Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy

A Corrigendum to this article was published on 01 June 2008

Key Points

  • Actin filaments are the major cytoskeletal elements of pre- and postsynaptic terminals.

  • Actin exists in two states in the cell: as monomeric G-actin and as a two-stranded polar helical filament (F-actin) composed of G-actin. F-actin preferentially polymerizes at the barbed end of the filament and depolymerizes at the opposite, pointed end. A variety of actin-binding proteins influence the structure and organization of the actin cytoskeleton.

  • By engaging actin regulatory proteins, synaptic activity can remodel both the pre- and the postsynaptic actin cytoskeleton.

  • In the presynaptic terminal, actin is involved in maintaining and regulating synaptic vesicle pools, probably by serving as a scaffold to restrict vesicle mobility and by providing tracks to direct the transfer of vesicles between pools. At the active zone, actin can regulate vesicle docking and priming. Actin also facilitates the endocytic retrieval of synaptic vesicles.

  • Recent findings show that actin dynamics are required for the sharing of synaptic vesicles between boutons along the axon, and that promoting actin polymerization is sufficient to unsilence presynaptic boutons in young neurons.

  • At postsynaptic terminals, different pools of actin are specialized for the synaptic anchoring and exo–endocytic trafficking of neurotransmitter receptors.

  • Most excitatory synapses are made onto dendritic spines that are enriched for F-actin. The size of dendritic spines positively correlates with the number of glutamate receptors at the postsynaptic density.

  • Induction of synaptic plasticity changes the size and shape of spines, at least in part by reorganizing the underlying actin cytoskeleton. With LTP, spines become larger and increase their relative content of F-actin; with LTD, spines shrink and depolymerize their F-actin.

  • The signalling pathways responsible for structural and functional synaptic plasticity diverge considerably, and conditions can be found for uncoupling the two processes. Under normal conditions, however, structural and functional modifications are interdependent and coordinated.

  • Dysfunctions in synaptic actin dynamics have significant consequences for cognition and are closely associated with neurological disorders and dementia.

Abstract

Synapse regulation exploits the capacity of actin to function as a stable structural component or as a dynamic filament. Beyond its well-appreciated role in eliciting visible morphological changes at the synapse, the emerging picture points to an active contribution of actin to the modulation of the efficacy of pre- and postsynaptic terminals. Moreover, by engaging distinct pools of actin and divergent signalling pathways, actin-dependent morphological plasticity could be uncoupled from modulation of synaptic strength. The aim of this Review is to highlight some of the recent progress in elucidating the role of the actin cytoskeleton in synaptic function.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Overview of actin at the excitatory synapse.
Figure 2: Actin and the synaptic vesicle cycle.
Figure 3: A model for structural and functional spine plasticity.

References

  1. Landis, D. M., Hall, A. K., Weinstein, L. A. & Reese, T. S. The organization of cytoplasm at the presynaptic active zone of a central nervous system synapse. Neuron 1, 201–209 (1988).

    CAS  PubMed  Google Scholar 

  2. Hirokawa, N., Sobue, K., Kanda, K., Harada, A. & Yorifuji, H. The cytoskeletal architecture of the presynaptic terminal and molecular structure of synapsin 1. J. Cell Biol. 108, 111–126 (1989).

    CAS  PubMed  Google Scholar 

  3. Bloom, O. et al. Colocalization of synapsin and actin during synaptic vesicle recycling. J. Cell Biol. 161, 737–747 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Fifkova, E. & Delay, R. J. Cytoplasmic actin in neuronal processes as a possible mediator of synaptic plasticity. J. Cell Biol. 95, 345–350 (1982).

    CAS  PubMed  Google Scholar 

  5. Matus, A., Ackermann, M., Pehling, G., Byers, H. R. & Fujiwara, K. High actin concentrations in brain dendritic spines and postsynaptic densities. Proc. Natl Acad. Sci. USA 79, 7590–7594 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Matus, A. Actin-based plasticity in dendritic spines. Science 290, 754–758 (2000).

    CAS  PubMed  Google Scholar 

  7. Capani, F., Martone, M. E., Deerinck, T. J. & Ellisman, M. H. Selective localization of high concentrations of F-actin in subpopulations of dendritic spines in rat central nervous system: a three-dimensional electron microscopic study. J. Comp. Neurol. 435, 156–170 (2001).

    CAS  PubMed  Google Scholar 

  8. Yuste, R. & Bonhoeffer, T. Genesis of dendritic spines: insights from ultrastructural and imaging studies. Nature Rev. Neurosci. 5, 24–34 (2004).

    CAS  Google Scholar 

  9. Zucker, R. S. & Regehr, W. G. Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002).

    CAS  PubMed  Google Scholar 

  10. Silberberg, G., Grillner, S., LeBeau, F. E., Maex, R. & Markram, H. Synaptic pathways in neural microcircuits. Trends Neurosci. 28, 541–551 (2005).

    CAS  PubMed  Google Scholar 

  11. Kim, S. J. & Linden, D. J. Ubiquitous plasticity and memory storage. Neuron 56, 582–592 (2007).

    CAS  PubMed  Google Scholar 

  12. Neves, G., Cooke, S. F. & Bliss, T. V. Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nature Rev. Neurosci. 9, 65–75 (2008).

    CAS  Google Scholar 

  13. Dillon, C. & Goda, Y. The actin cytoskeleton: integrating form and function at the synapse. Annu. Rev. Neurosci. 28, 25–55 (2005).

    CAS  PubMed  Google Scholar 

  14. Carlisle, H. J. & Kennedy, M. B. Spine architecture and synaptic plasticity. Trends Neurosci. 28, 182–187 (2005).

    CAS  PubMed  Google Scholar 

  15. dos Remedios, C. G. et al. Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol. Rev. 83, 433–473 (2003).

    CAS  PubMed  Google Scholar 

  16. Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003).

    CAS  PubMed  Google Scholar 

  17. Revenu, C., Athman, R., Robine, S. & Louvard, D. The co-workers of actin filaments: from cell structures to signals. Nature Rev. Mol. Cell Biol. 5, 635–646 (2004).

    CAS  Google Scholar 

  18. Ethell, I. M. & Pasquale, E. B. Molecular mechanisms of dendritic spine development and remodeling. Prog. Neurobiol. 75, 161–205 (2005).

    CAS  PubMed  Google Scholar 

  19. Tada, T. & Sheng, M. Molecular mechanisms of dendritic spine morphogenesis. Curr. Opin. Neurobiol. 16, 95–101 (2006).

    CAS  PubMed  Google Scholar 

  20. Schubert, V. & Dotti, C. G. Transmitting on actin: synaptic control of dendritic architecture. J. Cell Sci. 120, 205–212 (2007).

    CAS  PubMed  Google Scholar 

  21. Sekino, Y., Kojima, N. & Shirao, T. Role of actin cytoskeleton in dendritic spine morphogenesis. Neurochem. Int. 51, 92–104 (2007).

    CAS  PubMed  Google Scholar 

  22. Sudhof, T. C. The synaptic vesicle cycle. Annu. Rev. Neurosci. 27, 509–547 (2004).

    PubMed  Google Scholar 

  23. Murthy, V. N. & De Camilli, P. Cell biology of the presynaptic terminal. Annu. Rev. Neurosci. 26, 701–728 (2003).

    CAS  PubMed  Google Scholar 

  24. Fernandez-Alfonso, T. & Ryan, T. A. The efficiency of the synaptic vesicle cycle at central nervous system synapses. Trends Cell Biol. 16, 413–420 (2006).

    CAS  PubMed  Google Scholar 

  25. Rizzoli, S. O. & Betz, W. J. Synaptic vesicle pools. Nature Rev. Neurosci. 6, 57–69 (2005).

    CAS  Google Scholar 

  26. Schikorski, T. & Stevens, C. F. Morphological correlates of functionally defined synaptic vesicle populations. Nature Neurosci. 4, 391–395 (2001).

    CAS  PubMed  Google Scholar 

  27. Rizzoli, S. O. & Betz, W. J. The structural organization of the readily releasable pool of synaptic vesicles. Science 303, 2037–2039 (2004).

    CAS  PubMed  Google Scholar 

  28. Darcy, K. J., Staras, K., Collinson, L. M. & Goda, Y. Constitutive sharing of recycling synaptic vesicles between presynaptic boutons. Nature Neurosci. 9, 315–321 (2006). This study used fluorescence microscopic dye labelling, in combination with FRAP and correlative light and electron microscopy, to demonstrate that synaptic vesicle recycling is not confined to individual synapses, but rather that recycling vesicles are shared between neighbouring boutons in a mechanism that requires actin.

    CAS  PubMed  Google Scholar 

  29. Drenckhahn, D. & Kaiser, H. W. Evidence for the concentration of F-actin and myosin in synapses and in the plasmalemmal zone of axons. Eur. J. Cell Biol. 31, 235–240 (1983).

    CAS  PubMed  Google Scholar 

  30. Drenckhahn, D., Frotscher, M. & Kaiser, H. W. Concentration of F-actin in synaptic formations of the hippocampus as visualized by staining with fluorescent phalloidin. Brain Res. 300, 381–384 (1984).

    CAS  PubMed  Google Scholar 

  31. Gotow, T., Miyaguchi, K. & Hashimoto, P. H. Cytoplasmic architecture of the axon terminal: filamentous strands specifically associated with synaptic vesicles. Neuroscience 40, 587–598 (1991).

    CAS  PubMed  Google Scholar 

  32. Greengard, P., Benfenati, F. & Valtorta, F. Synapsin I, an actin-binding protein regulating synaptic vesicle traffic in the nerve terminal. Adv. Second Messenger Phosphoprotein Res. 29, 31–45 (1994).

    CAS  PubMed  Google Scholar 

  33. Hilfiker, S. et al. Synapsins as regulators of neurotransmitter release. Philos. Trans. R. Soc. Lond. B Biol. Sci. 354, 269–279 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Evergren, E., Benfenati, F. & Shupliakov, O. The synapsin cycle: a view from the synaptic endocytic zone. J. Neurosci. Res. 85, 2648–2656 (2007).

    CAS  PubMed  Google Scholar 

  35. Chi, P., Greengard, P. & Ryan, T. A. Synapsin dispersion and reclustering during synaptic activity. Nature Neurosci. 4, 1187–1193 (2001).

    CAS  PubMed  Google Scholar 

  36. Chi, P., Greengard, P. & Ryan, T. A. Synaptic vesicle mobilization is regulated by distinct synapsin I phosphorylation pathways at different frequencies. Neuron 38, 69–78 (2003).

    CAS  PubMed  Google Scholar 

  37. Phillips, G. R. et al. The presynaptic particle web: ultrastructure, composition, dissolution, and reconstitution. Neuron 32, 63–77 (2001).

    CAS  PubMed  Google Scholar 

  38. Siksou, L. et al. Three-dimensional architecture of presynaptic terminal cytomatrix. J. Neurosci. 27, 6868–6877 (2007). In this study, electron tomography of samples prepared by the high-pressure freezing method revealed a detailed organization of presynaptic terminals with respect to the distribution of synaptic vesicles and their relationship to the active zone and the cytomatrix.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Dubochet, J. High-pressure freezing for cryoelectron microscopy. Trends Cell Biol. 5, 366–368 (1995).

    CAS  PubMed  Google Scholar 

  40. Zuber, B., Nikonenko, I., Klauser, P., Muller, D. & Dubochet, J. The mammalian central nervous synaptic cleft contains a high density of periodically organized complexes. Proc. Natl Acad. Sci. USA 102, 19192–19197 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Rostaing, P. et al. Analysis of synaptic ultrastructure without fixative using high-pressure freezing and tomography. Eur. J. Neurosci. 24, 3463–3474 (2006).

    PubMed  Google Scholar 

  42. Harata, N., Ryan, T. A., Smith, S. J., Buchanan, J. & Tsien, R. W. Visualizing recycling synaptic vesicles in hippocampal neurons by FM 1–43 photoconversion. Proc. Natl Acad. Sci. USA 98, 12748–12753 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Henkel, A. W., Lubke, J. & Betz, W. J. FM1–43 dye ultrastructural localization in and release from frog motor nerve terminals. Proc. Natl Acad. Sci. USA 93, 1918–1923 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Shtrahman, M., Yeung, C., Nauen, D. W., Bi, G. Q. & Wu, X. L. Probing vesicle dynamics in single hippocampal synapses. Biophys. J. 89, 3615–3627 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Jordan, R., Lemke, E. A. & Klingauf, J. Visualization of synaptic vesicle movement in intact synaptic boutons using fluorescence fluctuation spectroscopy. Biophys. J. 89, 2091–2102 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Gaffield, M. A. & Betz, W. J. Synaptic vesicle mobility in mouse motor nerve terminals with and without synapsin. J. Neurosci. 27, 13691–13700 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Gaffield, M. A., Rizzoli, S. O. & Betz, W. J. Mobility of synaptic vesicles in different pools in resting and stimulated frog motor nerve terminals. Neuron 51, 317–325 (2006).

    CAS  PubMed  Google Scholar 

  48. Kuromi, H. & Kidokoro, Y. Two distinct pools of synaptic vesicles in single presynaptic boutons in a temperature-sensitive Drosophila mutant, shibire. Neuron 20, 917–925 (1998).

    CAS  PubMed  Google Scholar 

  49. Delgado, R., Maureira, C., Oliva, C., Kidokoro, Y. & Labarca, P. Size of vesicle pools, rates of mobilization, and recycling at neuromuscular synapses of a Drosophila mutant, shibire. Neuron 28, 941–953 (2000).

    CAS  PubMed  Google Scholar 

  50. Jahn, R. & Scheller, R. H. SNAREs — engines for membrane fusion. Nature Rev. Mol. Cell Biol. 7, 631–643 (2006).

    CAS  Google Scholar 

  51. Nunes, P., Haines, N., Kuppuswamy, V., Fleet, D. J. & Stewart, B. A. Synaptic vesicle mobility and presynaptic F-actin are disrupted in a N-ethylmaleimide-sensitive factor allele of Drosophila. Mol. Biol. Cell 17, 4709–4719 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Watanabe, M. et al. Myosin-Va regulates exocytosis through the submicromolar Ca2+-dependent binding of syntaxin-1A. Mol. Biol. Cell 16, 4519–4530 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Sakaba, T. & Neher, E. Involvement of actin polymerization in vesicle recruitment at the calyx of Held synapse. J. Neurosci. 23, 837–846 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Cole, J. C., Villa, B. R. & Wilkinson, R. S. Disruption of actin impedes transmitter release in snake motor terminals. J. Physiol. 525, 579–586 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Morales, M., Colicos, M. A. & Goda, Y. Actin-dependent regulation of neurotransmitter release at central synapses. Neuron 27, 539–550 (2000).

    CAS  PubMed  Google Scholar 

  56. Schnell, E. & Nicoll, R. A. Hippocampal synaptic transmission and plasticity are preserved in myosin Va mutant mice. J. Neurophysiol. 85, 1498–1501 (2001).

    CAS  PubMed  Google Scholar 

  57. Sankaranarayanan, S., Atluri, P. P. & Ryan, T. A. Actin has a molecular scaffolding, not propulsive, role in presynaptic function. Nature Neurosci. 6, 127–135 (2003).

    CAS  PubMed  Google Scholar 

  58. Tokuoka, H. & Goda, Y. Myosin light chain kinase is not a regulator of synaptic vesicle trafficking during repetitive exocytosis in cultured hippocampal neurons. J. Neurosci. 26, 11606–11614 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Jensen, V., Walaas, S. I., Hilfiker, S., Ruiz, A. & Hvalby, O. A delayed response enhancement during hippocampal presynaptic plasticity in mice. J. Physiol. 583, 129–143 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Heuser, J. E. & Reese, T. S. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J. Cell Biol. 57, 315–344 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Ceccarelli, B., Hurlbut, W. P. & Mauro, A. Turnover of transmitter and synaptic vesicles at the frog neuromuscular junction. J. Cell Biol. 57, 499–524 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Shupliakov, O. et al. Impaired recycling of synaptic vesicles after acute perturbation of the presynaptic actin cytoskeleton. Proc. Natl Acad. Sci. USA 99, 14476–14481 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Yano, H. et al. BDNF-mediated neurotransmission relies upon a myosin VI motor complex. Nature Neurosci. 9, 1009–1018 (2006).

    CAS  PubMed  Google Scholar 

  64. McAllister, A. K., Katz, L. C. & Lo, D. C. Neurotrophins and synaptic plasticity. Annu. Rev. Neurosci. 22, 295–318 (1999).

    CAS  PubMed  Google Scholar 

  65. Turrigiano, G. Homeostatic signaling: the positive side of negative feedback. Curr. Opin. Neurobiol. 17, 318–324 (2007).

    CAS  PubMed  Google Scholar 

  66. Bamji, S. X., Rico, B., Kimes, N. & Reichardt, L. F. BDNF mobilizes synaptic vesicles and enhances synapse formation by disrupting cadherin–β-catenin interactions. J. Cell Biol. 174, 289–299 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Bamji, S. X. et al. Role of β-catenin in synaptic vesicle localization and presynaptic assembly. Neuron 40, 719–731 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Yao, J., Qi, J. & Chen, G. Actin-dependent activation of presynaptic silent synapses contributes to long-term synaptic plasticity in developing hippocampal neurons. J. Neurosci. 26, 8137–8147 (2006). This paper detailed how repetitive neuronal stimulation converts presynaptic silent synapses into functional release sites through a process that is dependent on actin polymerization in developing neurons.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Shen, W. et al. Activity-induced rapid synaptic maturation mediated by presynaptic cdc42 signaling. Neuron 50, 401–414 (2006). This study showed that presynaptic unsilencing of immature synapses upon repetitive stimulation, which is driven by actin polymerization, requires BDNF and Cdc42 signalling.

    CAS  PubMed  Google Scholar 

  70. Zhang, W. & Benson, D. L. Stages of synapse development defined by dependence on F-actin. J. Neurosci. 21, 5169–5181 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Antonova, I. et al. Rapid increase in clusters of presynaptic proteins at onset of long-lasting potentiation. Science 294, 1547–1550 (2001).

    CAS  PubMed  Google Scholar 

  72. Colicos, M. A., Collins, B. E., Sailor, M. J. & Goda, Y. Remodeling of synaptic actin induced by photoconductive stimulation. Cell 107, 605–616 (2001).

    CAS  PubMed  Google Scholar 

  73. Wang, H. G. et al. Presynaptic and postsynaptic roles of NO, cGK, and RhoA in long-lasting potentiation and aggregation of synaptic proteins. Neuron 45, 389–403 (2005).

    CAS  PubMed  Google Scholar 

  74. Sheng, M. & Hoogenraad, C. C. The postsynaptic architecture of excitatory synapses: a more quantitative view. Annu. Rev. Biochem. 76, 823–847 (2007).

    CAS  PubMed  Google Scholar 

  75. Choquet, D. & Triller, A. The role of receptor diffusion in the organization of the postsynaptic membrane. Nature Rev. Neurosci. 4, 251–265 (2003).

    CAS  Google Scholar 

  76. Groc, L. & Choquet, D. AMPA and NMDA glutamate receptor trafficking: multiple roads for reaching and leaving the synapse. Cell Tissue Res. 326, 423–438 (2006).

    CAS  PubMed  Google Scholar 

  77. Shepherd, J. D. & Huganir, R. L. The cell biology of synaptic plasticity: AMPA receptor trafficking. Annu. Rev. Cell Dev. Biol. 23, 613–643 (2007).

    CAS  PubMed  Google Scholar 

  78. Kuriu, T., Inoue, A., Bito, H., Sobue, K. & Okabe, S. Differential control of postsynaptic density scaffolds via actin-dependent and -independent mechanisms. J. Neurosci. 26, 7693–7706 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Allison, D. W., Gelfand, V. I., Spector, I. & Craig, A. M. Role of actin in anchoring postsynaptic receptors in cultured hippocampal neurons: differential attachment of NMDA versus AMPA receptors. J. Neurosci. 18, 2423–2436 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Kirsch, J. & Betz, H. The postsynaptic localization of the glycine receptor-associated protein gephyrin is regulated by the cytoskeleton. J. Neurosci. 15, 4148–4156 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. van Zundert, B. et al. Developmental-dependent action of microtubule depolymerization on the function and structure of synaptic glycine receptor clusters in spinal neurons. J. Neurophysiol. 91, 1036–1049 (2004).

    CAS  PubMed  Google Scholar 

  82. Charrier, C., Ehrensperger, M. V., Dahan, M., Levi, S. & Triller, A. Cytoskeleton regulation of glycine receptor number at synapses and diffusion in the plasma membrane. J. Neurosci. 26, 8502–8511 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Malinow, R. & Malenka, R. C. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25, 103–126 (2002).

    CAS  PubMed  Google Scholar 

  84. Morishita, W., Marie, H. & Malenka, R. C. Distinct triggering and expression mechanisms underlie LTD of AMPA and NMDA synaptic responses. Nature Neurosci. 8, 1043–1050 (2005).

    CAS  PubMed  Google Scholar 

  85. Star, E. N., Kwiatkowski, D. J. & Murthy, V. N. Rapid turnover of actin in dendritic spines and its regulation by activity. Nature Neurosci. 5, 239–246 (2002).

    CAS  PubMed  Google Scholar 

  86. Halpain, S., Hipolito, A. & Saffer, L. Regulation of F-actin stability in dendritic spines by glutamate receptors and calcineurin. J. Neurosci. 18, 9835–9844 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Honkura, N., Matsuzaki, M., Noguchi, J., Ellis-Davies, G. C. & Kasai, H. The subspine organization of actin fibers regulates the structure and plasticity of dendritic spines. Neuron 57, 719–729 (2008).

    CAS  PubMed  Google Scholar 

  88. Zhou, Q., Xiao, M. & Nicoll, R. A. Contribution of cytoskeleton to the internalization of AMPA receptors. Proc. Natl Acad. Sci. USA 98, 1261–1266 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Osterweil, E., Wells, D. G. & Mooseker, M. S. A role for myosin VI in postsynaptic structure and glutamate receptor endocytosis. J. Cell Biol. 168, 329–338 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Hering, H. & Sheng, M. Dendritic spines: structure, dynamics and regulation. Nature Rev. Neurosci. 2, 880–888 (2001).

    CAS  Google Scholar 

  91. Franks, K. M., Bartol, T. M. Jr & Sejnowski, T. J. A Monte Carlo model reveals independent signaling at central glutamatergic synapses. Biophys. J. 83, 2333–2348 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. McAllister, A. K. & Stevens, C. F. Nonsaturation of AMPA and NMDA receptors at hippocampal synapses. Proc. Natl Acad. Sci. USA 97, 6173–6178 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Liu, G., Choi, S. & Tsien, R. W. Variability of neurotransmitter concentration and nonsaturation of postsynaptic AMPA receptors at synapses in hippocampal cultures and slices. Neuron 22, 395–409 (1999).

    CAS  PubMed  Google Scholar 

  94. Silver, R. A., Cull-Candy, S. G. & Takahashi, T. Non-NMDA glutamate receptor occupancy and open probability at a rat cerebellar synapse with single and multiple release sites. J. Physiol. 494, 231–250 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Raghavachari, S. & Lisman, J. E. Properties of quantal transmission at CA1 synapses. J. Neurophysiol. 92, 2456–2467 (2004).

    CAS  PubMed  Google Scholar 

  96. Okamoto, K., Nagai, T., Miyawaki, A. & Hayashi, Y. Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nature Neurosci. 7, 1104–1112 (2004). Using a FRET-based imaging technique, the authors of this study showed that LTP induction shifts the actin equilibrium towards F-actin in dendritic spines, whereas LTD induction shifts the equilibrium towards G-actin.

    CAS  PubMed  Google Scholar 

  97. Fukazawa, Y. et al. Hippocampal LTP is accompanied by enhanced F-actin content within the dendritic spine that is essential for late LTP maintenance in vivo. Neuron 38, 447–460 (2003).

    CAS  PubMed  Google Scholar 

  98. Lin, B. et al. Theta stimulation polymerizes actin in dendritic spines of hippocampus. J. Neurosci. 25, 2062–2069 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Krucker, T., Siggins, G. R. & Halpain, S. Dynamic actin filaments are required for stable long-term potentiation (LTP) in area CA1 of the hippocampus. Proc. Natl Acad. Sci. USA 97, 6856–6861 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Kim, C. H. & Lisman, J. E. A role of actin filament in synaptic transmission and long-term potentiation. J. Neurosci. 19, 4314–4324 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Matsuzaki, M., Honkura, N., Ellis-Davies, G. C. & Kasai, H. Structural basis of long-term potentiation in single dendritic spines. Nature 429, 761–766 (2004). Using two-photon photolysis of caged glutamate at single synapses, the authors of this paper showed that structural and functional LTP are correlated at small but not large spines.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Rosenmund, C. & Westbrook, G. L. Calcium-induced actin depolymerization reduces NMDA channel activity. Neuron 10, 805–814 (1993).

    CAS  PubMed  Google Scholar 

  103. Okamoto, K., Narayanan, R., Lee, S. H., Murata, K. & Hayashi, Y. The role of CaMKII as an F-actin-bundling protein crucial for maintenance of dendritic spine structure. Proc. Natl Acad. Sci. USA 104, 6418–6423 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Huang, F., Chotiner, J. K. & Steward, O. Actin polymerization and ERK phosphorylation are required for Arc/Arg3.1 mRNA targeting to activated synaptic sites on dendrites. J. Neurosci. 27, 9054–9067 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Wang, X. B., Yang, Y. & Zhou, Q. Independent expression of synaptic and morphological plasticity associated with long-term depression. J. Neurosci. 27, 12419–12429 (2007). This paper demonstrated that there is a clear dissociation between functional LTD and structural LTD (spine shrinkage).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhou, Q., Homma, K. J. & Poo, M. M. Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron 44, 749–757 (2004).

    CAS  PubMed  Google Scholar 

  107. Sdrulla, A. D. & Linden, D. J. Double dissociation between long-term depression and dendritic spine morphology in cerebellar Purkinje cells. Nature Neurosci. 10, 546–548 (2007).

    CAS  PubMed  Google Scholar 

  108. Kopec, C. D., Li, B., Wei, W., Boehm, J. & Malinow, R. Glutamate receptor exocytosis and spine enlargement during chemically induced long-term potentiation. J. Neurosci. 26, 2000–2009 (2006). This study showed that synaptic incorporation of the GluR1 cytosolic C terminus is required to permit a stable increase in spine size upon LTP induction.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. El-Husseini, A. E., Schnell, E., Chetkovich, D. M., Nicoll, R. A. & Bredt, D. S. PSD-95 involvement in maturation of excitatory synapses. Science 290, 1364–1368 (2000).

    CAS  PubMed  Google Scholar 

  110. Kopec, C. D., Real, E., Kessels, H. W. & Malinow, R. GluR1 links structural and functional plasticity at excitatory synapses. J. Neurosci. 27, 13706–13718 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Ehrlich, I. & Malinow, R. Postsynaptic density 95 controls AMPA receptor incorporation during long-term potentiation and experience-driven synaptic plasticity. J. Neurosci. 24, 916–927 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Bardoni, B. & Mandel, J. L. Advances in understanding of fragile X pathogenesis and FMRP function, and in identification of X linked mental retardation genes. Curr. Opin. Genet. Dev. 12, 284–293 (2002).

    CAS  PubMed  Google Scholar 

  113. Ramakers, G. J. Rho proteins, mental retardation and the cellular basis of cognition. Trends Neurosci. 25, 191–199 (2002).

    CAS  PubMed  Google Scholar 

  114. Blanpied, T. A. & Ehlers, M. D. Microanatomy of dendritic spines: emerging principles of synaptic pathology in psychiatric and neurological disease. Biol. Psychiatry 55, 1121–1127 (2004).

    PubMed  Google Scholar 

  115. Newey, S. E., Velamoor, V., Govek, E. E. & Van Aelst, L. Rho GTPases, dendritic structure, and mental retardation. J. Neurobiol. 64, 58–74 (2005).

    CAS  PubMed  Google Scholar 

  116. Zhao, L. et al. Role of p21-activated kinase pathway defects in the cognitive deficits of Alzheimer disease. Nature Neurosci. 9, 234–242 (2006).

    CAS  PubMed  Google Scholar 

  117. Ackermann, M. & Matus, A. Activity-induced targeting of profilin and stabilization of dendritic spine morphology. Nature Neurosci. 6, 1194–1200 (2003).

    CAS  PubMed  Google Scholar 

  118. Lamprecht, R., Farb, C. R., Rodrigues, S. M. & LeDoux, J. E. Fear conditioning drives profilin into amygdala dendritic spines. Nature Neurosci. 9, 481–483 (2006).

    CAS  PubMed  Google Scholar 

  119. Pilo Boyl, P. et al. Profilin2 contributes to synaptic vesicle exocytosis, neuronal excitability, and novelty-seeking behavior. Embo J. 26, 2991–3002 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Scita, G. et al. EPS8 and E3B1 transduce signals from Ras to Rac. Nature 401, 290–293 (1999).

    CAS  PubMed  Google Scholar 

  121. Disanza, A. et al. Eps8 controls actin-based motility by capping the barbed ends of actin filaments. Nature Cell Biol. 6, 1180–1188 (2004).

    CAS  PubMed  Google Scholar 

  122. Offenhauser, N. et al. Increased ethanol resistance and consumption in Eps8 knockout mice correlates with altered actin dynamics. Cell 127, 213–226 (2006).

    CAS  PubMed  Google Scholar 

  123. Furukawa, K. et al. The actin-severing protein gelsolin modulates calcium channel and NMDA receptor activities and vulnerability to excitotoxicity in hippocampal neurons. J. Neurosci. 17, 8178–8186 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Mochizuki, N. et al. Spatio-temporal images of growth-factor-induced activation of Ras and Rap1. Nature 411, 1065–1068 (2001).

    CAS  PubMed  Google Scholar 

  125. Yasuda, R. et al. Supersensitive Ras activation in dendrites and spines revealed by two-photon fluorescence lifetime imaging. Nature Neurosci. 9, 283–291 (2006).

    CAS  PubMed  Google Scholar 

  126. Cooper, J. A. Effects of cytochalasin and phalloidin on actin. J. Cell Biol. 105, 1473–1478 (1987).

    CAS  PubMed  Google Scholar 

  127. Spector, I., Braet, F., Shochet, N. R. & Bubb, M. R. New anti-actin drugs in the study of the organization and function of the actin cytoskeleton. Microsc. Res. Tech. 47, 18–37 (1999).

    CAS  PubMed  Google Scholar 

  128. Yarmola, E. G., Somasundaram, T., Boring, T. A., Spector, I. & Bubb, M. R. Actin-latrunculin A structure and function. Differential modulation of actin-binding protein function by latrunculin A. J. Biol. Chem. 275, 28120–28127 (2000).

    CAS  PubMed  Google Scholar 

  129. Takumi, Y., Ramirez-Leon, V., Laake, P., Rinvik, E. & Ottersen, O. P. Different modes of expression of AMPA and NMDA receptors in hippocampal synapses. Nature Neurosci. 2, 618–624 (1999).

    CAS  PubMed  Google Scholar 

  130. Harris, K. M. & Stevens, J. K. Dendritic spines of CA1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics. J. Neurosci. 9, 2982–2997 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Racca, C., Stephenson, F. A., Streit, P., Roberts, J. D. & Somogyi, P. NMDA receptor content of synapses in stratum radiatum of the hippocampal CA1 area. J. Neurosci. 20, 2512–2522 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Nusser, Z. et al. Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron 21, 545–559 (1998).

    CAS  PubMed  Google Scholar 

  133. Isaac, J. T. Postsynaptic silent synapses: evidence and mechanisms. Neuropharmacology 45, 450–460 (2003).

    CAS  PubMed  Google Scholar 

  134. Kasai, H., Matsuzaki, M., Noguchi, J., Yasumatsu, N. & Nakahara, H. Structure-stability-function relationships of dendritic spines. Trends Neurosci. 26, 360–368 (2003).

    CAS  PubMed  Google Scholar 

  135. Matsuzaki, M. et al. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nature Neurosci. 4, 1086–1092 (2001).

    CAS  PubMed  Google Scholar 

  136. Nagerl, U. V., Eberhorn, N., Cambridge, S. B. & Bonhoeffer, T. Bidirectional activity-dependent morphological plasticity in hippocampal neurons. Neuron 44, 759–767 (2004).

    PubMed  Google Scholar 

  137. Engert, F. & Bonhoeffer, T. Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399, 66–70 (1999).

    CAS  PubMed  Google Scholar 

  138. Parnass, Z., Tashiro, A. & Yuste, R. Analysis of spine morphological plasticity in developing hippocampal pyramidal neurons. Hippocampus 10, 561–568 (2000).

    CAS  PubMed  Google Scholar 

  139. Trachtenberg, J. T. et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420, 788–794 (2002).

    CAS  PubMed  Google Scholar 

  140. Grutzendler, J., Kasthuri, N. & Gan, W. B. Long-term dendritic spine stability in the adult cortex. Nature 420, 812–816 (2002).

    CAS  PubMed  Google Scholar 

  141. Maletic-Savatic, M., Malinow, R. & Svoboda, K. Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 283, 1923–1927 (1999).

    CAS  PubMed  Google Scholar 

  142. Thalhammer, A. et al. CaMKII translocation requires local NMDA receptor-mediated Ca2+ signaling. Embo J. 25, 5873–5883 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Saneyoshi, T. et al. Activity-dependent synaptogenesis: regulation by a CaM-kinase kinase/CaM-kinase I/βPIX signaling complex. Neuron 57, 94–107 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Park, E. et al. The Shank family of postsynaptic density proteins interacts with and promotes synaptic accumulation of the βPIX guanine nucleotide exchange factor for Rac1 and Cdc42. J. Biol. Chem. 278, 19220–19229 (2003).

    CAS  PubMed  Google Scholar 

  145. Meng, Y. et al. Abnormal spine morphology and enhanced LTP in LIMK-1 knockout mice. Neuron 35, 121–133 (2002).

    CAS  PubMed  Google Scholar 

  146. Xie, Z. et al. Kalirin-7 controls activity-dependent structural and functional plasticity of dendritic spines. Neuron 56, 640–656 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Maekawa, M. et al. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285, 895–898 (1999).

    CAS  PubMed  Google Scholar 

  148. Schubert, V., Da Silva, J. S. & Dotti, C. G. Localized recruitment and activation of RhoA underlies dendritic spine morphology in a glutamate receptor-dependent manner. J. Cell Biol. 172, 453–467 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Wyszynski, M. et al. Competitive binding of α-actinin and calmodulin to the NMDA receptor. Nature 385, 439–442 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research in the authors' laboratory is supported by the Medical Research Council and the European Commission Framework VI (EU Synapse project, LSHM-CT-2005-019055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukiko Goda.

Related links

Related links

FURTHER INFORMATION

Yukiko Goda's homepage

Glossary

Long-term potentiation

(LTP). Long-lasting (hours to days) enhancement of synaptic communication between two neurons as a consequence of their simultaneous activity. It is one of the most highly studied cellular models for learning and memory.

Vesicle docking

The attachment of synaptic vesicles to the active zone of the presynaptic terminal.

Vesicle priming

ATP-dependent pre-fusion reactions that prepare docked synaptic vesicles for Ca2+-dependent exocytosis.

Active zone

The portion of the presynaptic membrane where synaptic vesicle exocytosis occurs.

Readily releasable pool

The pool of synaptic vesicles that are immediately available for exocytosis. These vesicles are thought to be the docked and primed vesicles at the active zone and constitute 1–2% of all vesicles.

Recycling pool

The pool of synaptic vesicles that engage in and support neurotransmitter release at moderate stimulation intensities. They represent 5–50% of all synaptic vesicles.

Reserve pool

The pool of synaptic vesicles that can engage in neurotransmitter release during intense stimulation. They constitute the majority of synaptic vesicles (50–90%). At some synapses, not all reserve-pool vesicles are used for neurotransmitter release, and the function of these vesicles remains to be established.

Bouton

The button-like swelling or small protuberance on an axon that harbours the presynaptic assembly for neurotransmitter release (that is, the presynaptic terminal).

Fluorescence recovery after photobleaching

(FRAP). A technique that provides measurements of the lateral mobility and dynamics of fluorescently labelled molecules in living cells.

Neuromuscular junction

(NMJ). A synapse between a motor neuron axon and the muscle that it innervates.

SNARE complex

(Soluble NSF attachment protein (SNAP)-receptor complex). A trimeric complex formed between synaptobrevin on synaptic vesicles and syntaxin and SNAP-25 on the plasma membrane that is essential for membrane fusion.

Postsynaptic density

(PSD). The electron-dense region of the postsynaptic membrane that is directly apposed to the active zone. It contains neurotransmitter receptors, scaffold proteins, cell-adhesion molecules and signalling proteins.

Fluorescence resonance energy transfer

(FRET). A spectroscopic technique that uses the direct transfer of energy from one fluorophore to another to measure the distance between the fluorophores.

Long-term depression

(LTD). Long-lasting (hours to days) weakening of synaptic communication between two neurons, generally as a consequence of persistent weak neuronal activity. Along with LTP, LTD is intensively studied as a cellular model for learning and memory.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cingolani, L., Goda, Y. Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nat Rev Neurosci 9, 344–356 (2008). https://doi.org/10.1038/nrn2373

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2373

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing