Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A common neurobiology for pain and pleasure

Abstract

Pain and pleasure are powerful motivators of behaviour and have historically been considered opposites. Emerging evidence from the pain and reward research fields points to extensive similarities in the anatomical substrates of painful and pleasant sensations. Recent molecular-imaging and animal studies have demonstrated the important role of the opioid and dopamine systems in modulating both pain and pleasure. Understanding the mutually inhibitory effects that pain and reward processing have on each other, and the neural mechanisms that underpin such modulation, is important for alleviating unnecessary suffering and improving well-being.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic illustration of pain–pleasure inhibition.
Figure 2: Brains regions implicated in pain and pleasure processing.

References

  1. 1

    Petrovic, P., Kalso, E., Petersson, K. M. & Ingvar, M. Placebo and opioid analgesia — imaging a shared neuronal network. Science 295, 1737–1740 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Zubieta, J.-K. et al. Placebo effects mediated by endogenous opioid activity on μ-opioid receptors. J. Neurosci. 25, 7754–7762 (2005).

    CAS  PubMed  Google Scholar 

  3. 3

    Scott, D. J. et al. Individual differences in reward responding explain placebo-induced expectations and effects. Neuron 55, 325–336 (2007).

    CAS  PubMed  Google Scholar 

  4. 4

    Fields, H. L. Understanding how opioids contribute to reward and analgesia. Reg. Anesth. Pain Med. 32, 242–246 (2007).

    CAS  PubMed  Google Scholar 

  5. 5

    Seymour, B., Daw, N., Dayan, P., Singer, T. & Dolan, R. Differential encoding of losses and gains in the human striatum. J. Neurosci. 27, 4826–4831 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Cabanac, M. Sensory pleasure. Q. Rev. Biol. 54, 1–29 (1979).

    CAS  PubMed  Google Scholar 

  7. 7

    Bentham, J. An introduction to the principles of morals and legislation (Clarendon 1907) Accessible online at http://www.econlib.org/library/Bentham/bnthPML1.html.

    Google Scholar 

  8. 8

    Cannon, W. B. The wisdom of the body (Norton and Co., New York, 1932).

    Google Scholar 

  9. 9

    Kringelbach, M. L., O'Doherty, J., Rolls, E. T. & Andrews, C. Activation of the human orbitofrontal cortex to a liquid food stimulus is correlated with its subjective pleasantness. Cereb. Cortex 13, 1064–1071 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Craig, A. D. A new view of pain as a homeostatic emotion. Trends Neurosci. 26, 303–307 (2003).

    CAS  Google Scholar 

  11. 11

    Leknes, S., Wiech, K., Brooks, J. C. W. & Tracey, I. Is there more to pain relief than a reduction in pain intensity? A psychophysical investigation. Eur. J. Pain 10, S78 (2006).

    Google Scholar 

  12. 12

    Price, D. D., Harkins, S. W. & Baker, C. Sensory-affective relationships among different types of clinical and experimental pain. Pain 28, 297–307 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Harper, P. No pain, no gain: pain behaviour in the armed forces. Br. J. Nurs. 15, 548–551 (2006).

    PubMed  Google Scholar 

  14. 14

    Fields, H. L. in Proceedings of the 11th World Congress on Pain (eds Flor, H., Kalso, E. & Dostrovsky, J. O.) 449–459 (IASP Press, Seattle, 2006).

    Google Scholar 

  15. 15

    Tracey, I. & Mantyh, P. W. The cerebral signature for pain perception and its modulation. Neuron 55, 377–391 (2007).

    CAS  Google Scholar 

  16. 16

    Dum, J. & Herz, A. Endorphinergic modulation of neural reward systems indicated by behavioral changes. Pharmacol. Biochem. Behav. 21, 259–266 (1984).

    CAS  PubMed  Google Scholar 

  17. 17

    Reboucas, E. C. et al. Effect of the blockade of μ1-opioid and 5HT2A-serotonergic/α1-noradrenergic receptors on sweet-substance-induced analgesia. Psychopharmacology (Berl.) 179, 349–55 (2005).

    CAS  Google Scholar 

  18. 18

    Forsberg, G., Wiesenfeld-Hallin, Z., Eneroth, P. & Sodersten, P. Sexual behavior induces naloxone-reversible hypoalgesia in male rats. Neurosci. Lett. 81, 151–154 (1987).

    CAS  PubMed  Google Scholar 

  19. 19

    Szechtman, H., Hershkowitz, M. & Simantov, R. Sexual behavior decreases pain sensitivity and stimulated endogenous opioids in male rats. Eur. J. Pharmacol. 70, 279–285 (1981).

    CAS  PubMed  Google Scholar 

  20. 20

    Gear, R. W., Aley, K. O. & Levine, J. D. Pain-induced analgesia mediated by mesolimbic reward circuits. J. Neurosci. 19, 7175–7181 (1999).

    CAS  PubMed  Google Scholar 

  21. 21

    Villemure, C., Slotnick, B. M. & Bushnell, M. C. Effects of odors on pain perception: deciphering the roles of emotion and attention. Pain 106, 101–108 (2003).

    PubMed  PubMed Central  Google Scholar 

  22. 22

    Kenntner-Mabiala, R. & Pauli, P. Affective modulation of brain potentials to painful and nonpainful stimuli. Psychophysiology 42, 559–567 (2005).

    PubMed  Google Scholar 

  23. 23

    Roy., M., Peretz, I. & Rainville, P. Emotional valence contributes to music-induced analgesia. Pain 134, 140–147 (2008).

    PubMed  Google Scholar 

  24. 24

    de la Fuente-Fernandez, R. et al. Expectation and dopamine release: mechanism of the placebo effect in Parkinson's disease. Science 293, 1164–1166 (2001).

    CAS  PubMed  Google Scholar 

  25. 25

    Petrovic, P. et al. Placebo in emotional processing—induced expectations of anxiety relief activate a generalized modulatory network. Neuron 46, 957–969 (2005).

    CAS  PubMed  Google Scholar 

  26. 26

    Benedetti, F., Mayberg, H. S., Wager, T. D., Stohler, C. S. & Zubieta, J.-K. Neurobiological mechanisms of the placebo effect. J. Neurosci. 25, 10390–10402 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Stevenson, G. W., Bilsky, E. J. & Negus, S. S. Targeting pain-suppressed behaviors in preclinical assays of pain and analgesia: effects of morphine on acetic acid-suppressed feeding in C57BL/6J mice. J. Pain 7, 408–416 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Narita, M. et al. Direct evidence for the involvement of the mesolimbic κ-opioid system in the morphine-induced rewarding effect under an inflammatory pain-like state. Neuropsychopharmacology 30, 111–118 (2004).

    Google Scholar 

  29. 29

    Marbach, J. J. & Lund, P. Depression, anhedonia and anxiety in temporomandibular joint and other facial pain syndromes. Pain 11, 73–84 (1981).

    CAS  PubMed  Google Scholar 

  30. 30

    Berridge, K. The debate over dopamine's role in reward: the case for incentive salience. Psychopharmacology 191, 391–431 (2007).

    CAS  PubMed  Google Scholar 

  31. 31

    Berridge, K. C. Pleasures of the brain. Brain Cogn. 52, 106–128 (2003).

    PubMed  Google Scholar 

  32. 32

    Pecina, S., Cagniard, B., Berridge, K. C., Aldridge, J. W. & Zhuang, X. Hyperdopaminergic mutant mice have higher “wanting” but not “liking” for sweet rewards. J. Neurosci. 23, 9395–9402 (2003).

    CAS  Google Scholar 

  33. 33

    Hnasko, T. S., Sotak, B. N. & Palmiter, R. D. Morphine reward in dopamine-deficient mice. Nature 438, 854–857 (2005).

    CAS  PubMed  Google Scholar 

  34. 34

    Barbano, M. F. & Cador, M. Differential regulation of the consummatory, motivational and anticipatory aspects of feeding behavior by dopaminergic and opioidergic drugs. Neuropsychopharmacology 31, 1371–1381 (2006).

    CAS  PubMed  Google Scholar 

  35. 35

    Barbano, M. & Cador, M. Opioids for hedonic experience and dopamine to get ready for it. Psychopharmacology 191, 497–506 (2007).

    CAS  PubMed  Google Scholar 

  36. 36

    Zubieta, J.-K. et al. Regional mu opioid receptor regulation of sensory and affective dimensions of pain. Science 293, 311–315 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Murphy, M. R., Checkley, S. A., Seckl, J. R. & Lightman, S. L. Naloxone inhibits oxytocin release at orgasm in man. J. Clin. Endocrinol. Metab. 71, 1056–1058 (1990).

    CAS  PubMed  Google Scholar 

  38. 38

    Zhao, Z.-Q. et al. Central serotonergic neurons are differentially required for opioid analgesia but not for morphine tolerance or morphine reward. Proc. Natl Acad. Sci. USA 104, 14519–14524 (2007).

    CAS  PubMed  Google Scholar 

  39. 39

    Mucha, R. F. & Herz, A. Motivational properties of kappa and mu opioid receptor agonists studied with place and taste preference conditioning. Psychopharmacology 86, 274–280 (1985).

    CAS  PubMed  Google Scholar 

  40. 40

    Hirakawa, N., Tershner, S. A., Fields, H. L. & Manning, B. H. Bi-directional changes in affective state elicited by manipulation of medullary pain-modulatory circuitry. Neuroscience 100, 861–871 (2000).

    CAS  PubMed  Google Scholar 

  41. 41

    Drevets, W. C. et al. Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria. Biol. Psychiatry 49, 81–96 (2001).

    CAS  PubMed  Google Scholar 

  42. 42

    Schultz, W. Behavioral dopamine signals. Trends Neurosci. 30, 203–210 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Scott, D. J., Heitzeg, M. M., Koeppe, R. A., Stohler, C. S. & Zubieta, J.-K. Variations in the human pain stress experience mediated by ventral and dorsal basal ganglia dopamine activity. J. Neurosci. 26, 10789–10795 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Jensen, J. et al. Direct activation of the ventral striatum in anticipation of aversive stimuli. Neuron 40, 1251–1257 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Schultz, W. Multiple dopamine functions at different time courses. Annu. Rev. Neurosci. 30, 259–288 (2007).

    CAS  Google Scholar 

  46. 46

    Ungless, M. A., Magill, P. J. & Bolam, J. P. Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science 303, 2040–2042 (2004).

    CAS  Google Scholar 

  47. 47

    Hagelberg, N. et al. Alfentanil increases cortical dopamine D2/D3 receptor binding in healthy subjects. Pain 109, 86–93 (2004).

    CAS  PubMed  Google Scholar 

  48. 48

    Wood, P. B. et al. Fibromyalgia patients show an abnormal dopamine response to pain. Eur. J. Neurosci. 25, 3576–3582 (2007).

    PubMed  PubMed Central  Google Scholar 

  49. 49

    Altier, N. & Stewart, J. The role of dopamine in the nucleus accumbens in analgesia. Life Sci. 65, 2269–2287 (1999).

    CAS  PubMed  Google Scholar 

  50. 50

    Gerdelat-Mas, A. et al. Levodopa raises objective pain threshold in Parkinson's disease: a RIII reflex study. J. Neurol. Neurosurg. Psychiatry 78, 1140–1142 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Wood, P. B. Mesolimbic dopaminergic mechanisms and pain control. Pain 120, 230–234 (2006).

    CAS  PubMed  Google Scholar 

  52. 52

    Bilder, R. M., Volavka, J., Lachman, H. M. & Grace, A. A. The catechol-O-methyltransferase polymorphism: relations to the tonic-phasic dopamine hypothesis and neuropsychiatric phenotypes. Neuropsychopharmacology 29, 1943–1961 (2004).

    CAS  PubMed  Google Scholar 

  53. 53

    Zubieta, J.-K. et al. COMT val158met genotype affects μ-opioid neurotransmitter responses to a pain stressor. Science 299, 1240–1243 (2003).

    CAS  Google Scholar 

  54. 54

    Khachaturian, H. & Watson, S. J. Some perspectives on monoamine-opioid peptide interaction in rat central nervous system. Brain Res. Bull. 9, 441–462 (1982).

    CAS  PubMed  Google Scholar 

  55. 55

    Roth-Deri, I. et al. Effect of experimenter-delivered and self-administered cocaine on extracellular β-endorphin levels in the nucleus accumbens. J. Neurochem. 84, 930–938 (2003).

    CAS  PubMed  Google Scholar 

  56. 56

    King, M. A., Bradshaw, S., Chang, A. H., Pintar, J. E. & Pasternak, G. W. Potentiation of opioid analgesia in dopamine2 receptor knock-out mice: evidence for a tonically active anti-opioid system. J. Neurosci. 21, 7788–7792 (2001).

    CAS  PubMed  Google Scholar 

  57. 57

    Johnson, S. W. & North, R. A. Opioids excite dopamine neurons by hyperpolarization of local interneurons. J. Neurosci. 12, 483–488 (1992).

    CAS  Google Scholar 

  58. 58

    Nugent, F. S., Penick, E. C. & Kauer, J. A. Opioids block long-term potentiation of inhibitory synapses. Nature 446, 1086–1090 (2007).

    CAS  Google Scholar 

  59. 59

    Hagelberg, N. et al. μ-Receptor agonism with alfentanil increases striatal dopamine D2 receptor binding in man. Synapse 45, 25–30 (2002).

    CAS  PubMed  Google Scholar 

  60. 60

    Gray, J. A. & McNaughton, N. The neuropsychology of anxiety (Oxford Univ. Press, Oxford, 2000).

    Google Scholar 

  61. 61

    Seymour, B. et al. Opponent appetitive-aversive neural processes underlie predictive learning of pain relief. Nature Neurosci. 8, 1234–1240 (2005).

    CAS  PubMed  Google Scholar 

  62. 62

    Tindell, A. J., Smith, K. S., Pecina, S., Berridge, K. C. & Aldridge, J. W. Ventral pallidum firing codes hedonic reward: when a bad taste turns good. J. Neurophysiol. 96, 2399–2409 (2006).

    PubMed  Google Scholar 

  63. 63

    Paton, J. J., Belova, M. A., Morrison, S. E. & Salzman, C. D. The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature 439, 865–870 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Blood, A. J. & Zatorre, R. J. Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc. Natl Acad. Sci. USA 98, 11818–11823 (2001).

    CAS  PubMed  Google Scholar 

  65. 65

    Smith, K. S. & Berridge, K. C. Opioid limbic circuit for reward: interaction between hedonic hotspots of nucleus accumbens and ventral pallidum. J. Neurosci. 27, 1594–1605 (2007).

    CAS  PubMed  Google Scholar 

  66. 66

    Miller, J. M. et al. Anhedonia after a selective bilateral lesion of the globus pallidus. Am. J. Psychiatry 163, 786–788 (2006).

    PubMed  Google Scholar 

  67. 67

    Schlaepfer, T. E. et al. Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Neuropsychopharmacology 33, 368–377 (2007).

    PubMed  Google Scholar 

  68. 68

    Wager, T. D., Scott, D. J. & Zubieta, J. K. Placebo effects on human μ-opioid activity during pain. Proc. Natl Acad. Sci. USA 104, 11056–11061 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Fields, H. State-dependent opioid control of pain. Nature Rev. Neurosci. 5, 565–575 (2004).

    CAS  Google Scholar 

  70. 70

    Bingel, U., Lorenz, J., Schoell, E., Weiller, C. & Buchel, C. Mechanisms of placebo analgesia: rACC recruitment of a subcortical antinociceptive network. Pain 120, 8–15 (2006).

    CAS  PubMed  Google Scholar 

  71. 71

    Harris, R. E. et al. Decreased central μ-opioid receptor availability in fibromyalgia. J. Neurosci. 27, 10000–10006 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Braz, J. M., Nassar, M. A., Wood, J. N. & Basbaum, A. I. Parallel “pain” pathways arise from subpopulations of primary afferent nociceptor. Neuron 47, 787–793 (2005).

    CAS  Google Scholar 

  73. 73

    Reynolds, S. M. & Berridge, K. C. Positive and negative motivation in nucleus accumbens shell: bivalent rostrocaudal gradients for GABA-elicited eating, taste “liking”/“disliking” reactions, place preference/avoidance, and fear. J. Neurosci. 22, 7308–7320 (2002).

    CAS  Google Scholar 

  74. 74

    Rolls, E. T. et al. Representations of pleasant and painful touch in the human orbitofrontal and cingulate cortices. Cereb. Cortex 13, 308–317 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Small, D. M., Zatorre, R. J., Dagher, A., Evans, A. C. & Jones-Gotman, M. Changes in brain activity related to eating chocolate: from pleasure to aversion. Brain 124, 1720–1733 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Tremblay, L. & Schultz, W. Relative reward preference in primate orbitofrontal cortex. Nature 398, 704–708 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77

    Kringelbach, M. L. The human orbitofrontal cortex: linking reward to hedonic experience. Nature Rev. Neurosci. 6, 691–702 (2005).

    CAS  Google Scholar 

  78. 78

    Nutt, D. et al. The other face of depression, reduced positive affect: the role of catecholamines in causation and cure. J. Psychopharmacol. 21, 461–471 (2007).

    CAS  PubMed  Google Scholar 

  79. 79

    Dawkins, L., Powell, J. H., West, R., Powell, J. & Pickering, A. A double-blind placebo controlled experimental study of nicotine: I—effects on incentive motivation. Psychopharmacology 189, 355–367 (2006).

    CAS  PubMed  Google Scholar 

  80. 80

    Ashby, F. G., Isen, A. M. & Turken, A. U. A neuropsychological theory of positive affect and its influence on cognition. Psychol. Rev. 106, 529–550 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    de Vasconcellos, A. P. S., Nieto, F. B., Fontella, F. U., da Rocha, E. R. & Dalmaz, C. The nociceptive response of stressed and lithium-treated rats is differently modulated by different flavors. Physiol. Behav. 88, 382–388 (2006).

    PubMed  Google Scholar 

  82. 82

    Zubieta, J.-K. et al. Regulation of human affective responses by anterior cingulate and limbic μ-opioid neurotransmission. Arch. Gen. Psychiatry 60, 1145–1153 (2003).

    CAS  PubMed  Google Scholar 

  83. 83

    Willoch, F. et al. Central poststroke pain and reduced opioid receptor binding within pain processing circuitries: a [11C]diprenorphine PET study. Pain 108, 213–220 (2004).

    CAS  Google Scholar 

  84. 84

    Pressman, S. D. & Cohen, S. Does positive affect influence health? Psychol. Bull. 131, 925–71 (2005).

    PubMed  Google Scholar 

  85. 85

    Seligman, M. in Handbook of Positive Psychology (eds Snyder, C. R. & Lopez, S. J.) (Oxford Univ. Press, New York, 2005).

    Google Scholar 

  86. 86

    Driscoll, R. & Edwards, L. The misconception of Christian suffering. Pastoral Psychol. 32, 34–48 (1983).

    Google Scholar 

  87. 87

    Nagel, T. What is it like to be a bat? Philos. Rev. 83, 435–450 (1974).

    Google Scholar 

  88. 88

    Price, D. D., Barrell, J. J. & Gracely, R. H. A psychophysical analysis of experiential factors that selectively influence the affective dimension of pain. Pain 8, 137–149 (1980).

    CAS  PubMed  Google Scholar 

  89. 89

    Lowe, M. R. & Butryn, M. L. Hedonic hunger: a new dimension of appetite? Physiol. Behav. 91, 432–439 (2007).

    CAS  PubMed  Google Scholar 

  90. 90

    Damasio, A. Descartes' Error: Emotion, Reason, and the Human Brain (Grosset/Putnam, New York, 1994).

    Google Scholar 

  91. 91

    Peters, E., Västfjäll, D., Gärling, T. & Slovic, P. Affect and decision making: a 'hot' topic. J. Behav. Decision Making 19, 79–85 (2006).

    Google Scholar 

  92. 92

    Harbaugh, W. T., Mayr, U. & Burghart, D. R. Neural responses to taxation and voluntary giving reveal motives for charitable donations. Science 316, 1622–1625 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Koob, G. F. & Moal, M. L. Drug abuse: hedonic homeostatic dysregulation. Science 278, 52–58 (1997).

    CAS  PubMed  Google Scholar 

  94. 94

    Moss, J. in Oxford Studies in Ancient Philosophy (ed. Sedley, D.) (Oxford Univ. Press, USA, 2005).

    Google Scholar 

  95. 95

    Ballantyne, J. C. & LaForge, K. S. Opioid dependence and addiction during opioid treatment of chronic pain. Pain 129, 235–255 (2007).

    CAS  PubMed  Google Scholar 

  96. 96

    Franken, I. H. A., Zijlstra, C. & Muris, P. Are nonpharmacological induced rewards related to anhedonia? A study among skydivers. Prog. Neuropsychopharmacol. Biol. Psychiatry 30, 297–300 (2006).

    PubMed  Google Scholar 

  97. 97

    Symons, F., Thompson, A. & Rodriguez, M. Self-injurious behavior and the efficacy of naltrexone treatment: a quantitative synthesis. Ment. Retard. Dev. Disabil. Res. Rev. 10, 193–200 (2004).

    PubMed  Google Scholar 

  98. 98

    Grace, A. A. Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41, 1–24 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Floresco, S. B., West, A. R., Ash, B., Moore, H. & Grace, A. A. Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nature Neurosci. 6, 968–973 (2003).

    CAS  PubMed  Google Scholar 

  100. 100

    Gut-Fayand, A. et al. Substance abuse and suicidality in schizophrenia: a common risk factor linked to impulsivity. Psychiatry Res. 102, 65–72 (2001).

    CAS  PubMed  Google Scholar 

  101. 101

    Kringelbach, M. L., de Araujo, I. E. T. & Rolls, E. T. Taste-related activity in the human dorsolateral prefrontal cortex. Neuroimage 21, 781–788 (2004).

    PubMed  Google Scholar 

  102. 102

    Lorenz, J., Minoshima, S. & Casey, K. L. Keeping pain out of mind: the role of the dorsolateral prefrontal cortex in pain modulation. Brain 126, 1079–1091 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103

    Wiech, K. et al. Anterolateral prefrontal cortex mediates the analgesic effect of expected and perceived control over pain. J. Neurosci. 26, 11501–11509 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104

    Pelchat, M. L., Johnson, A., Chan, R., Valdez, J. & Ragland, J. D. Images of desire: food-craving activation during fMRI. Neuroimage 23, 1486–1493 (2004).

    PubMed  Google Scholar 

  105. 105

    Brooks, J. C. W., Zambreanu, L., Godinez, A., Craig, A. D. & Tracey, I. Somatotopic organisation of the human insula to painful heat studied with high resolution functional imaging. Neuroimage 27, 201–209 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106

    Wager, T. D. et al. Placebo-induced changes in fMRI in the anticipation and experience of pain. Science 303, 1162–1167 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107

    Wittmann, M., Leland, D. & Paulus, M. Time and decision making: differential contribution of the posterior insular cortex and the striatum during a delay discounting task. Exp. Brain Res. 179, 643–653 (2007).

    PubMed  Google Scholar 

  108. 108

    Ostrowsky, K. et al. Representation of pain and somatic sensation in the human insula: a study of responses to direct electrical cortical stimulation. Cereb. Cortex 12, 376–385 (2002).

    PubMed  PubMed Central  Google Scholar 

  109. 109

    Knutson, B., Fong, G. W., Bennett, S. M., Adams, C. M. & Hommer, D. A region of mesial prefrontal cortex tracks monetarily rewarding outcomes: characterization with rapid event-related fMRI. Neuroimage 18, 263–272 (2003).

    PubMed  Google Scholar 

  110. 110

    Porro, C. A., Cettolo, V., Francescato, M. P. & Baraldi, P. Functional activity mapping of the mesial hemispheric wall during anticipation of pain. Neuroimage 19, 1738–1747 (2003).

    PubMed  Google Scholar 

  111. 111

    Ochsner, K. N. et al. Neural correlates of individual differences in pain-related fear and anxiety. Pain 120, 69–77 (2006).

    PubMed  Google Scholar 

  112. 112

    Shidara, M. & Richmond, B. J. Anterior cingulate: single neuronal signals related to degree of reward expectancy. Science 296, 1709–1711 (2002).

    PubMed  PubMed Central  Google Scholar 

  113. 113

    Rainville, P., Duncan, G. H., Price, D. D., Carrier, B. & Bushnell, M. C. Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 277, 968–971 (1997).

    CAS  Google Scholar 

  114. 114

    O'Doherty, J. et al. Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science 304, 452–454 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115

    Delgado, M. R., Stenger, V. A. & Fiez, J. A. Motivation-dependent responses in the human caudate nucleus. Cereb. Cortex 14, 1022–1030 (2004).

    CAS  PubMed  Google Scholar 

  116. 116

    Bingel, U., Glascher, J., Weiller, C. & Buchel, C. Somatotopic representation of nociceptive information in the putamen: an event-related fMRI study. Cereb. Cortex 14, 1340–1345 (2004).

    CAS  PubMed  Google Scholar 

  117. 117

    Menon, V. & Levitin, D. J. The rewards of music listening: response and physiological connectivity of the mesolimbic system. Neuroimage 28, 175–184 (2005).

    CAS  PubMed  Google Scholar 

  118. 118

    Bussone, G. et al. Deep brain stimulation in craniofacial pain: seven years' experience. Neurol. Sci. 28, S146–S149 (2007).

    PubMed  Google Scholar 

  119. 119

    Fairhurst, M., Wiech, K., Dunckley, P. & Tracey, I. Anticipatory brainstem activity predicts neural processing of pain in humans. Pain 128, 101–110 (2007).

    PubMed  PubMed Central  Google Scholar 

  120. 120

    Becerra, L., Breiter, H. C., Wise, R., Gonzalez, R. G. & Borsook, D. Reward circuitry activation by noxious thermal stimuli. Neuron 32, 927–946 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121

    Ramnani, N., Elliott, R., Athwal, B. S. & Passingham, R. E. Prediction error for free monetary reward in the human prefrontal cortex. Neuroimage 23, 777–786 (2004).

    CAS  PubMed  Google Scholar 

  122. 122

    Ploghaus, A. et al. Exacerbation of pain by anxiety is associated with activity in a hippocampal network. J. Neurosci. 21, 9896–9903 (2001).

    CAS  Google Scholar 

  123. 123

    Zambreanu, L., Wise, R. G., Brooks, J. C. W., Iannetti, G. D. & Tracey, I. A role for the brainstem in central sensitisation in humans. Evidence from functional magnetic resonance imaging. Pain 114, 397–407 (2005).

    CAS  Google Scholar 

  124. 124

    Pecina, S. & Berridge, K. C. Brainstem mediates diazepam enhancement of palatability and feeding: microinjections into fourth ventricle versus lateral ventricle. Brain Res. 727, 22–30 (1996).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank L. Moseley and M. Kringelbach for their helpful advice on the figures, the Wellcome Trust and the Medical Research Council (Functional Magnetic Resonance Imaging of the Brain Centre).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Irene Tracey.

Related links

Related links

FURTHER INFORMATION

Irene Tracey's homepage

International Association for the study of Pain

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Leknes, S., Tracey, I. A common neurobiology for pain and pleasure. Nat Rev Neurosci 9, 314–320 (2008). https://doi.org/10.1038/nrn2333

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing