Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Human volition: towards a neuroscience of will

Key Points

  • A voluntary action is a motor act, the occurrence, form and timing of which are generated internally rather than by an immediate external stimulus.

  • Voluntary actions involve a characteristic network of brain motor areas, including the basal ganglia, the pre-supplementary motor area and the parietal lobes.

  • The computations that are performed by this network can be divided into three types of decisions: whether to act, what action to perform and when to perform it.

  • Neural preparation of voluntary action is accompanied by a particular subjective experience that is best described as 'conscious intention'. Conscious intention provides a predictive experience of current actions and contributes to the sense of controlling our actions and, through them, the world around us.

  • Clearer cognitive models of the information processing that is involved in voluntary actions, and new neural data about the brain areas that perform these processes, are making voluntary action amenable to scientific study for the first time.

  • Advances in understanding voluntary action provide the starting point for a neuroscientific approach to one of the fundamental aspects of being human. This will in turn allow better understanding of failures of volition in both neurological and psychiatric illnesses.

Abstract

The capacity for voluntary action is seen as essential to human nature. Yet neuroscience and behaviourist psychology have traditionally dismissed the topic as unscientific, perhaps because the mechanisms that cause actions have long been unclear. However, new research has identified networks of brain areas, including the pre-supplementary motor area, the anterior prefrontal cortex and the parietal cortex, that underlie voluntary action. These areas generate information for forthcoming actions, and also cause the distinctive conscious experience of intending to act and then controlling one's own actions. Volition consists of a series of decisions regarding whether to act, what action to perform and when to perform it. Neuroscientific accounts of voluntary action may inform debates about the nature of individual responsibility.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Brain circuits for voluntary action.
Figure 2: A naturalized model of human volition.
Figure 3: Two brain areas activated by intentional inhibition of voluntary actions (veto).
Figure 4: Cognitive processes that underlie the experience of voluntary action.

References

  1. Blakemore, S., Wolpert, D. & Frith, C. Abnormalities in the awareness of action. Trends Cogn. Sci. 6, 237–242 (2002).

    PubMed  Google Scholar 

  2. Ryle, G. The Concept of Mind (Univ. Chicago Press, 2000).

    Google Scholar 

  3. Shadlen, M. N. & Gold, J. I. in The Cognitive Neurosciences 3rd edn (ed. Gazzaniga, M. S.) 1229–1241 (MIT Press, 2004).

    Google Scholar 

  4. Libet, B. et al. Time of conscious intention to act in relation to onset of cerebral activity (readiness-potential). The unconscious initiation of a freely voluntary act. Brain 106, 623–642 (1983). This classic paper showed that neural preparation for action precedes the conscious feeling of being about to act. Brain activity therefore causes conscious intention rather than the other way around: there is no 'ghost in the machine'.

    PubMed  Google Scholar 

  5. Frith, C. D. et al. Willed action and the prefrontal cortex in man: a study with PET. Proc. Biol. Sci. 244, 241–246 (1991).

    CAS  PubMed  Google Scholar 

  6. Haggard, P. & Eimer, M. On the relation between brain potentials and the awareness of voluntary movements. Exp. Brain Res. 126, 128–133 (1999).

    CAS  PubMed  Google Scholar 

  7. Brass, M. & Haggard, P. To do or not to do: the neural signature of self-control. J. Neurosci. 27, 9141–9145 (2007). Participants in this study were asked to make a simple manual action on some trials, whereas on other trials they prepared the action but cancelled it at the last moment. Participants' estimates of when they experienced conscious intentions to make actions that were subsequently cancelled allowed the voluntary inhibition of voluntary action to be localized to the anterior frontomedian cortex.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Libet, B., Wright, E. W. & Gleason, C. A. Preparation- or intention-to-act, in relation to pre-event potentials recorded at the vertex. Electroencephalogr. Clin. Neurophysiol. 56, 367–372 (1983).

    CAS  PubMed  Google Scholar 

  9. Frith, C. Making Up the Mind: How the Brain Creates Our Mental World (Blackwell, 2007).

    Google Scholar 

  10. Jahanshahi, M. & Dirnberger, G. The left dorsolateral prefrontal cortex and random generation of responses: studies with transcranial magnetic stimulation. Neuropsychologia 37, 181–190 (1999).

    CAS  PubMed  Google Scholar 

  11. Haggard, P. Conscious intention and motor cognition. Trends Cogn. Sci. 9, 290–295 (2005).

    PubMed  Google Scholar 

  12. Libet, B., Wright, E. W. & Gleason, C. A. Readiness-potentials preceding unrestricted 'spontaneous' vs. pre-planned voluntary acts. Electroencephalogr. Clin. Neurophysiol. 54, 322–335 (1982).

    CAS  PubMed  Google Scholar 

  13. Sherrington, C. S. The Integrative Action of the Nervous System (Charles Scribner's Sons, New York, 1906).

    Google Scholar 

  14. Dum, R. P. & Strick, P. L. Motor areas in the frontal lobe of the primate. Physiol. Behav. 77, 677–682 (2002).

    CAS  PubMed  Google Scholar 

  15. Picard, N. & Strick, P. L. Motor areas of the medial wall: a review of their location and functional activation. Cereb. Cortex 6, 342–353 (1996).

    CAS  PubMed  Google Scholar 

  16. Jenkins, I. H. et al. Self-initiated versus externally triggered movements. II. The effect of movement predictability on regional cerebral blood flow. Brain 123, 1216–1228 (2000).

    PubMed  Google Scholar 

  17. Deiber, M. P. et al. Mesial motor areas in self-initiated versus externally triggered movements examined with fMRI: effect of movement type and rate. J. Neurophysiol. 81, 3065–3077 (1999).

    CAS  PubMed  Google Scholar 

  18. Dum, R. P. & Strick, P. L. Frontal lobe inputs to the digit representations of the motor areas on the lateral surface of the hemisphere. J. Neurosci. 25, 1375–1386 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kornhuber, H. H. & Deecke, L. Hirnpotentialänderungen bei willkürbewegungen und passiven bewegungen des menschen: bereitschaftspotential und reafferente potentiale. Pflügers Arch. 284, 1–17 (1965).

    CAS  Google Scholar 

  20. Shibasaki, H. & Hallett, M. What is the Bereitschaftspotential? Clin. Neurophysiol. 117, 2341–2356 (2006).

    PubMed  Google Scholar 

  21. Lang, W. et al. Three-dimensional localization of SMA activity preceding voluntary movement. A study of electric and magnetic fields in a patient with infarction of the right supplementary motor area. Exp. Brain Res. 87, 688–695 (1991).

    CAS  PubMed  Google Scholar 

  22. Yazawa, S. et al. Human presupplementary motor area is active before voluntary movement: subdural recording of Bereitschaftspotential from medial frontal cortex. Exp. Brain Res. 131, 165–177 (2000).

    CAS  PubMed  Google Scholar 

  23. Soon, C. S. et al. Unconscious determinants of free decisions in the human brain. Nature Neurosci. 11, 543–545 (2008). Participants in this study chose between making a right or a left hand action while undergoing an MRI scan. Using a novel pattern-classification algorithm, the authors identified areas in the prefrontal cortex that predicted which hand would be used up to 8 seconds before the action was made. This paper suggests how long-range intentions ('prospective memory') may connect to intention-in-action.

    CAS  PubMed  Google Scholar 

  24. Akkal, D., Dum, R. P. & Strick, P. L. Supplementary motor area and presupplementary motor area: targets of basal ganglia and cerebellar output. J. Neurosci. 27, 10659–10673 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Jahanshahi, M. et al. Self-initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson's disease subjects. Brain 118, 913–933 (1995).

    PubMed  Google Scholar 

  26. Loukas, C. & Brown, P. Online prediction of self-paced hand-movements from subthalamic activity using neural networks in Parkinson's disease. J. Neurosci. Methods 137, 193–205 (2004).

    PubMed  Google Scholar 

  27. Pessiglione, M. et al. Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature 442, 1042–1045 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Thorndike, E. L. Animal Intelligence: Experimental Studies (The Macmillan Company, 1911).

    Google Scholar 

  29. Rizzolatti, G., Luppino, G. & Matelli, M. The organization of the cortical motor system: new concepts. Electroencephalogr. Clin. Neurophysiol. 106, 283–296 (1998).

    CAS  PubMed  Google Scholar 

  30. Prabhu, G., Lemon, R. & Haggard, P. On-line control of grasping actions: object-specific motor facilitation requires sustained visual input. J. Neurosci. 27, 12651–12654 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Shadlen, M. N. & Newsome, W. T. Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J. Neurophysiol. 86, 1916–1936 (2001).

    CAS  PubMed  Google Scholar 

  32. Gold, J. I. & Shadlen, M. N. The neural basis of decision making. Annu. Rev. Neurosci. 30, 535–574 (2007).

    CAS  PubMed  Google Scholar 

  33. Heekeren, H. R., Marrett, S. & Ungerleider, L. G. The neural systems that mediate human perceptual decision making. Nature Rev. Neurosci. 9, 467–479 (2008).

    CAS  Google Scholar 

  34. Shallice, T. From Neuropsychology to Mental Structure (Cambridge Univ. Press, 1988).

    Google Scholar 

  35. Cui, H. & Andersen, R. A. Posterior parietal cortex encodes autonomously selected motor plans. Neuron 56, 552–559 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Pesaran, B., Nelson, M. J. & Andersen, R. A. Free choice activates a decision circuit between frontal and parietal cortex. Nature 453, 406–409 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Cohen, J. D., McClure, S. M. & Yu, A. J. Should I stay or should I go? How the human brain manages the trade-off between exploitation and exploration. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362, 933–942 (2007).

    PubMed  PubMed Central  Google Scholar 

  38. Daw, N. D. et al. Cortical substrates for exploratory decisions in humans. Nature 441, 876–879 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Obhi, S. S. & Haggard, P. Internally generated and externally triggered actions are physically distinct and independently controlled. Exp. Brain Res. 156, 518–523 (2004).

    PubMed  Google Scholar 

  40. Shallice, T. & Burgess, P. W. Deficits in strategy application following frontal lobe damage in man. Brain 114, 727–741 (1991).

    PubMed  Google Scholar 

  41. Lhermitte, F. 'Utilization behaviour' and its relation to lesions of the frontal lobes. Brain 106, 237–255 (1983).

    PubMed  Google Scholar 

  42. Shallice, T. et al. The origins of utilization behaviour. Brain 112, 1587–1598 (1989).

    PubMed  Google Scholar 

  43. Boccardi, E. et al. Utilisation behaviour consequent to bilateral SMA softening. Cortex 38, 289–308 (2002).

    PubMed  Google Scholar 

  44. Della Sala, S., Marchetti, C. & Spinnler, H. Right-sided anarchic (alien) hand: a longitudinal study. Neuropsychologia 29, 1113–1127 (1991).

    CAS  PubMed  Google Scholar 

  45. Kritikos, A., Breen, N. & Mattingley, J. B. Anarchic hand syndrome: bimanual coordination and sensitivity to irrelevant information in unimanual reaches. Brain Res. Cogn. Brain Res. 24, 634–647 (2005).

    PubMed  Google Scholar 

  46. Giovannetti, T. et al. Reduced endogenous control in alien hand syndrome: evidence from naturalistic action. Neuropsychologia 43, 75–88 (2005).

    PubMed  Google Scholar 

  47. Eimer, M. & Schlaghecken, F. Effects of masked stimuli on motor activation: behavioral and electrophysiological evidence. J. Exp. Psychol. Hum. Percept. Performance 24, 1737–1747 (1998).

    CAS  Google Scholar 

  48. Sumner, P. et al. Human medial frontal cortex mediates unconscious inhibition of voluntary action. Neuron 54, 697–711 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Pacherie, E. The anarchic hand syndrome and utilization behavior: a window onto agentive self-awareness. Funct. Neurol. 22, 211–217 (2007).

    PubMed  Google Scholar 

  50. Nachev, P. et al. The role of the pre-supplementary motor area in the control of action. Neuroimage 36 (Suppl. 2), T155–T163 (2007).

    PubMed  Google Scholar 

  51. Nachev, P. et al. Volition and conflict in human medial frontal cortex. Curr. Biol. 15, 122–128 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Archibald, S. J. et al. Evidence of utilization behavior in children with ADHD. J. Int. Neuropsychol. Soc. 11, 367–375 (2005).

    PubMed  Google Scholar 

  53. Ammon, K. & Gandevia, S. C. Transcranial magnetic stimulation can influence the selection of motor programmes. J. Neurol. Neurosurg. Psychiatr. 53, 705–707 (1990).

    CAS  Google Scholar 

  54. Mueller, V. A. et al. The role of the preSMA and the rostral cingulate zone in internally selected actions. Neuroimage 37, 1354–1361 (2007).

    PubMed  Google Scholar 

  55. Bracewell, R. M. et al. Motor intention activity in the macaque's lateral intraparietal area. II. Changes of motor plan. J. Neurophysiol. 76, 1457–1464 (1996).

    CAS  PubMed  Google Scholar 

  56. Platt, M. L. & Glimcher, P. W. Neural correlates of decision variables in parietal cortex. Nature 400, 233–238 (1999).

    CAS  PubMed  Google Scholar 

  57. Cisek, P. Integrated neural processes for defining potential actions and deciding between them: a computational model. J. Neurosci. 26, 9761–9770 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Koechlin, E. & Hyafil, A. Anterior prefrontal function and the limits of human decision-making. Science 318, 594–598 (2007).

    CAS  PubMed  Google Scholar 

  59. Wolpert, D. & Miall, R. Forward models for physiological motor control. Neural Netw. 9, 1265–1279 (1996).

    PubMed  Google Scholar 

  60. Logan, G. D., Cowan, W. B. & Davis, K. A. On the ability to inhibit simple and choice reaction time responses: a model and a method. J. Exp. Psychol. Hum. Percept. Perform. 10, 276–291 (1984).

    CAS  PubMed  Google Scholar 

  61. Hallett, M. Volitional control of movement: the physiology of free will. Clin. Neurophysiol. 118, 1179–1192 (2007).

    PubMed  PubMed Central  Google Scholar 

  62. Cunnington, R. et al. The preparation and execution of self-initiated and externally-triggered movement: a study of event-related fMRI. Neuroimage 15, 373–385 (2002).

    CAS  PubMed  Google Scholar 

  63. Campbell-Meiklejohn, D. K. et al. Knowing when to stop: the brain mechanisms of chasing losses. Biol. Psychiatry 63, 293–300 (2008).

    PubMed  Google Scholar 

  64. Okuda, J. et al. Differential involvement of regions of rostral prefrontal cortex (Brodmann area 10) in time- and event-based prospective memory. Int. J. Psychophysiol. 64, 233–246 (2007).

    PubMed  Google Scholar 

  65. Haynes, J. et al. Reading hidden intentions in the human brain. Curr. Biol. 17, 323–328 (2007).

    CAS  PubMed  Google Scholar 

  66. Tipper, S. P., Howard, L. A. & Houghton, G. Action-based mechanisms of attention. Philos. Trans. R. Soc. Lond. B Biol. Sci. 353, 1385–1393 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Doyle, M. & Walker, R. Curved saccade trajectories: voluntary and reflexive saccades curve away from irrelevant distractors. Exp. Brain Res. 139, 333–344 (2001).

    CAS  PubMed  Google Scholar 

  68. Cisek, P. & Kalaska, J. F. Neural correlates of reaching decisions in dorsal premotor cortex: specification of multiple direction choices and final selection of action. Neuron 45, 801–814 (2005).

    CAS  PubMed  Google Scholar 

  69. James, W. The Principles of Psychology (Holt and Co., New York, 1890).

    Google Scholar 

  70. Herwig, A., Prinz, W. & Waszak, F. Two modes of sensorimotor integration in intention-based and stimulus-based actions. Q. J. Exp. Psychol. 60, 1540–1554 (2007).

    Google Scholar 

  71. Dickinson, A. Contemporary Animal Learning Theory (Cambridge Univ. Press, 1981).

    Google Scholar 

  72. Brown, P. L. & Jenkins, H. M. Auto-shaping of the pigeon's key-peck. J. Exp. Anal. Behav. 11, 1–8 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Haruno, M., Wolpert, D. M. & Kawato, M. Mosaic model for sensorimotor learning and control. Neural Comput. 13, 2201–2220 (2001).

    CAS  PubMed  Google Scholar 

  74. Cunnington, R., Windischberger, C. & Moser, E. Premovement activity of the pre-supplementary motor area and the readiness for action: studies of time-resolved event-related functional MRI. Hum. Move. Sci. 24, 644–656 (2005).

    Google Scholar 

  75. Ursu, S. & Carter, C. S. Outcome representations, counterfactual comparisons and the human orbitofrontal cortex: implications for neuroimaging studies of decision-making. Brain Res. Cogn. Brain Res. 23, 51–60 (2005).

    PubMed  Google Scholar 

  76. Wittgenstein, L. Philosophical Investigations (Blackwell, 1953).

    Google Scholar 

  77. Wegner, D. M. The Illusion of Conscious Will (MIT Press, 2003).

    Google Scholar 

  78. Dennett, D. & Kinsbourne, M. Time and the observer. Behav. Brain Sci. 15, 183–247 (1992).

    Google Scholar 

  79. Kapur, S. Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am. J. Psychiatry 160, 13–23 (2003).

    PubMed  Google Scholar 

  80. Haggard, P. et al. Awareness of action in schizophrenia. Neuroreport 14, 1081–1085 (2003).

    PubMed  Google Scholar 

  81. Haggard, P., Clark, S. & Kalogeras, J. Voluntary action and conscious awareness. Nature Neurosci. 5, 382–385 (2002).

    CAS  PubMed  Google Scholar 

  82. Moore, J. & Haggard, P. Awareness of action: inference and prediction. Conscious. Cogn. 17, 136–144 (2008).

    PubMed  Google Scholar 

  83. Klein, T. A. et al. Neural correlates of error awareness. Neuroimage 34, 1774–1781 (2007).

    PubMed  Google Scholar 

  84. Farrer, C. et al. The angular gyrus computes action awareness representations. Cereb. Cortex 18, 254–261 (2008).

    PubMed  Google Scholar 

  85. Sirigu, A. et al. Perception of self-generated movement following left parietal lesion. Brain 122, 1867–1874 (1999).

    PubMed  Google Scholar 

  86. Haggard, P. & Whitford, B. Supplementary motor area provides an efferent signal for sensory suppression. Brain Res. Cogn. Brain Res. 19, 52–58 (2004).

    PubMed  Google Scholar 

  87. Schacter, D. L., Addis, D. R. & Buckner, R. L. Remembering the past to imagine the future: the prospective brain. Nature Rev. Neurosci. 8, 657–661 (2007).

    CAS  Google Scholar 

  88. Mulcahy, N. J. & Call, J. Apes save tools for future use. Science 312, 1038–1040 (2006).

    CAS  PubMed  Google Scholar 

  89. Osvath, M. & Osvath, H. Chimpanzee (Pan troglodytes) and orangutan (Pongo abelii) forethought: self-control and pre-experience in the face of future tool use. Anim. Cogn. 11, 661–674 (2008).

    PubMed  Google Scholar 

  90. Pacherie, E. The phenomenology of action: a conceptual framework. Cognition 107, 179–217 (2008).

    PubMed  Google Scholar 

  91. Fried, I. et al. Functional organization of human supplementary motor cortex studied by electrical stimulation. J. Neurosci. 11, 3656–3666 (1991). Reported the results of direct stimulation of several frontal sites, including the preSMA, in humans as part of evaluation for neurosurgery. Stimulation at low current elicited an experience of an urge to move a specific body part. More-intense stimulation often produced movement of the same body part.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Leckman, J. F., Walker, D. E. & Cohen, D. J. Premonitory urges in Tourette's syndrome. Am. J. Psychiatry 150, 98–102 (1993).

    CAS  PubMed  Google Scholar 

  93. Sirigu, A. et al. Altered awareness of voluntary action after damage to the parietal cortex. Nature Neurosci. 7, 80–84 (2004).

    CAS  PubMed  Google Scholar 

  94. Velmans, M. How to separate conceptual issues from empirical ones in the study of consciousness. Prog. Brain Res. 168, 1–9 (2008).

    PubMed  Google Scholar 

  95. Serrien, D. J. et al. Motor inhibition in patients with Gilles de la Tourette syndrome: functional activation patterns as revealed by EEG coherence. Brain 128, 116–125 (2005).

    PubMed  Google Scholar 

  96. Wundt, W. Grundüge der Physiologischen Psychologie. (Engelmann, Leipzig, 1908).

    Google Scholar 

  97. Lafargue, G. & Duffau, H. Awareness of intending to act following parietal cortex resection. Neuropsychologia 46, 2662–2667 (2008).

    PubMed  Google Scholar 

  98. Trevena, J. A. & Miller, J. Cortical movement preparation before and after a conscious decision to move. Conscious. Cogn. 11, 162–190 (2002).

    PubMed  Google Scholar 

  99. Nachev, P., Kennard, C. & Husain, M. Functional role of the supplementary and presupplementary motor areas. Nature Rev. Neurosci. 9, 856–869 (2008).

    CAS  Google Scholar 

  100. Penfield, W. & Welch, K. The supplementary motor area of the cerebral cortex. A clinical and experimental study. Arch. Neurol. Psychiatry 66, 289–317 (1951).

    CAS  Google Scholar 

  101. Tanji, J. & Shima, K. Role for supplementary motor area cells in planning several movements ahead. Nature 371, 413–416 (1994).

    CAS  PubMed  Google Scholar 

  102. Kennerley, S. W., Sakai, K. & Rushworth, M. F. S. Organization of action sequences and the role of the pre-SMA. J. Neurophysiol. 91, 978–993 (2004).

    PubMed  Google Scholar 

  103. Moll, L. & Kuypers, H. G. Premotor cortical ablations in monkeys: contralateral changes in visually guided reaching behavior. Science 198, 317–319 (1977).

    CAS  PubMed  Google Scholar 

  104. Lau, H. C., Rogers, R. D. & Passingham, R. E. Manipulating the experienced onset of intention after action execution. J. Cogn. Neurosci. 19, 81–90 (2007). One of few papers that have tried to manipulate conscious intention, as opposed to merely recording it. Transcranial magnetic stimulation (TMS) over the preSMA just after action significantly advanced the reported time of conscious intention. The authors correctly suggested that the experience of conscious intention reflects a weighted combination of a number of neural signals, including preparation, execution and, perhaps, afferent feedback. TMS adds neural noise to the later components, leading to increased weighting for earlier, preparation-related components in generating conscious experience.

    PubMed  Google Scholar 

  105. Passingham, R. E. Two cortical systems for directing movement. Ciba Found. Symp. 132, 151–164 (1987). A classical and very clear exposition of the dissociation between systems for internal generation and external guidance of movement, based mainly on ablation of the SMA and premotor areas in monkeys.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Writing of this article was supported by generous grants and Fellowships from The Leverhulme Trust, The Royal Society and the Economic and Social Research Council.

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

Author's homepage

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Haggard, P. Human volition: towards a neuroscience of will. Nat Rev Neurosci 9, 934–946 (2008). https://doi.org/10.1038/nrn2497

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2497

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing