Abstract
The effects of prenatal exposure to drugs on brain development are complex and are modulated by the timing, dose and route of drug exposure. It is difficult to assess these effects in clinical cohorts as these are beset with problems such as multiple exposures and difficulties in documenting use patterns. This can lead to misinterpretation of research findings by the general public, the media and policy makers, who may mistakenly assume that the legal status of a drug correlates with its biological impact on fetal brain development and long-term clinical outcomes. It is important to close the gap between what science tells us about the impact of prenatal drug exposure on the fetus and the mother and what we do programmatically with regard to at-risk populations.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Associations between different dimensions of prenatal distress, neonatal hippocampal connectivity, and infant memory
Neuropsychopharmacology Open Access 18 April 2020
-
Joint and separate exposure to alcohol and ∆9-tetrahydrocannabinol produced distinct effects on glucose and insulin homeostasis in male rats
Scientific Reports Open Access 19 August 2019
Access options
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout

References
Pinto, C. Medical officials question arrest of pregnant patient. The Tennessean A1 (24 Apr 2008).
Seckl, J. R. & Meaney, M. J. Glucocorticoid “programming” and PTSD risk. Ann. NY Acad. Sci. 1071, 351–378 (2006).
Levitt, P. Prenatal effects of drugs of abuse on brain development. Drug Alcohol Depend. 51, 109–125 (1998).
Thadani, P. V. The intersection of stress, drug abuse and development. Psychoneuroendocrinology 27, 221–230 (2002).
Randall, C. L. Alcohol and pregnancy: highlights from three decades of research. J. Stud. Alcohol 62, 554–561 (2001).
Malanga, C. J. & Kosofsky, B. E. Mechanisms of action of drugs of abuse on the developing fetal brain. Clin. Perinatol. 26, 17–37, v–vi (1999).
Clancy, B., Darlington, R. B. & Finlay, B. L. Translating developmental time across mammalian species. Neuroscience 105, 7–17 (2001).
Clancy, B., Finlay, B. L., Darlington, R. B. & Anand, K. J. Extrapolating brain development from experimental species to humans. Neurotoxicology 28, 931–937 (2007).
Clancy, B. et al. Web-based method for translating neurodevelopment from laboratory species to humans. Neuroinformatics 5, 79–94 (2007).
Volkow, N. D., Fowler, J. S., Wang, G. J., Swanson, J. M. & Telang, F. Dopamine in drug abuse and addiction: results of imaging studies and treatment implications. Arch. Neurol. 64, 1575–1579 (2007).
Wise, R. A. Dopamine, learning and motivation. Nature Rev. Neurosci. 5, 483–494 (2004).
Goldman-Rakic, P. S., Lidow, M. S. & Gallager, D. W. Overlap of dopaminergic, adrenergic, and serotoninergic receptors and complementarity of their subtypes in primate prefrontal cortex. J. Neurosci. 10, 2125–2138 (1990).
Djamgoz, M. B. & Wagner, H. J. Localization and function of dopamine in the adult vertebrate retina. Neurochem. Int. 20, 139–191 (1992).
De Souza, E. B. & Kuhar, M. J. Dopamine receptors in the anterior lobe of the human pituitary gland: autoradiographic localization. Brain Res. 306, 391–395 (1984).
Murrin, L. C., Gale, K. & Kuhar, M. J. Autoradiographic localization of neuroleptic and dopamine receptors in the caudate-putamen and substantia nigra: effects of lesions. Eur. J. Pharmacol. 60, 229–235 (1979).
Chasnoff, I. J., Burns, W. J., Schnoll, S. H. & Burns, K. A. Cocaine use in pregnancy. N. Engl. J. Med. 313, 666–669 (1985).
Chasnoff, I. J., Burns, K. A. & Burns, W. J. Cocaine use in pregnancy: perinatal morbidity and mortality. Neurotoxicol. Teratol. 9, 291–293 (1987).
Bauchner, H., Zuckerman, B., Amaro, H., Frank, D. A. & Parker, S. Teratogenicity of cocaine. J. Pediatr. 111, 160–161 (1987).
Dow-Edwards, D., Mayes, L., Spear, L. & Hurd, Y. Cocaine and development: clinical, behavioral, and neurobiological perspectives–a symposium report. Neurotoxicol. Teratol. 21, 481–490 (1999).
Gingras, J. L. & O'Donnell, K. J. State control in the substance-exposed fetus. I. The fetal neurobehavioral profile: an assessment of fetal state, arousal, and regulation competency. Ann. NY Acad. Sci. 846, 262–276 (1998).
Karmel, B. Z. & Gardner, J. M. Prenatal cocaine exposure effects on arousal-modulated attention during the neonatal period. Dev. Psychobiol. 29, 463–480 (1996).
Mayes, L. C., Grillon, C., Granger, R. & Schottenfeld, R. Regulation of arousal and attention in preschool children exposed to cocaine prenatally. Ann. NY Acad. Sci. 846, 126–143 (1998).
Richardson, G. A., Hamel, S. C., Goldschmidt, L. & Day, N. L. The effects of prenatal cocaine use on neonatal neurobehavioral status. Neurotoxicol. Teratol. 18, 519–528 (1996).
Singer, L. T. et al. Cognitive outcomes of preschool children with prenatal cocaine exposure. JAMA 291, 2448–2456 (2004).
Mayes, L. C. Exposure to cocaine: behavioral outcomes in preschool and school-age children. NIDA Res. Monogr. 164, 211–229 (1996).
Mayes, L. C., Bornstein, M. H., Chawarska, K. & Granger, R. H. Information processing and developmental assessments in 3-month-old infants exposed prenatally to cocaine. Pediatrics 95, 539–545 (1995).
Mayes, L. C., Cicchetti, D., Acharyya, S. & Zhang, H. Developmental trajectories of cocaine-and-other-drug-exposed and non-cocaine-exposed children. J. Dev. Behav. Pediatr. 24, 323–335 (2003).
Richardson, G. A., Conroy, M. L. & Day, N. L. Prenatal cocaine exposure: effects on the development of school-age children. Neurotoxicol. Teratol. 18, 627–634 (1996).
Richardson, G. A. Prenatal cocaine exposure. A longitudinal study of development. Ann. NY Acad. Sci. 846, 144–152 (1998).
Gabriel, M., Taylor, C. & Burhans, L. In utero cocaine, discriminative avoidance learning with low-salient stimuli and learning-related neuronal activity in rabbits (Oryctolagus cuniculus). Behav. Neurosci. 117, 912–926 (2003).
Morrow, B. A., Elsworth, J. D. & Roth, R. H. Prenatal cocaine exposure disrupts non-spatial, short-term memory in adolescent and adult male rats. Behav. Brain Res. 129, 217–223 (2002).
Thompson, B. L., Levitt, P. & Stanwood, G. D. Prenatal cocaine exposure specifically alters spontaneous alternation behavior. Behav. Brain Res. 164, 107–116 (2005).
Levine, T. P. et al. Effects of prenatal cocaine exposure on special education in school-aged children. Pediatrics 122, e83–e91 (2008).
Harvey, J. A. Cocaine effects on the developing brain: current status. Neurosci. Biobehav. Rev. 27, 751–764 (2004).
Lidow, M. S. Consequences of prenatal cocaine exposure in nonhuman primates. Brain Res. Dev. Brain Res. 147, 23–36 (2003).
Mayes, L. C. A behavioral teratogenic model of the impact of prenatal cocaine exposure on arousal regulatory systems. Neurotoxicol. Teratol. 24, 385–395 (2002).
Stanwood, G. D. & Levitt, P. Drug exposure early in life: functional repercussions of changing neuropharmacology during sensitive periods of brain development. Curr. Opin. Pharmacol. 4, 65–71 (2004).
Parlaman, J. P., Thompson, B. L., Levitt, P. & Stanwood, G. D. Pharmacokinetic profile of cocaine following intravenous administration in the female rabbit. Eur. J. Pharmacol. 563, 124–129 (2007).
Evans, S. M., Cone, E. J. & Henningfield, J. E. Arterial and venous cocaine plasma concentrations in humans: relationship to route of administration, cardiovascular effects and subjective effects. J. Pharmacol. Exp. Ther. 279, 1345–1356 (1996).
Jenkins, A. J., Keenan, R. M., Henningfield, J. E. & Cone, E. J. Correlation between pharmacological effects and plasma cocaine concentrations after smoked administration. J. Anal. Toxicol. 26, 382–392 (2002).
Friedman, E., Yadin, E. & Wang, H. Y. Effect of prenatal cocaine on dopamine receptor-G protein coupling in mesocortical regions of the rabbit brain. Neuroscience 70, 739–747 (1996).
Jones, L. B. et al. In utero cocaine-induced dysfunction of dopamine D1 receptor signaling and abnormal differentiation of cerebral cortical neurons. J. Neurosci. 20, 4606–4614 (2000).
Wang, H. Y., Runyan, S., Yadin, E. & Friedman, E. Prenatal exposure to cocaine selectively reduces D1 dopamine receptor-mediated activation of striatal Gs proteins. J. Pharmacol. Exp. Ther. 273, 492–498 (1995).
Stanwood, G. D., Parlaman, J. P. & Levitt, P. Anatomical abnormalities in dopaminoceptive regions of the cerebral cortex of dopamine D1 receptor mutant mice. J. Comp. Neurol. 487, 270–282 (2005).
Stanwood, G. D., Washington, R. A., Shumsky, J. S. & Levitt, P. Prenatal cocaine exposure produces consistent developmental alterations in dopamine-rich regions of the cerebral cortex. Neuroscience 106, 5–14 (2001).
Murphy, E. H. et al. Cocaine administration in pregnant rabbits alters cortical structure and function in their progeny in the absence of maternal seizures. Exp. Brain Res. 114, 433–441 (1997).
Stanwood, G. D. & Levitt, P. Prenatal exposure to cocaine produces unique developmental and long-term adaptive changes in dopamine D1 receptor activity and subcellular distribution. J. Neurosci. 27, 152–157 (2007).
Clark, L., Cools, R. & Robbins, T. W. The neuropsychology of ventral prefrontal cortex: decision-making and reversal learning. Brain Cogn. 55, 41–53 (2004).
Collette, F. & Van der Linden, M. Brain imaging of the central executive component of working memory. Neurosci. Biobehav. Rev. 26, 105–125 (2002).
Elliott, R. Executive functions and their disorders. Br. Med. Bull. 65, 49–59 (2003).
Elston, G. N. Cortex, cognition and the cell: new insights into the pyramidal neuron and prefrontal function. Cereb. Cortex 13, 1124–1138 (2003).
Goldman-Rakic, P. S. Regional and cellular fractionation of working memory. Proc. Natl Acad. Sci. USA 93, 13473–13480 (1996).
Goldman-Rakic, P. S. The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive. Philos. Trans. R. Soc. Lond. B Biol. Sci. 351, 1445–1453 (1996).
Stanwood, G. D., Washington, R. A. & Levitt, P. Identification of a sensitive period of prenatal cocaine exposure that alters the development of the anterior cingulate cortex. Cereb. Cortex 11, 430–440 (2001).
Crandall, J. E., Hackett, H. E., Tobet, S. A., Kosofsky, B. E. & Bhide, P. G. Cocaine exposure decreases GABA neuron migration from the ganglionic eminence to the cerebral cortex in embryonic mice. Cereb. Cortex 14, 665–675 (2004).
Gressens, P., Kosofsky, B. E. & Evrard, P. Cocaine-induced disturbances of corticogenesis in the developing murine brain. Neurosci. Lett. 140, 113–116 (1992).
Lidow, M. S. Prenatal cocaine exposure adversely affects development of the primate cerebral cortex. Synapse 21, 332–341 (1995).
Lidow, M. S. & Song, Z. M. Effect of cocaine on cell proliferation in the cerebral wall of monkey fetuses. Cereb. Cortex 11, 545–551 (2001).
Ren, J. Q., Malanga, C. J., Tabit, E. & Kosofsky, B. E. Neuropathological consequences of prenatal cocaine exposure in the mouse. Int. J. Dev. Neurosci. 22, 309–320 (2004).
Lidow, M. S. & Song, Z. M. Primates exposed to cocaine in utero display reduced density and number of cerebral cortical neurons. J. Comp. Neurol. 435, 263–275 (2001).
Crandall, J. E. et al. Dopamine receptor activation modulates GABA neuron migration from the basal forebrain to the cerebral cortex. J. Neurosci. 27, 3813–3822 (2007).
Ohtani, N., Goto, T., Waeber, C. & Bhide, P. G. Dopamine modulates cell cycle in the lateral ganglionic eminence. J. Neurosci. 23, 2840–2850 (2003).
Harvey, J. A. et al. Effects of prenatal exposure to cocaine on the developing brain: anatomical, chemical, physiological and behavioral consequences. Neurotox. Res. 3, 117–143 (2001).
Stanwood, G. D. & Levitt, P. Repeated i.v. cocaine exposure produces long-lasting behavioral sensitization in pregnant adults, but behavioral tolerance in their offspring. Neuroscience 122, 579–583 (2003).
Johnston, L. D., O'Malley, P. M., Bachman, J. G. & Schulenberg, J. E. Monitoring the Future national survey results on drug use, 1975–2007. Volume I: secondary school students. NIH Publication No. 08–6418A (National Institute on Drug Abuse, Bethesda, Maryland, 2008).
Smith, L. M. et al. Prenatal methamphetamine use and neonatal neurobehavioral outcome. Neurotoxicol. Teratol. 30, 20–28 (2008).
Smith, L. M. et al. The infant development, environment, and lifestyle study: effects of prenatal methamphetamine exposure, polydrug exposure, and poverty on intrauterine growth. Pediatrics 118, 1149–1156 (2006).
Petrou, S., Sach, T. & Davidson, L. The long-term costs of preterm birth and low birth weight: results of a systematic review. Child Care Health Dev. 27, 97–115 (2001).
Chaikind, S. & Corman, H. The impact of low birthweight on special education costs. J. Health Econ. 10, 291–311 (1991).
Cernerud, L., Eriksson, M., Jonsson, B., Steneroth, G. & Zetterstrom, R. Amphetamine addiction during pregnancy: 14-year follow-up of growth and school performance. Acta Paediatr. 85, 204–208 (1996).
Chang, L. et al. Smaller subcortical volumes and cognitive deficits in children with prenatal methamphetamine exposure. Psychiatry Res. 132, 95–106 (2004).
Chang, L., Alicata, D., Ernst, T. & Volkow, N. Structural and metabolic brain changes in the striatum associated with methamphetamine abuse. Addiction 102 (Suppl. 1), 16–32 (2007).
Derauf, C. et al. Demographic and psychosocial characteristics of mothers using methamphetamine during pregnancy: preliminary results of the Infant Development, Environment, And Lifestyle study (IDEAL). Am. J. Drug Alcohol Abuse 33, 281–289 (2007).
Melo, P., Rodrigues, L. G., Silva, M. C. & Tavares, M. A. Effects of prenatal exposure to methamphetamine on the development of the rat retina. Ann. NY Acad. Sci. 1074, 590–603 (2006).
Melo, P., Moreno, V. Z., Vazquez, S. P., Pinazo-Duran, M. D. & Tavares, M. A. Myelination changes in the rat optic nerve after prenatal exposure to methamphetamine. Brain Res. 1106, 21–29 (2006).
Slamberova, R., Pometlova, M. & Charousova, P. Postnatal development of rat pups is altered by prenatal methamphetamine exposure. Prog. Neuropsychopharmacol. Biol. Psychiatry 30, 82–88 (2006).
Slamberova, R., Pometlova, M., Syllabova, L. & Mancuskova, M. Learning in the place navigation task, not the new-learning task, is altered by prenatal methamphetamine exposure. Brain Res. Dev. Brain Res. 157, 217–219 (2005).
Nasif, F. J., Cuadra, G. R. & Ramirez, O. A. Permanent alteration of central noradrenergic system by prenatally administered amphetamine. Brain Res. Dev. Brain Res. 112, 181–188 (1999).
Gomes-da-Silva, J. et al. Prenatal exposure to methamphetamine in the rat: ontogeny of tyrosine hydroxylase mRNA expression in mesencephalic dopaminergic neurons. Ann. NY Acad. Sci. 965, 68–77 (2002).
Cabrera, T. M., Levy, A. D., Li, Q., van de Kar, L. D. & Battaglia, G. Prenatal methamphetamine attenuates serotonin mediated renin secretion in male and female rat progeny: evidence for selective long-term dysfunction of serotonin pathways in brain. Synapse 15, 198–208 (1993).
Slamberova, R., Pometlova, M. & Rokyta, R. Effect of methamphetamine exposure during prenatal and preweaning periods lasts for generations in rats. Dev. Psychobiol. 49, 312–322 (2007).
Rogers, J. M. Tobacco and pregnancy: overview of exposures and effects. Birth Defects Res. C Embryo Today 84, 1–15 (2008).
Hollins, K. Consequences of antenatal mental health problems for child health and development. Curr. Opin. Obstet. Gynecol. 19, 568–572 (2007).
Hack, M. Young adult outcomes of very-low-birth-weight children. Semin. Fetal Neonatal Med. 11, 127–137 (2006).
Gianni, M. L. et al. Twelve-month neurofunctional assessment and cognitive performance at 36 months of age in extremely low birth weight infants. Pediatrics 120, 1012–1019 (2007).
Lambe, M., Hultman, C., Torrang, A., Maccabe, J. & Cnattingius, S. Maternal smoking during pregnancy and school performance at age 15. Epidemiology 17, 524–530 (2006).
George, L., Granath, F., Johansson, A. L., Anneren, G. & Cnattingius, S. Environmental tobacco smoke and risk of spontaneous abortion. Epidemiology 17, 500–505 (2006).
Cnattingius, S. The epidemiology of smoking during pregnancy: smoking prevalence, maternal characteristics, and pregnancy outcomes. Nicotine Tob. Res. 6 (Suppl. 2), S125–S140 (2004).
DiFranza, J. R., Aligne, C. A. & Weitzman, M. Prenatal and postnatal environmental tobacco smoke exposure and children's health. Pediatrics 113, 1007–1015 (2004).
Fried, P. A., Watkinson, B. & Gray, R. Differential effects on cognitive functioning in 13- to 16-year-olds prenatally exposed to cigarettes and marihuana. Neurotoxicol. Teratol. 25, 427–436 (2003).
Fried, P. A. & Watkinson, B. Differential effects on facets of attention in adolescents prenatally exposed to cigarettes and marihuana. Neurotoxicol. Teratol. 23, 421–430 (2001).
Makin, J., Fried, P. A. & Watkinson, B. A comparison of active and passive smoking during pregnancy: long-term effects. Neurotoxicol. Teratol. 13, 5–12 (1991).
Eskenazi, B., Prehn, A. W. & Christianson, R. E. Passive and active maternal smoking as measured by serum cotinine: the effect on birthweight. Am. J. Public Health 85, 395–398 (1995).
Langley, K., Rice, F., van den Bree, M. B. & Thapar, A. Maternal smoking during pregnancy as an environmental risk factor for attention deficit hyperactivity disorder behaviour. A review. Minerva Pediatr. 57, 359–371 (2005).
Gaither, K. H., Huber, L. R., Thompson, M. E. & Huet-Hudson, Y. M. Does the use of nicotine replacement therapy during pregnancy affect pregnancy outcomes? Matern. Child Health J. 14 May 2008 (doi: 10.1007/s10995-008-0361-1).
Schroeder, D. R. et al. Nicotine patch use in pregnant smokers: smoking abstinence and delivery outcomes. J. Matern. Fetal Neonatal Med. 11, 100–107 (2002).
Pauly, J. R. & Slotkin, T. A. Maternal tobacco smoking, nicotine replacement and neurobehavioural development. Acta Paediatr. 97, 1331–1337 (2008).
Slotkin, T. A. If nicotine is a developmental neurotoxicant in animal studies, dare we recommend nicotine replacement therapy in pregnant women and adolescents? Neurotoxicol. Teratol. 30, 1–19 (2008).
Sarasin, A. et al. Adrenal-mediated rather than direct effects of nicotine as a basis of altered sex steroid synthesis in fetal and neonatal rat. Reprod. Toxicol. 17, 153–162 (2003).
Dwyer, J. B., Broide, R. S. & Leslie, F. M. Nicotine and brain development. Birth Defects Res. C Embryo Today 84, 30–44 (2008).
Navarro, H. A. et al. Prenatal exposure to nicotine impairs nervous system development at a dose which does not affect viability or growth. Brain Res. Bull. 23, 187–192 (1989).
Roy, T. S., Seidler, F. J. & Slotkin, T. A. Prenatal nicotine exposure evokes alterations of cell structure in hippocampus and somatosensory cortex. J. Pharmacol. Exp. Ther. 300, 124–133 (2002).
Paz, R., Barsness, B., Martenson, T., Tanner, D. & Allan, A. M. Behavioral teratogenicity induced by nonforced maternal nicotine consumption. Neuropsychopharmacology 32, 693–699 (2007).
Levin, E. D. et al. Increased nicotine self-administration following prenatal exposure in female rats. Pharmacol. Biochem. Behav. 85, 669–674 (2006).
Vaglenova, J., Birru, S., Pandiella, N. M. & Breese, C. R. An assessment of the long-term developmental and behavioral teratogenicity of prenatal nicotine exposure. Behav. Brain Res. 150, 159–170 (2004).
Slotkin, T. A. Fetal nicotine or cocaine exposure: which one is worse? J. Pharmacol. Exp. Ther. 285, 931–945 (1998).
Sarter, M., Hasselmo, M. E., Bruno, J. P. & Givens, B. Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of signal detection. Brain Res. Brain Res. Rev. 48, 98–111 (2005).
Liang, K. et al. Neonatal nicotine exposure impairs nicotinic enhancement of central auditory processing and auditory learning in adult rats. Eur. J. Neurosci. 24, 857–866 (2006).
Barbieri, R. L., Gochberg, J. & Ryan, K. J. Nicotine, cotinine, and anabasine inhibit aromatase in human trophoblast in vitro. J. Clin. Invest. 77, 1727–1733 (1986).
Fried, P. A., James, D. S. & Watkinson, B. Growth and pubertal milestones during adolescence in offspring prenatally exposed to cigarettes and marihuana. Neurotoxicol. Teratol. 23, 431–436 (2001).
Treiman, D. M. GABAergic mechanisms in epilepsy. Epilepsia 42 (Suppl. 3), 8–12 (2001).
Huang, Z. J., Di Cristo, G. & Ango, F. Development of GABA innervation in the cerebral and cerebellar cortices. Nature Rev. Neurosci. 8, 673–686 (2007).
Feng, M. J., Yan, S. E. & Yan, Q. S. Effects of prenatal alcohol exposure on brain-derived neurotrophic factor and its receptor tyrosine kinase B in offspring. Brain Res. 1042, 125–132 (2005).
Miller, M. W. Expression of transforming growth factor-β in developing rat cerebral cortex: effects of prenatal exposure to ethanol. J. Comp. Neurol. 460, 410–424 (2003).
Borodinsky, L. N. et al. GABA-induced neurite outgrowth of cerebellar granule cells is mediated by GABAA receptor activation, calcium influx and CaMKII and erk1/2 pathways. J. Neurochem. 84, 1411–1420 (2003).
Schwartz, J. P. Neurotransmitters as neurotrophic factors: a new set of functions. Int. Rev. Neurobiol. 34, 1–23 (1992).
Schwartz, M. L. & Meinecke, D. L. Early expression of GABA-containing neurons in the prefrontal and visual cortices of rhesus monkeys. Cereb. Cortex 2, 16–37 (1992).
Walker, A., Rosenberg, M. & Balaban-Gil, K. Neurodevelopmental and neurobehavioral sequelae of selected substances of abuse and psychiatric medications in utero. Child Adolesc. Psychiatr. Clin. N. Am. 8, 845–867 (1999).
Kosofsky, B. E. Specificity of neurobehavioral outcomes associated with prenatal alcohol exposure. J. Womens Health 7, 603–604 (1998).
Chiriboga, C. A. Fetal alcohol and drug effects. Neurologist 9, 267–279 (2003).
Bada, H. S. et al. Low birth weight and preterm births: etiologic fraction attributable to prenatal drug exposure. J. Perinatol. 25, 631–637 (2005).
Loebstein, R. & Koren, G. Pregnancy outcome and neurodevelopment of children exposed in utero to psychoactive drugs: the Motherisk experience. J. Psychiatry Neurosci. 22, 192–196 (1997).
Fried, P. A., Watkinson, B. & Gray, R. A follow-up study of attentional behavior in 6-year-old children exposed prenatally to marihuana, cigarettes, and alcohol. Neurotoxicol. Teratol. 14, 299–311 (1992).
Linnet, K. M. et al. Maternal lifestyle factors in pregnancy risk of attention deficit hyperactivity disorder and associated behaviors: review of the current evidence. Am. J. Psychiatry 160, 1028–1040 (2003).
Williams, J. H. & Ross, L. Consequences of prenatal toxin exposure for mental health in children and adolescents: a systematic review. Eur. Child Adolesc. Psychiatry 16, 243–253 (2007).
Snow, M. E. & Keiver, K. Prenatal ethanol exposure disrupts the histological stages of fetal bone development. Bone 41, 181–187 (2007).
Simpson, M. E., Duggal, S. & Keiver, K. Prenatal ethanol exposure has differential effects on fetal growth and skeletal ossification. Bone 36, 521–532 (2005).
Johnston, M. C. & Bronsky, P. T. Prenatal craniofacial development: new insights on normal and abnormal mechanisms. Crit. Rev. Oral Biol. Med. 6, 368–422 (1995).
Randall, C. L. & Taylor, W. J. Prenatal ethanol exposure in mice: teratogenic effects. Teratology 19, 305–311 (1979).
Miller, M. W. & Dow-Edwards, D. L. Structural and metabolic alterations in rat cerebral cortex induced by prenatal exposure to ethanol. Brain Res. 474, 316–326 (1988).
Miller, M. W. Effect of prenatal exposure to ethanol on glutamate and GABA immunoreactivity in macaque somatosensory and motor cortices: critical timing of exposure. Neuroscience 138, 97–107 (2006).
Miller, M. W. Effect of early exposure to ethanol on the protein and DNA contents of specific brain regions in the rat. Brain Res. 734, 286–294 (1996).
Mooney, S. M. & Miller, M. W. Episodic exposure to ethanol during development differentially affects brainstem nuclei in the macaque. J. Neurocytol. 30, 973–982 (2001).
Barrow Heaton, M. B. et al. Prenatal ethanol exposure reduces spinal cord motoneuron number in the fetal rat but does not affect GDNF target tissue protein. Dev. Neurosci. 21, 444–452 (1999).
Shetty, A. K. & Phillips, D. E. Effects of prenatal ethanol exposure on the development of Bergmann glia and astrocytes in the rat cerebellum: an immunohistochemical study. J. Comp. Neurol. 321, 19–32 (1992).
Redila, V. A. et al. Hippocampal cell proliferation is reduced following prenatal ethanol exposure but can be rescued with voluntary exercise. Hippocampus 16, 305–311 (2006).
Ozer, E., Sarioglu, S. & Gure, A. Effects of prenatal ethanol exposure on neuronal migration, neuronogenesis and brain myelination in the mice brain. Clin. Neuropathol. 19, 21–25 (2000).
Honse, Y., Nixon, K. M., Browning, M. D. & Leslie, S. W. Cell surface expression of NR1 splice variants and NR2 subunits is modified by prenatal ethanol exposure. Neuroscience 122, 689–698 (2003).
Hughes, P. D., Wilson, W. R. & Leslie, S. W. Effect of gestational ethanol exposure on the NMDA receptor complex in rat forebrain: from gene transcription to cell surface. Brain Res. Dev. Brain Res. 129, 135–145 (2001).
Zhang, X., Sliwowska, J. H. & Weinberg, J. Prenatal alcohol exposure and fetal programming: effects on neuroendocrine and immune function. Exp. Biol. Med. (Maywood) 230, 376–388 (2005).
Wilcoxon, J. S., Kuo, A. G., Disterhoft, J. F. & Redei, E. E. Behavioral deficits associated with fetal alcohol exposure are reversed by prenatal thyroid hormone treatment: a role for maternal thyroid hormone deficiency in FAE. Mol. Psychiatry 10, 961–971 (2005).
Champagne, F. & Meaney, M. J. Like mother, like daughter: evidence for non-genomic transmission of parental behavior and stress responsivity. Prog. Brain Res. 133, 287–302 (2001).
Kallen, B. & Otterblad Olausson, P. Antidepressant drugs during pregnancy and infant congenital heart defect. Reprod. Toxicol. 21, 221–222 (2006).
Kallen, B. A. & Otterblad Olausson, P. Maternal drug use in early pregnancy and infant cardiovascular defect. Reprod. Toxicol. 17, 255–261 (2003).
Buznikov, G. A., Shmukler, Y. B. & Lauder, J. M. From oocyte to neuron: do neurotransmitters function in the same way throughout development? Cell. Mol. Neurobiol. 16, 537–559 (1996).
Lauder, J. M. Hormonal and humoral influences on brain development. Psychoneuroendocrinology 8, 121–155 (1983).
Whitaker-Azmitia, P. M., Druse, M., Walker, P. & Lauder, J. M. Serotonin as a developmental signal. Behav. Brain Res. 73, 19–29 (1996).
Bonnin, A., Peng, W., Hewlitt, W. & Levitt, P. Expression mapping of 5-HT1 serotonin receptor subtypes during fetal and early postnatal mouse forebrain development. Neuroscience 141, 781–794 (2006).
Bonnin, A., Torii, M., Wang, L., Rakic, P. & Levitt, P. Serotonin modulates the response of embryonic thalamocortical axons to netrin-1. Nature Neurosci. 10, 588–597 (2007).
Lambe, E. K., Krimer, L. S. & Goldman-Rakic, P. S. Differential postnatal development of catecholamine and serotonin inputs to identified neurons in prefrontal cortex of rhesus monkey. J. Neurosci. 20, 8780–8787 (2000).
Whitaker-Azmitia, P. M., Lauder, J. M., Shemmer, A. & Azmitia, E. C. Postnatal changes in serotonin receptors following prenatal alterations in serotonin levels: further evidence for functional fetal serotonin receptors. Brain Res. 430, 285–289 (1987).
Persico, A. M., Di Pino, G. & Levitt, P. Multiple receptors mediate the trophic effects of serotonin on ventroposterior thalamic neurons in vitro. Brain Res. 1095, 17–25 (2006).
Gross, C. et al. Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature 416, 396–400 (2002).
Ansorge, M. S., Zhou, M., Lira, A., Hen, R. & Gingrich, J. A. Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice. Science 306, 879–881 (2004).
Maschi, S. et al. Neonatal outcome following pregnancy exposure to antidepressants: a prospective controlled cohort study. BJOG 115, 283–289 (2008).
Andrade, S. E. et al. Use of antidepressant medications during pregnancy: a multisite study. Am. J. Obstet. Gynecol. 198, 194 e1–e5 (2008).
Pearson, K. H. et al. Birth outcomes following prenatal exposure to antidepressants. J. Clin. Psychiatry 68, 1284–1289 (2007).
Oberlander, T. F. et al. Infant serotonin transporter (SLC6A4) promoter genotype is associated with adverse neonatal outcomes after prenatal exposure to serotonin reuptake inhibitor medications. Mol. Psychiatry 13, 65–73 (2008).
Einarson, A. et al. Evaluation of the risk of congenital cardiovascular defects associated with use of paroxetine during pregnancy. Am. J. Psychiatry 165, 749–752 (2008).
Zuo, J. et al. Distinct neurobehavioral consequences of prenatal exposure to sulpiride (SUL) and risperidone (RIS) in rats. Prog. Neuropsychopharmacol. Biol. Psychiatry 32, 387–397 (2008).
Singh, Y., Jaiswal, A. K., Singh, M. & Bhattacharya, S. K. Effect of prenatal haloperidol administration on anxiety patterns in rats. Indian J. Exp. Biol. 35, 1284–1290 (1997).
Castro, R., Brito, B., Segovia, J., Martin-Trujillo, J. M. & Notario, V. Prenatal haloperidol induces a selective reduction in the expression of plasticity-related genes in neonate rat forebrain. Brain Res. Mol. Brain Res. 26, 74–80 (1994).
Leonard, B. E. Effect of psychotropic drugs administered to pregnant rats on the behaviour of the offspring. Neuropharmacology 20, 1237–1242 (1981).
Miller, J. C. & Friedhoff, A. J. Prenatal neurotransmitter programming of postnatal receptor function. Prog. Brain Res. 73, 509–522 (1988).
Trixler, M., Gati, A., Fekete, S. & Tenyi, T. Use of antipsychotics in the management of schizophrenia during pregnancy. Drugs 65, 1193–1206 (2005).
Gentile, S. Clinical utilization of atypical antipsychotics in pregnancy and lactation. Ann. Pharmacother. 38, 1265–1271 (2004).
Landmark, C. J. Targets for antiepileptic drugs in the synapse. Med. Sci. Monit. 13, RA1–RA7 (2007).
Gottlicher, M. Valproic acid: an old drug newly discovered as inhibitor of histone deacetylases. Ann. Hematol. 83 (Suppl. 1), S91–S92 (2004).
Carrim, Z. I., McKay, L., Sidiki, S. S. & Lavy, T. E. Early intervention for the ocular and neurodevelopmental sequelae of Fetal Valproate Syndrome. J. Paediatr. Child. Health 43, 643–645 (2007).
Duncan, S. Teratogenesis of sodium valproate. Curr. Opin. Neurol. 20, 175–180 (2007).
Schneider, T. et al. Gender-specific behavioral and immunological alterations in an animal model of autism induced by prenatal exposure to valproic acid. Psychoneuroendocrinology 33, 728–740 (2008).
Schneider, T. & Przewlocki, R. Behavioral alterations in rats prenatally exposed to valproic acid: animal model of autism. Neuropsychopharmacology 30, 80–89 (2005).
Rinaldi, T., Kulangara, K., Antoniello, K. & Markram, H. Elevated NMDA receptor levels and enhanced postsynaptic long-term potentiation induced by prenatal exposure to valproic acid. Proc. Natl Acad. Sci. USA 104, 13501–13506 (2007).
Rinaldi, T., Silberberg, G. & Markram, H. Hyperconnectivity of local neocortical microcircuitry induced by prenatal exposure to valproic acid. Cereb. Cortex 18, 763–770 (2008).
Travis, B. E. & McCullough, J. M. Pharmacotherapy of preterm labor. Pharmacotherapy 13, 28–36 (1993).
Zerrate, M. C. et al. Neuroinflammation and behavioral abnormalities after neonatal terbutaline treatment in rats: implications for autism. J. Pharmacol. Exp. Ther. 322, 16–22 (2007).
Meyer, A., Seidler, F. J., Aldridge, J. E. & Slotkin, T. A. Developmental exposure to terbutaline alters cell signaling in mature rat brain regions and augments the effects of subsequent neonatal exposure to the organophosphorus insecticide chlorpyrifos. Toxicol. Appl. Pharmacol. 203, 154–166 (2005).
Rhodes, M. C. et al. Terbutaline is a developmental neurotoxicant: effects on neuroproteins and morphology in cerebellum, hippocampus, and somatosensory cortex. J. Pharmacol. Exp. Ther. 308, 529–537 (2004).
Pitzer, M., Schmidt, M. H., Esser, G. & Laucht, M. Child development after maternal tocolysis with beta-sympathomimetic drugs. Child Psychiatry Hum. Dev. 31, 165–182 (2001).
Hadders-Algra, M., Touwen, B. C. & Huisjes, H. J. Long-term follow-up of children prenatally exposed to ritodrine. Br. J. Obstet. Gynaecol. 93, 156–161 (1986).
Connors, S. L. et al. beta2-adrenergic receptor activation and genetic polymorphisms in autism: data from dizygotic twins. J. Child Neurol. 20, 876–884 (2005).
Thornton, J. G. Maintenance tocolysis. BJOG 112 (Suppl. 1), 118–121 (2005).
Reese, S., Gandy, O. & Grant, A. (eds) Framing Public Life: Perspectives on Media and Our Understanding of the Social World (Lawrence Erlbaum Associates, Philadelphia, 1993).
Entman, R. M. Framing: toward clarification of a fractured paradigm. J. Commun. 43, 51–58 (1993).
Entman, R. M. Projections of Power (Univ. Chicago Press, 2004).
Bales, S. N. Communicating early childhood education: using strategic frame analysis to shape dialogue. Bulletin of Zero to Three 19 (1999).
National Advisory Mental Health Council. Transformative neurodevelopmental research in mental illness. National Institute of Mental Health [online], (2008).
Whitaker-Azmitia, P. M. Serotonin and brain development: role in human developmental diseases. Brain Res. Bull. 56, 479–485 (2001).
Represa, A. & Ben-Ari, Y. Trophic actions of GABA on neuronal development. Trends Neurosci. 28, 278–283 (2005).
Nguyen, L. et al. Neurotransmitters as early signals for central nervous system development. Cell Tissue Res. 305, 187–202 (2001).
Lauder, J. M. & Schambra, U. B. Morphogenetic roles of acetylcholine. Environ. Health Perspect. 107 (Suppl. 1), 65–69 (1999).
Levitt, P., Harvey, J. A., Friedman, E., Simansky, K. & Murphy, E. H. New evidence for neurotransmitter influences on brain development. Trends Neurosci. 20, 269–274 (1997).
Song, Z. M. et al. D1 dopamine receptor regulation of microtubule-associated protein-2 phosphorylation in developing cerebral cortical neurons. J. Neurosci. 22, 6092–6105 (2002).
Lauder, J. M., Wallace, J. A. & Krebs, H. Roles for serotonin in neuroembryogenesis. Adv. Exp. Med. Biol. 133, 477–506 (1981).
Behar, T. N., Schaffner, A. E., Scott, C. A., Greene, C. L. & Barker, J. L. GABA receptor antagonists modulate postmitotic cell migration in slice cultures of embryonic rat cortex. Cereb. Cortex 10, 899–909 (2000).
Brazel, C. Y., Nunez, J. L., Yang, Z. & Levison, S. W. Glutamate enhances survival and proliferation of neural progenitors derived from the subventricular zone. Neuroscience 131, 55–65 (2005).
Budetti, P. P. et al. ED359734 - An Analysis of Resources to Aid Drug-Exposed Infants and Their Families (George Washington Univ., Washington DC, 1993).
Poland, M. L., Dombrowski, M. P., Ager, J. W. & Sokol, R. J. Punishing pregnant drug users: enhancing the flight from care. Drug Alcohol Depend. 31, 199–203 (1993).
Annas, G. J. Testing poor pregnant patients for cocaine–physicians as police investigators. N. Engl. J. Med. 344, 1729–1732 (2001).
US Supreme Court Center. Ferguson et al. v. City of Charleston et al. 532 U.S. 67. Justia.com[online], (2001).
The State of South Carolina in The Supreme Court. McKnight v. State of South Carolina, 26484. South Carolina Judicial Department [online], (2008).
Rakic, P. A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci. 18, 383–388 (1995).
Stanwood, G. D. & Levitt, P. in Handbook of Developmental Cognitive Neuroscience 2nd edn (eds Nelson, C. A. & Luciana, M.) 83–94 (MIT Press, 2008).
Acknowledgements
We thank S. Bales of the Frameworks Institute and J. Shonkoff, G. Najarian, A. Race and all the members of the National Scientific Council on the Developing Child for insightful discussions with regard to how scientists and policy makers can work together to solve public problems.
Author information
Authors and Affiliations
Corresponding author
Related links
Rights and permissions
About this article
Cite this article
Thompson, B., Levitt, P. & Stanwood, G. Prenatal exposure to drugs: effects on brain development and implications for policy and education. Nat Rev Neurosci 10, 303–312 (2009). https://doi.org/10.1038/nrn2598
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrn2598
This article is cited by
-
Perinatal Stressors as a Factor in Impairments to Nervous System Development and Functions: Review of In Vivo Models
Neuroscience and Behavioral Physiology (2023)
-
Methamphetamine Exposure During Development Causes Lasting Changes to Mesolimbic Dopamine Signaling in Mice
Cellular and Molecular Neurobiology (2022)
-
Co-occurrence of Psychopathology Problems in At-Risk Adolescents
Journal of Psychopathology and Behavioral Assessment (2022)
-
Chronic Exposure to Tramadol Induces Neurodegeneration in the Cerebellum of Adult Male Rats
Neurotoxicity Research (2021)
-
Associations between different dimensions of prenatal distress, neonatal hippocampal connectivity, and infant memory
Neuropsychopharmacology (2020)