The probability of neurotransmitter release: variability and feedback control at single synapses

Article metrics

Abstract

Information transfer at chemical synapses occurs when vesicles fuse with the plasma membrane and release neurotransmitter. This process is stochastic and its likelihood of occurrence is a crucial factor in the regulation of signal propagation in neuronal networks. The reliability of neurotransmitter release can be highly variable: experimental data from electrophysiological, molecular and imaging studies have demonstrated that synaptic terminals can individually set their neurotransmitter release probability dynamically through local feedback regulation. This local tuning of transmission has important implications for current models of single-neuron computation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Characterizing neuronal connections with paired recordings and morphological reconstructions.
Figure 2: Variability of release probability measured at single synapses.
Figure 3: Postsynaptic influences on release probability.
Figure 4: Consequences of pr adjustments for signal/noise ratio and energy usage.

References

  1. 1

    Del Castillo, J. & Katz, B. Quantal components of the end-plate potential. J. Physiol. 124, 560–573 (1954).

  2. 2

    Sudhof, T. C. The synaptic vesicle cycle. Annu. Rev. Neurosci. 27, 509–547 (2004).

  3. 3

    Tracey, D. J. & Walmsley, B. Synaptic input from identified muscle afferents to neurones of the dorsal spinocerebellar tract in the cat. J. Physiol. 350, 599–614 (1984).

  4. 4

    Korn, H., Mallet, A., Triller, A. & Faber, D. S. Transmission at a central inhibitory synapse. II. Quantal description of release, with a physical correlate for binomial n. J. Neurophysiol. 48, 679–707 (1982).

  5. 5

    Korn, H., Triller, A., Mallet, A. & Faber, D. S. Fluctuating responses at a central synapse: n of binomial fit predicts number of stained presynaptic boutons. Science 213, 898–901 (1981).

  6. 6

    Harvey, R. J. & Napper, R. M. Quantitative study of granule and Purkinje cells in the cerebellar cortex of the rat. J. Comp. Neurol. 274, 151–157 (1988).

  7. 7

    Deuchars, J., West, D. C. & Thomson, A. M. Relationships between morphology and physiology of pyramid-pyramid single axon connections in rat neocortex in vitro. J. Physiol. 478, 423–435 (1994).

  8. 8

    Feldmeyer, D., Lubke, J. & Sakmann, B. Efficacy and connectivity of intracolumnar pairs of layer 2/3 pyramidal cells in the barrel cortex of juvenile rats. J. Physiol. 575, 583–602 (2006).

  9. 9

    Buhl, E. H., Halasy, K. & Somogyi, P. Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites. Nature 368, 823–828 (1994).

  10. 10

    Tamas, G., Buhl, E. H. & Somogyi, P. Fast IPSPs elicited via multiple synaptic release sites by different types of GABAergic neurone in the cat visual cortex. J. Physiol. 500, 715–738 (1997).

  11. 11

    Llinas, R., Bloedel, J. R. & Hillman, D. E. Functional characterization of neuronal circuitry of frog cerebellar cortex. J. Neurophysiol. 32, 847–870 (1969).

  12. 12

    Isaacson, J. S. & Walmsley, B. Counting quanta: direct measurements of transmitter release at a central synapse. Neuron 15, 875–884 (1995).

  13. 13

    Meyer, A. C., Neher, E. & Schneggenburger, R. Estimation of quantal size and number of functional active zones at the calyx of held synapse by nonstationary EPSC variance analysis. J. Neurosci. 21, 7889–7900 (2001).

  14. 14

    Branco, T., Staras, K., Darcy, K. J. & Goda, Y. Local dendritic activity sets release probability at hippocampal synapses. Neuron 59, 475–485 (2008).

  15. 15

    Buhl, E. H. et al. Effect, number and location of synapses made by single pyramidal cells onto aspiny interneurones of cat visual cortex. J. Physiol. 500, 689–713 (1997).

  16. 16

    Thomson, A. M. & Lamy, C. Functional maps of neocortical local circuitry. Front. Neurosci. 1, 19–42 (2007).

  17. 17

    Rall, W. in Neural Theory and Modeling (ed. Reiss, R. F.) (Stanford Univ. Press, Palo Alto, 1964).

  18. 18

    Polsky, A., Mel, B. W. & Schiller, J. Computational subunits in thin dendrites of pyramidal cells. Nature Neurosci. 7, 621–627 (2004).

  19. 19

    Katz, B. (ed.) Nerve, Muscle and Synapse (McGraw-Hill, 1966).

  20. 20

    Maass, W. & Zador, A. M. Dynamic stochastic synapses as computational units. Neural Comput. 11, 903–917 (1999).

  21. 21

    Jack, J. J., Redman, S. J. & Wong, K. The components of synaptic potentials evoked in cat spinal motoneurones by impulses in single group Ia afferents. J. Physiol. 321, 65–96 (1981).

  22. 22

    Redman, S. & Walmsley, B. Amplitude fluctuations in synaptic potentials evoked in cat spinal motoneurones at identified group Ia synapses. J. Physiol. 343, 135–145 (1983).

  23. 23

    Walmsley, B., Edwards, F. R. & Tracey, D. J. Nonuniform release probabilities underlie quantal synaptic transmission at a mammalian excitatory central synapse. J. Neurophysiol. 60, 889–908 (1988).

  24. 24

    Clamann, H. P., Mathis, J. & Luscher, H. R. Variance analysis of excitatory postsynaptic potentials in cat spinal motoneurons during posttetanic potentiation. J. Neurophysiol. 61, 403–416 (1989).

  25. 25

    Silver, R. A., Momiyama, A. & Cull-Candy, S. G. Locus of frequency-dependent depression identified with multiple-probability fluctuation analysis at rat climbing fibre-Purkinje cell synapses. J. Physiol. 510, 881–902 (1998).

  26. 26

    Hessler, N. A., Shirke, A. M. & Malinow, R. The probability of transmitter release at a mammalian central synapse. Nature 366, 569–572 (1993).

  27. 27

    Rosenmund, C., Clements, J. D. & Westbrook, G. L. Nonuniform probability of glutamate release at a hippocampal synapse. Science 262, 754–757 (1993).

  28. 28

    Murthy, V. N., Sejnowski, T. J. & Stevens, C. F. Heterogeneous release properties of visualized individual hippocampal synapses. Neuron 18, 599–612 (1997).

  29. 29

    Slutsky, I., Sadeghpour, S., Li, B. & Liu, G. Enhancement of synaptic plasticity through chronically reduced Ca2+ flux during uncorrelated activity. Neuron 44, 835–849 (2004).

  30. 30

    Granseth, B., Odermatt, B., Royle, S. J. & Lagnado, L. Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses. Neuron 51, 773–786 (2006).

  31. 31

    Schikorski, T. & Stevens, C. F. Quantitative ultrastructural analysis of hippocampal excitatory synapses. J. Neurosci. 17, 5858–5867 (1997).

  32. 32

    Bittner, G. D. Differentiation of nerve terminals in the crayfish opener muscle and its functional significance. J. Gen. Physiol. 51, 731–758 (1968).

  33. 33

    Atwood, H. L. & Bittner, G. D. Matching of excitatory and inhibitory inputs to crustacean muscle fibers. J. Neurophysiol. 34, 157–170 (1971).

  34. 34

    Frank, E. Matching of facilitation at the neuromuscular junction of the lobster: a possible case for influence of muscle on nerve. J. Physiol. 233, 635–658 (1973).

  35. 35

    Cooper, R. L., Harrington, C. C., Marin, L. & Atwood, H. L. Quantal release at visualized terminals of a crayfish motor axon: intraterminal and regional differences. J. Comp. Neurol. 375, 583–600 (1996).

  36. 36

    Parnas, I. Differential block at high frequency of branches of a single axon innervating two muscles. J. Neurophysiol. 35, 903–914 (1972).

  37. 37

    Bennett, M. R., Jones, P. & Lavidis, N. A. The probability of quantal secretion along visualized terminal branches at amphibian (Bufo marinus) neuromuscular synapses. J. Physiol. 379, 257–274 (1986).

  38. 38

    Robitaille, R. & Tremblay, J. P. Non-uniform release at the frog neuromuscular junction: evidence of morphological and physiological plasticity. Brain Res. 434, 95–116 (1987).

  39. 39

    Robitaille, R. & Tremblay, J. P. Non-uniform responses to Ca2+ along the frog neuromuscular junction: effects on the probability of spontaneous and evoked transmitter release. Neuroscience 40, 571–585 (1991).

  40. 40

    Katz, P. S., Kirk, M. D. & Govind, C. K. Facilitation and depression at different branches of the same motor axon: evidence for presynaptic differences in release. J. Neurosci. 13, 3075–3089 (1993).

  41. 41

    Muller, K. J. & Nicholls, J. G. Different properties of synapses between a single sensory neurone and two different motor cells in the leech C.N.S. J. Physiol. 238, 357–369 (1974).

  42. 42

    Koerber, H. R. & Mendell, L. M. Modulation of synaptic transmission at Ia-afferent fiber connections on motoneurons during high-frequency stimulation: role of postsynaptic target. J. Neurophysiol. 65, 590–597 (1991).

  43. 43

    Brodin, L., Shupliakov, O., Pieribone, V. A., Hellgren, J. & Hill, R. H. The reticulospinal glutamate synapse in lamprey: plasticity and presynaptic variability. J. Neurophysiol. 72, 592–604 (1994).

  44. 44

    Mennerick, S. & Zorumski, C. F. Paired-pulse modulation of fast excitatory synaptic currents in microcultures of rat hippocampal neurons. J. Physiol. 488, 85–101 (1995).

  45. 45

    Markram, H., Wang, Y. & Tsodyks, M. Differential signaling via the same axon of neocortical pyramidal neurons. Proc. Natl Acad. Sci. USA 95, 5323–5328 (1998).

  46. 46

    Reyes, A. et al. Target-cell-specific facilitation and depression in neocortical circuits. Nature Neurosci. 1, 279–285 (1998).

  47. 47

    Davis, G. W. & Murphey, R. K. A role for postsynaptic neurons in determining presynaptic release properties in the cricket CNS: evidence for retrograde control of facilitation. J. Neurosci. 13, 3827–3838 (1993).

  48. 48

    Laurent, G. & Sivaramakrishnan, A. Single local interneurons in the locust make central synapses with different properties of transmitter release on distinct postsynaptic neurons. J. Neurosci. 12, 2370–2380 (1992).

  49. 49

    Koester, H. J. & Johnston, D. Target cell-dependent normalization of transmitter release at neocortical synapses. Science 308, 863–866 (2005).

  50. 50

    Zucker, R. S. & Regehr, W. G. Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002).

  51. 51

    Waters, J. & Smith, S. J. Vesicle pool partitioning influences presynaptic diversity and weighting in rat hippocampal synapses. J. Physiol. 541, 811–823 (2002).

  52. 52

    He, L. & Wu, L. G. The debate on the kiss-and-run fusion at synapses. Trends Neurosci. 30, 447–455 (2007).

  53. 53

    Catterall, W. A. & Few, A. P. Calcium channel regulation and presynaptic plasticity. Neuron 59, 882–901 (2008).

  54. 54

    Borst, J. G. & Sakmann, B. Effect of changes in action potential shape on calcium currents and transmitter release in a calyx-type synapse of the rat auditory brainstem. Philos. Trans. R. Soc. Lond. B Biol. Sci. 354, 347–355 (1999).

  55. 55

    Meinrenken, C. J., Borst, J. G. G. & Sakmann, B. Local routes revisited: the space and time dependence of the Ca2+ signal for phasic transmitter release at the rat calyx of Held. J. Physiol. 547, 665–689 (2003).

  56. 56

    Augustine, G. J., Santamaria, F. & Tanaka, K. Local calcium signaling in neurons. Neuron 40, 331–346 (2003).

  57. 57

    Schneggenburger, R. & Neher, E. Presynaptic calcium and control of vesicle fusion. Curr. Opin. Neurobiol. 15, 266–274 (2005).

  58. 58

    Reid, C. A., Clements, J. D. & Bekkers, J. M. Nonuniform distribution of Ca2+ channel subtypes on presynaptic terminals of excitatory synapses in hippocampal cultures. J. Neurosci. 17, 2738–2745 (1997).

  59. 59

    Reuter, H. Measurements of exocytosis from single presynaptic nerve terminals reveal heterogeneous inhibition by Ca2+-channel blockers. Neuron 14, 773–779 (1995).

  60. 60

    Sorra, K. E. & Harris, K. M. Occurrence and three-dimensional structure of multiple synapses between individual radiatum axons and their target pyramidal cells in hippocampal area CA1. J. Neurosci. 13, 3736–3748 (1993).

  61. 61

    Shigemoto, R. et al. Target-cell-specific concentration of a metabotropic glutamate receptor in the presynaptic active zone. Nature 381, 523–525 (1996).

  62. 62

    Scanziani, M., Gahwiler, B. H. & Charpak, S. Target cell-specific modulation of transmitter release at terminals from a single axon. Proc. Natl Acad. Sci. USA 95, 12004–12009 (1998).

  63. 63

    Nicoll, R. A. & Schmitz, D. Synaptic plasticity at hippocampal mossy fibre synapses. Nature Rev. Neurosci. 6, 863–876 (2005).

  64. 64

    Maccaferri, G., Toth, K. & McBain, C. J. Target-specific expression of presynaptic mossy fiber plasticity. Science 279, 1368–1370 (1998).

  65. 65

    Pelkey, K. A. & McBain, C. J. Target-cell-dependent plasticity within the mossy fibre-CA3 circuit reveals compartmentalized regulation of presynaptic function at divergent release sites. J. Physiol. 586, 1495–1502 (2008).

  66. 66

    Lei, S. & McBain, C. J. Distinct NMDA receptors provide differential modes of transmission at mossy fiber-interneuron synapses. Neuron 33, 921–933 (2002).

  67. 67

    Chevaleyre, V. & Castillo, P. E. Heterosynaptic LTD of hippocampal GABAergic synapses: a novel role of endocannabinoids in regulating excitability. Neuron 38, 461–472 (2003).

  68. 68

    Gerdeman, G. L., Ronesi, J. & Lovinger, D. M. Postsynaptic endocannabinoid release is critical to long-term depression in the striatum. Nature Neurosci. 5, 446–451 (2002).

  69. 69

    Marsicano, G. et al. The endogenous cannabinoid system controls extinction of aversive memories. Nature 418, 530–534 (2002).

  70. 70

    Robbe, D., Kopf, M., Remaury, A., Bockaert, J. & Manzoni, O. J. Endogenous cannabinoids mediate long-term synaptic depression in the nucleus accumbens. Proc. Natl Acad. Sci. USA 99, 8384–8388 (2002).

  71. 71

    Safo, P. K. & Regehr, W. G. Endocannabinoids control the induction of cerebellar LTD. Neuron 48, 647–659 (2005).

  72. 72

    Sjostrom, P. J., Turrigiano, G. G. & Nelson, S. B. Neocortical LTD via coincident activation of presynaptic NMDA and cannabinoid receptors. Neuron 39, 641–654 (2003).

  73. 73

    Chevaleyre, V., Takahashi, K. A. & Castillo, P. E. Endocannabinoid-mediated synaptic plasticity in the CNS. Annu. Rev. Neurosci. 29, 37–76 (2006).

  74. 74

    Davis, G. W. & Goodman, C. S. Synapse-specific control of synaptic efficacy at the terminals of a single neuron. Nature 392, 82–86 (1998).

  75. 75

    Stewart, B. A., Schuster, C. M., Goodman, C. S. & Atwood, H. L. Homeostasis of synaptic transmission in Drosophila with genetically altered nerve terminal morphology. J. Neurosci. 16, 3877–3886 (1996).

  76. 76

    Paradis, S., Sweeney, S. T. & Davis, G. W. Homeostatic control of presynaptic release is triggered by postsynaptic membrane depolarization. Neuron 30, 737–749 (2001).

  77. 77

    Petersen, S. A., Fetter, R. D., Noordermeer, J. N., Goodman, C. S. & DiAntonio, A. Genetic analysis of glutamate receptors in Drosophila reveals a retrograde signal regulating presynaptic transmitter release. Neuron 19, 1237–1248 (1997).

  78. 78

    Sandrock, A. W. J. et al. Maintenance of acetylcholine receptor number by neuregulins at the neuromuscular junction in vivo. Science 276, 599–603 (1997).

  79. 79

    Frank, C. A., Kennedy, M. J., Goold, C. P., Marek, K. W. & Davis, G. W. Mechanisms underlying the rapid induction and sustained expression of synaptic homeostasis. Neuron 52, 663–677 (2006).

  80. 80

    Frank, C. A., Pielage, J. & Davis, G. W. A presynaptic homeostatic signaling system composed of the Eph receptor, ephexin, Cdc42, and CaV2.1 calcium channels. Neuron 61, 556–569 (2009).

  81. 81

    Haghighi, A. P. et al. Retrograde control of synaptic transmission by postsynaptic CaMKII at the Drosophila neuromuscular junction. Neuron 39, 255–267 (2003).

  82. 82

    Bacci, A. et al. Chronic blockade of glutamate receptors enhances presynaptic release and downregulates the interaction between synaptophysin-synaptobrevin-vesicle-associated membrane protein 2. J. Neurosci. 21, 6588–6596 (2001).

  83. 83

    Thiagarajan, T. C., Lindskog, M. & Tsien, R. W. Adaptation to synaptic inactivity in hippocampal neurons. Neuron 47, 725–737 (2005).

  84. 84

    Thiagarajan, T. C., Piedras-Renteria, E. S. & Tsien, R. W. α- and βCaMKII. Inverse regulation by neuronal activity and opposing effects on synaptic strength. Neuron 36, 1103–1114 (2002).

  85. 85

    Murthy, V. N., Schikorski, T., Stevens, C. F. & Zhu, Y. Inactivity produces increases in neurotransmitter release and synapse size. Neuron 32, 673–682 (2001).

  86. 86

    Darcy, K. J., Staras, K., Collinson, L. M. & Goda, Y. Constitutive sharing of recycling synaptic vesicles between presynaptic boutons. Nature Neurosci. 9, 315–321 (2006).

  87. 87

    Staras, K. Share and share alike: trading of presynaptic elements between central synapses. Trends Neurosci. 30, 292–298 (2007).

  88. 88

    Galante, M., Avossa, D., Rosato-Siri, M. & Ballerini, L. Homeostatic plasticity induced by chronic block of AMPA/kainate receptors modulates the generation of rhythmic bursting in rat spinal cord organotypic cultures. Eur. J. Neurosci. 14, 903–917 (2001).

  89. 89

    Wierenga, C. J., Walsh, M. F. & Turrigiano, G. G. Temporal regulation of the expression locus of homeostatic plasticity. J. Neurophysiol. 96, 2127–2133 (2006).

  90. 90

    Hardingham, N. R., Hardingham, G. E., Fox, K. D. & Jack, J. J. B. Presynaptic efficacy directs normalization of synaptic strength in layer 2/3 rat neocortex after paired activity. J. Neurophysiol. 97, 2965–2975 (2007).

  91. 91

    Goold, C. P. & Davis, G. W. The BMP ligand Gbb gates the expression of synaptic homeostasis independent of synaptic growth control. Neuron 56, 109–123 (2007).

  92. 92

    Futai, K. et al. Retrograde modulation of presynaptic release probability through signaling mediated by PSD-95-neuroligin. Nature Neurosci. 10, 186–195 (2007).

  93. 93

    Alger, B. E. Retrograde signaling in the regulation of synaptic transmission: focus on endocannabinoids. Prog. Neurobiol. 68, 247–286 (2002).

  94. 94

    Wilson, R. I., Kunos, G. & Nicoll, R. A. Presynaptic specificity of endocannabinoid signaling in the hippocampus. Neuron 31, 453–462 (2001).

  95. 95

    Wilson, R. I. & Nicoll, R. A. Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature 410, 588–592 (2001).

  96. 96

    Beierlein, M., Fioravante, D. & Regehr, W. G. Differential expression of posttetanic potentiation and retrograde signaling mediate target-dependent short-term synaptic plasticity. Neuron 54, 949–959 (2007).

  97. 97

    Brasier, D. J. & Feldman, D. E. Synapse-specific expression of functional presynaptic NMDA receptors in rat somatosensory cortex. J. Neurosci. 28, 2199–2211 (2008).

  98. 98

    Brenowitz, S. D. & Regehr, W. G. Reliability and heterogeneity of calcium signaling at single presynaptic boutons of cerebellar granule cells. J. Neurosci. 27, 7888–7898 (2007).

  99. 99

    Moulder, K. L. et al. Vesicle pool heterogeneity at hippocampal glutamate and GABA synapses. J. Neurosci. 27, 9846–9854 (2007).

  100. 100

    Sun, H. Y., Lyons, S. A. & Dobrunz, L. E. Mechanisms of target-cell specific short-term plasticity at Schaffer collateral synapses onto interneurones versus pyramidal cells in juvenile rats. J. Physiol. 568, 815–840 (2005).

  101. 101

    Wyatt, R. M. & Balice-Gordon, R. J. Activity-dependent elimination of neuromuscular synapses. J. Neurocytol. 32, 777–794 (2003).

  102. 102

    Atwood, H. L. & Karunanithi, S. Diversification of synaptic strength: presynaptic elements. Nature Rev. Neurosci. 3, 497–516 (2002).

  103. 103

    Craig, A. M. & Boudin, H. Molecular heterogeneity of central synapses: afferent and target regulation. Nature Neurosci. 4, 569–578 (2001).

  104. 104

    Tyler, W. J. et al. BDNF increases release probability and the size of a rapidly recycling vesicle pool within rat hippocampal excitatory synapses. J. Physiol. 574, 787–803 (2006).

  105. 105

    Turrigiano, G. G. The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 135, 422–435 (2008).

  106. 106

    Abbott, L. F. & Regehr, W. G. Synaptic computation. Nature 431, 796–803 (2004).

  107. 107

    Goldman, M. S. Enhancement of information transmission efficiency by synaptic failures. Neural Comput. 16, 1137–1162 (2004).

  108. 108

    Moore, E. F. & Shannon, C. E. Reliable circuits using less reliable relays. J. Franklin. Inst. 262, 191–208, 281–297 (1956).

  109. 109

    Smetters, D. K. & Zador, A. Synaptic transmission: noisy synapses and noisy neurons. Curr. Biol. 6, 1217–1218 (1996).

  110. 110

    Stevens, C. F. Neuronal communication. Cooperativity of unreliable neurons. Curr. Biol. 4, 268–269 (1994).

  111. 111

    Zador, A. Impact of synaptic unreliability on the information transmitted by spiking neurons. J. Neurophysiol. 79, 1219–1229 (1998).

  112. 112

    Lisman, J. & Raghavachari, S. A unified model of the presynaptic and postsynaptic changes during LTP at CA1 synapses. Sci. STKE 2006, re11 (2006).

  113. 113

    Thomson, A. M. Presynaptic frequency- and pattern-dependent filtering. J. Comput. Neurosci. 15, 159–202 (2003).

  114. 114

    Tsodyks, M. V. & Markram, H. The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc. Natl Acad. Sci. USA 94, 719–723 (1997).

  115. 115

    Stevens, C. F. & Wang, Y. Changes in reliability of synaptic function as a mechanism for plasticity. Nature 371, 704–707 (1994).

  116. 116

    Manwani, A. & Koch, C. Detecting and estimating signals over noisy and unreliable synapses: information-theoretic analysis. Neural Comput. 13, 1–33 (2001).

  117. 117

    Fernandez-Alfonso, T. & Ryan, T. A. The efficiency of the synaptic vesicle cycle at central nervous system synapses. Trends Cell Biol. 16, 413–420 (2006).

  118. 118

    Saviane, C. & Silver, R. A. Fast vesicle reloading and a large pool sustain high bandwidth transmission at a central synapse. Nature 439, 983–987 (2006).

  119. 119

    Zhang, Q., Li, Y. & Tsien, R. W. The dynamic control of kiss-and-run and vesicular reuse probed with single nanoparticles. Science 323, 1448–1453 (2009).

  120. 120

    Attwell, D. & Gibb, A. Neuroenergetics and the kinetic design of excitatory synapses. Nature Rev. Neurosci. 6, 841–849 (2005).

  121. 121

    Attwell, D. & Laughlin, S. B. An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab. 21, 1133–1145 (2001).

  122. 122

    Laughlin, S. B., de Ruyter van Steveninck, R. R. & Anderson, J. C. The metabolic cost of neural information. Nature Neurosci. 1, 36–41 (1998).

  123. 123

    Levy, W. B. & Baxter, R. A. Energy efficient neural codes. Neural Comput. 8, 531–543 (1996).

  124. 124

    Levy, W. B. & Baxter, R. A. Energy-efficient neuronal computation via quantal synaptic failures. J. Neurosci. 22, 4746–4755 (2002).

  125. 125

    Rabinowitch, I. & Segev, I. The interplay between homeostatic synaptic plasticity and functional dendritic compartments. J. Neurophysiol. 96, 276–283 (2006).

  126. 126

    Rall, W. & Rinzel, J. Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. Biophys. J. 13, 648–687 (1973).

  127. 127

    Rinzel, J. & Rall, W. Transient response in a dendritic neuron model for current injected at one branch. Biophys. J. 14, 759–790 (1974).

  128. 128

    Johnston, D. & Narayanan, R. Active dendrites: colorful wings of the mysterious butterflies. Trends Neurosci. 31, 309–316 (2008).

  129. 129

    Rall, W. Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. J. Neurophysiol. 30, 1138–1168 (1967).

  130. 130

    Mel, B. W. Synaptic integration in an excitable dendritic tree. J. Neurophysiol. 70, 1086–1101 (1993).

  131. 131

    Poirazi, P., Brannon, T. & Mel, B. W. Pyramidal neuron as two-layer neural network. Neuron 37, 989–999 (2003).

  132. 132

    Stellwagen, D. & Malenka, R. C. Synaptic scaling mediated by glial TNF-α. Nature 440, 1054–1059 (2006).

  133. 133

    Redman, S. & Faber, D. S. Editorial. J. Neurosci. Methods 130, 103–104 (2003).

  134. 134

    Denk, W. & Horstmann, H. Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol. 2, e329 (2004).

  135. 135

    Luo, L., Callaway, E. M. & Svoboda, K. Genetic dissection of neural circuits. Neuron 57, 634–660 (2008).

  136. 136

    Dobrunz, L. E. & Stevens, C. F. Heterogeneity of release probability, facilitation, and depletion at central synapses. Neuron 18, 995–1008 (1997).

  137. 137

    Feldmeyer, D. & Sakmann, B. Synaptic efficacy and reliability of excitatory connections between the principal neurones of the input (layer 4) and output layer (layer 5) of the neocortex. J. Physiol. 525, 31–39 (2000).

  138. 138

    Markram, H., Lubke, J., Frotscher, M., Roth, A. & Sakmann, B. Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. J. Physiol. 500, 409–440 (1997).

  139. 139

    Chen, G., Harata, N. C. & Tsien, R. W. Paired-pulse depression of unitary quantal amplitude at single hippocampal synapses. Proc. Natl Acad. Sci. USA 101, 1063–1068 (2004).

  140. 140

    Oertner, T. G., Sabatini, B. L., Nimchinsky, E. A. & Svoboda, K. Facilitation at single synapses probed with optical quantal analysis. Nature Neurosci. 5, 657–664 (2002).

  141. 141

    Zakharenko, S. S., Zablow, L. & Siegelbaum, S. A. Visualization of changes in presynaptic function during long-term synaptic plasticity. Nature Neurosci. 4, 711–717 (2001).

  142. 142

    Gandhi, S. P. & Stevens, C. F. Three modes of synaptic vesicular recycling revealed by single-vesicle imaging. Nature 423, 607–613 (2003).

  143. 143

    Balaji, J. & Ryan, T. A. Single-vesicle imaging reveals that synaptic vesicle exocytosis and endocytosis are coupled by a single stochastic mode. Proc. Natl Acad. Sci. USA 104, 20576–20581 (2007).

  144. 144

    Emptage, N. J., Reid, C. A., Fine, A. & Bliss, T. V. P. Optical quantal analysis reveals a presynaptic component of LTP at hippocampal Schaffer-associational synapses. Neuron 38, 797–804 (2003).

  145. 145

    Yuste, R., Majewska, A., Cash, S. S. & Denk, W. Mechanisms of calcium influx into hippocampal spines: heterogeneity among spines, coincidence detection by NMDA receptors, and optical quantal analysis. J. Neurosci. 19, 1976–1987 (1999).

  146. 146

    Brown, A. G. & Fyffe, R. E. Direct observations on the contacts made between Ia afferent fibres and alpha-motoneurones in the cat's lumbosacral spinal cord. J. Physiol. 313, 121–140 (1981).

  147. 147

    Grantyn, R., Shapovalov, A. I. & Shiriaev, B. I. Relation between structural and release parameters at the frog sensory-motor synapse. J. Physiol. 349, 459–474 (1984).

  148. 148

    Hardingham, N. R. et al. Extracellular calcium regulates postsynaptic efficacy through group 1 metabotropic glutamate receptors. J. Neurosci. 26, 6337–6345 (2006).

  149. 149

    Bremaud, A., West, D. C. & Thomson, A. M. Binomial parameters differ across neocortical layers and with different classes of connections in adult rat and cat neocortex. Proc. Natl Acad. Sci. USA 104, 14134–14139 (2007).

  150. 150

    Feldmeyer, D., Lubke, J., Silver, R. A. & Sakmann, B. Synaptic connections between layer 4 spiny neurone-layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column. J. Physiol. 538, 803–822 (2002).

  151. 151

    Silver, R. A., Lubke, J., Sakmann, B. & Feldmeyer, D. High-probability uniquantal transmission at excitatory synapses in barrel cortex. Science 302, 1981–1984 (2003).

  152. 152

    Feldmeyer, D., Egger, V., Lubke, J. & Sakmann, B. Reliable synaptic connections between pairs of excitatory layer 4 neurones within a single 'barrel' of developing rat somatosensory cortex. J. Physiol. 521, 169–190 (1999).

  153. 153

    Tarczy-Hornoch, K., Martin, K. A., Stratford, K. J. & Jack, J. J. Intracortical excitation of spiny neurons in layer 4 of cat striate cortex in vitro. Cereb. Cortex 9, 833–843 (1999).

  154. 154

    Thomson, A. M., Deuchars, J. & West, D. C. Neocortical local synaptic circuitry revealed with dual intracellular recordings and biocytin-filling. J. Physiol. (Paris) 90, 211–215 (1996).

  155. 155

    Deuchars, J. & Thomson, A. M. Innervation of burst firing spiny interneurons by pyramidal cells in deep layers of rat somatomotor cortex: paired intracellular recordings with biocytin filling. Neuroscience 69, 739–755 (1995).

  156. 156

    Deuchars, J. & Thomson, A. M. CA1 pyramid-pyramid connections in rat hippocampus in vitro: dual intracellular recordings with biocytin filling. Neuroscience 74, 1009–1018 (1996).

  157. 157

    Larkman, A. U., Jack, J. J. & Stratford, K. J. Quantal analysis of excitatory synapses in rat hippocampal CA1 in vitro during low-frequency depression. J. Physiol. 505, 457–471 (1997).

  158. 158

    Biro, A. A., Holderith, N. B. & Nusser, Z. Release probability-dependent scaling of the postsynaptic responses at single hippocampal GABAergic synapses. J. Neurosci. 26, 12487–12496 (2006).

  159. 159

    Gulyas, A. I. et al. Hippocampal pyramidal cells excite inhibitory neurons through a single release site. Nature 366, 683–687 (1993).

  160. 160

    Dittman, J. S., Kreitzer, A. C. & Regehr, W. G. Interplay between facilitation, depression, and residual calcium at three presynaptic terminals. J. Neurosci. 20, 1374–1385 (2000).

  161. 161

    Auger, C., Kondo, S. & Marty, A. Multivesicular release at single functional synaptic sites in cerebellar stellate and basket cells. J. Neurosci. 18, 4532–4547 (1998).

  162. 162

    Ding, J., Peterson, J. D. & Surmeier, D. J. Corticostriatal and thalamostriatal synapses have distinctive properties. J. Neurosci. 28, 6483–6492 (2008).

  163. 163

    Sahara, Y. & Takahashi, T. Quantal components of the excitatory postsynaptic currents at a rat central auditory synapse. J. Physiol. 536, 189–197 (2001).

  164. 164

    Sakaba, T., Schneggenburger, R. & Neher, E. Estimation of quantal parameters at the calyx of Held synapse. Neurosci. Res. 44, 343–356 (2002).

  165. 165

    Murphy, G. J., Glickfeld, L. L., Balsen, Z. & Isaacson, J. S. Sensory neuron signaling to the brain: properties of transmitter release from olfactory nerve terminals. J. Neurosci. 24, 3023–3030 (2004).

Download references

Acknowledgements

We would like to thank D. Attwell, B. Clark, A. Roth and M. Häusser for critical comments on the manuscript, M. London for helpful discussions, and Y. Goda and M. Häusser for support. T.B. is supported by grants from the Wellcome Trust and the Gatsby Charitable Foundation (to M. Häusser). K.S. is supported by the Wellcome Trust (WT084357MF) and the Biotechnology and Biological Sciences Research Council (BB/F018371). We apologise to authors whose work we were unable to include owing to space constraints.

Author information

Related links

Related links

FURTHER INFORMATION

Kevin Staras's homepage

Glossary

Active zone

A specialized area of the presynaptic membrane where synaptic vesicle exocytosis occurs.

Dendritic integration

The process through which synaptic inputs interact with each other and with the electrical properties of the dendritic tree to generate patterns of action potential output.

Gain control

Regulation of the relationship between synaptic input and neuronal output.

Miniature excitatory postsynaptic currents

The postsynaptic signals that are produced in response to spontaneous release of a single quantum of transmitter (usually a single vesicle).

Quantal analysis

A statistical approach for decomposing the synaptic response into the underlying quanta, usually involving estimation of quantal size, release probability and number of release sites.

Shunting

A decrease in the size of synaptic responses that results from an increase in the membrane conductance (for example, through neurotransmitter-activated ion channels).

Synaptic homeostasis

A regulatory process that stabilizes synaptic weights around a set point.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Branco, T., Staras, K. The probability of neurotransmitter release: variability and feedback control at single synapses. Nat Rev Neurosci 10, 373–383 (2009) doi:10.1038/nrn2634

Download citation

Further reading