

    Google Scholar 

  41. 41

    Kerr, M. A. & Belluscio, L. Olfactory experience accelerates glomerular refinement in the mammalian olfactory bulb. Nature Neurosci. 9, 484–486 (2006).

    CAS  Google Scholar 

  42. 42

    Yu, C. R. et al. Spontaneous neural activity is required for the establishment and maintenance of the olfactory sensory map. Neuron 42, 553–566 (2004).

    CAS  Google Scholar 

  43. 43

    Wong, S. T. et al. Disruption of the type III adenylyl cyclase gene leads to peripheral and behavioral anosmia in transgenic mice. Neuron 27, 487–497 (2000).

    CAS  Google Scholar 

  44. 44

    Trinh, K. & Storm, D. R. Vomeronasal organ detects odorants in absence of signaling through main olfactory epithelium. Nature Neurosci. 6, 519–525 (2003).

    CAS  Google Scholar 

  45. 45

    Col, J. A., Matsuo, T., Storm, D. R. & Rodriguez, I. Adenylyl cyclase-dependent axonal targeting in the olfactory system. Development 134, 2481–2489 (2007).

    Google Scholar 

  46. 46

    Zou, D. J. et al. Absence of adenylyl cyclase 3 perturbs peripheral olfactory projections in mice. J. Neurosci. 27, 6675–6683 (2007).

    CAS  Google Scholar 

  47. 47

    Chesler, A. T. et al. A G. protein/cAMP signal cascade is required for axonal convergence into olfactory glomeruli. Proc. Natl Acad. Sci. USA 104, 1039–1044 (2007).

    CAS  Google Scholar 

  48. 48

    Katada, S., Tanaka, M. & Touhara, K. Structural determinants for membrane trafficking and G. protein selectivity of a mouse olfactory receptor. J. Neurochem. 90, 1453–1463 (2004).

    CAS  Google Scholar 

  49. 49

    Menco, B., Tedula, F., Farbman, A. & Danho, W. Developmental expression of G-proteins and adenylyl cyclase in peripheral olfactory systems. Light microscopic and freeze-substitution electron microscopic immunocytochemistry. J. Neurocytol. 23, 708–727 (1994).

    CAS  Google Scholar 

  50. 50

    Imai, T., Suzuki, M. & Sakano, H. Odorant receptor-derived cAMP signals direct axonal targeting. Science 314, 657–661 (2006).

    CAS  PubMed  Google Scholar 

  51. 51

    Cutforth, T. et al. Axonal ephrin-As and odorant receptors: coordinate determination of the olfactory sensory map. Cell 114, 311–322 (2003).

    CAS  PubMed  Google Scholar 

  52. 52

    Serizawa, S. et al. A neuronal identity code for the odorant receptor-specific and activity-dependent axon sorting. Cell 127, 1057–1069 (2006).

    CAS  PubMed  Google Scholar 

  53. 53

    Kaneko-Goto, T., Yoshihara, S., Miyazaki, H. & Yoshihara, Y. BIG-2 mediates olfactory axon convergence to target glomeruli. Neuron 57, 834–846 (2008).

    CAS  PubMed  Google Scholar 

  54. 54

    Bozza, T. et al. Mapping of class I and class II odorant receptors to glomerular domains by two distinct types of olfactory sensory neurons in the mouse. Neuron 61, 220–233 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  55. 55

    Rothman, A., Feinstein, P., Hirota, J. & Mombaerts, P. The promoter of the mouse odorant receptor gene M71. Mol. Cell Neurosci. 28, 535–546 (2005).

    CAS  PubMed  Google Scholar 

  56. 56

    Vassalli, A., Rothman, A., Feinstein, P., Zapotocky, M. & Mombaerts, P. Minigenes impart odorant receptor-specific axon guidance in the olfactory bulb. Neuron 35, 681. (2002).

    CAS  PubMed  Google Scholar 

  57. 57

    Ishii, T. et al. Monoallelic expression of the odorant receptor gene and axonal projection of olfactory sensory neurones. Genes Cells 6, 71–78 (2001).

    CAS  Google Scholar 

  58. 58

    Serizawa, S. et al. Mutually exclusive expression of odorant receptor transgenes. Nature Neurosci. 3, 687–693 (2000).

    CAS  Google Scholar 

  59. 59

    Norlin, E. M. et al. Evidence for gradients of gene expression correlating with zonal topography of the olfactory sensory map. Mol. Cell Neurosci. 18, 283–295 (2001).

    CAS  Google Scholar 

  60. 60

    Cloutier, J. F. et al. Differential requirements for semaphorin 3F and Slit-1 in axonal targeting, fasciculation, and segregation of olfactory sensory neuron projections. J. Neurosci. 24, 9087–9096 (2004).

    CAS  PubMed  Google Scholar 

  61. 61

    Cho, J. H., Lepine, M., Andrews, W., Parnavelas, J. & Cloutier, J. F. Requirement for Slit-1 and Robo-2 in zonal segregation of olfactory sensory neuron axons in the main olfactory bulb. J. Neurosci. 27, 9094–9104 (2007).

    CAS  PubMed  Google Scholar 

  62. 62

    Walz, A., Rodriguez, I. & Mombaerts, P. Aberrant sensory innervation of the olfactory bulb in neuropilin-2 mutant mice. J. Neurosci. 22, 4025–4035 (2002).

    CAS  PubMed  Google Scholar 

  63. 63

    Alenius, M. & Bohm, S. Differential function of RNCAM isoforms in precise target selection of olfactory sensory neurons. Development 130, 917–927 (2003).

    CAS  PubMed  Google Scholar 

  64. 64

    Schwarting, G. A. et al. Semaphorin 3A is required for guidance of olfactory axons in mice. J. Neurosci. 20, 7691–7697 (2000).

    CAS  PubMed  Google Scholar 

  65. 65

    Taniguchi, M. et al. Distorted odor maps in the olfactory bulb of semaphorin 3A-deficient mice. J. Neurosci. 23, 1390–1397 (2003).

    CAS  PubMed  Google Scholar 

  66. 66

    Hasegawa, S. et al. The protocadherin-α family is involved in axonal coalescence of olfactory sensory neurons into glomeruli of the olfactory bulb in mouse. Mol. Cell Neurosci. 38, 66–79 (2008).

    CAS  PubMed  Google Scholar 

  67. 67

    Walz, A., Feinstein, P., Khan, M. & Mombaerts, P. Axonal wiring of guanylate cyclase-D-expressing olfactory neurons is dependent on neuropilin 2 and semaphorin 3F. Development 134, 4063–4072 (2007).

    CAS  PubMed  Google Scholar 

  68. 68

    Alenius, M. & Bohm, S. Identification of a novel neural cell adhesion molecule-related gene with a potential role in selective axonal projection. J. Biol. Chem. 272, 26083–26086 (1997).

    CAS  PubMed  Google Scholar 

  69. 69

    Yoshihara, Y. et al. OCAM: a new member of the neural cell adhesion molecule family related to zone-to-zone projection of olfactory and vomeronasal axons. J. Neurosci. 17, 5830–5842 (1997).

    CAS  PubMed  Google Scholar 

  70. 70

    Oka, Y. et al. O-MACS, a novel member of the medium-chain acyl-CoA synthetase family, specifically expressed in the olfactory epithelium in a zone-specific manner. Eur. J. Biochem. 270, 1995–2004 (2003).

    CAS  Google Scholar 

  71. 71

    Gussing, F. & Bohm, S. NQO1 activity in the main and the accessory olfactory systems correlates with the zonal topography of projection maps. Eur. J. Neurosci. 19, 2511–2518 (2004).

    Google Scholar 

  72. 72

    Strotmann, J. et al. Local permutations in the glomerular array of the mouse olfactory bulb. J. Neurosci. 20, 6927–6938 (2000).

    CAS  Google Scholar 

  73. 73

    Schaefer, M. L., Finger, T. E. & Restrepo, D. Variability of position of the P2 glomerulus within a map of the mouse olfactory bulb. J. Comp. Neurol. 436, 351–362 (2001).

    CAS  Google Scholar 

  74. 74

    Maresh, A., Gil, D. R., Whitman, M. C. & Greer, C. A. Principles of glomerular organization in the human olfactory bulb--implications for odor processing. PLoS ONE 3, e2640 (2008).

    PubMed Central  PubMed  Google Scholar 

  75. 75

    Zhang, X. et al. Characterizing the expression of the human olfactory receptor gene family using a novel DNA microarray. Genome Biol. 8, R86 (2007).

    PubMed Central  PubMed  Google Scholar 

  76. 76

    Pomeroy, S. L., LaMantia, A. S. & Purves, D. Postnatal construction of neural circuitry in the mouse olfactory bulb. J. Neurosci. 10, 1952–1966 (1990).

    CAS  Google Scholar 

  77. 77

    LaMantia, A. S., Pomeroy, S. L. & Purves, D. Vital imaging of glomeruli in the mouse olfactory bulb. J. Neurosci. 12, 976–988 (1992).

    CAS  PubMed  Google Scholar 

  78. 78

    LaMantia AS & D, P. Development of glomerular pattern visualized in the olfactory bulbs of living mice. Nature 341, 646–649 (1989).

    CAS  PubMed  Google Scholar 

  79. 79

    Barnea, G. et al. Odorant receptors on axon termini in the brain. Science 304, 1468 (2004).

    CAS  PubMed  Google Scholar 

  80. 80

    Strotmann, J., Levai, O., Fleischer, J., Schwarzenbacher, K. & Breer, H. Olfactory receptor proteins in axonal processes of chemosensory neurons. J. Neurosci. 24, 7754–7761 (2004).

    CAS  Google Scholar 

  81. 81

    Ito, I., Ong, R. C., Raman, B. & Stopfer, M. Sparse odor representation and olfactory learning. Nature Neurosci. 11, 1177–1184 (2008).

    CAS  Google Scholar 

  82. 82

    Laurent, G. et al. Odor encoding as an active, dynamical process: experiments, computation, and theory. Annu. Rev. Neurosci. 24, 263–297 (2001).

    CAS  Google Scholar 

  83. 83

    Stevenson, R. J. & Wilson, D. A. Odour perception: an object-recognition approach. Perception 36, 1821–1833 (2007).

    Google Scholar 

  84. 84

    Barnes, D. C., Hofacer, R. D., Zaman, A. R., Rennaker, R. L. & Wilson, D. A. Olfactory perceptual stability and discrimination. Nature Neurosci. 11, 1378–1380 (2008).

    CAS  Google Scholar 

  85. 85

    Potter, S. M. et al. Structure and emergence of specific olfactory glomeruli in the mouse. J. Neurosci. 21, 9713–9723 (2001).

    CAS  PubMed Central  PubMed  Google Scholar 

  86. 86

    Bailey, M. S., Puche, A. C. & Shipley, M. T. Development of the olfactory bulb: evidence for glia–neuron interactions in glomerular formation. J. Comp. Neurol. 415, 423–448 (1999).

    CAS  Google Scholar 

  87. 87

    Royal, S. J. & Key, B. Development of P2 olfactory glomeruli in P2-internal ribosome entry site-tau-LacZ transgenic mice. J. Neurosci. 19, 9856–9864 (1999).

    CAS  Google Scholar 

  88. 88

    Treloar, H. B., Purcell, A. L. & Greer, C. A. Glomerular formation in the developing rat olfactory bulb. J. Comp. Neurol. 413, 289–304 (1999).

    CAS  Google Scholar 

  89. 89

    Zhao, H. & Reed, R. R. X inactivation of the OCNC1 channel gene reveals a role for activity-dependent competition in the olfactory system. Cell 104, 651–660 (2001).

    CAS  Google Scholar 

  90. 90

    Watt, W. C. et al. Odorant stimulation enhances survival of olfactory sensory neurons via MAPK and CREB. Neuron 41, 955–967 (2004).

    CAS  Google Scholar 

  91. 91

    Rubin, B. D. & Katz, L. C. Optical imaging of odorant representations in the mammalian olfactory bulb. Neuron 23, 499–511 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors have been suported by grants from the National Institute on Deafness and Other Communication Disorders, National Institutes of Health, USA.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stuart Firestein.

Related links

Related links

FURTHER INFORMATION

Stuart Firestein's homepage

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zou, DJ., Chesler, A. & Firestein, S. How the olfactory bulb got its glomeruli: a just so story?. Nat Rev Neurosci 10, 611–618 (2009). https://doi.org/10.1038/nrn2666

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing