A common neurobiology for pain and pleasure

Article metrics

Abstract

Pain and pleasure are powerful motivators of behaviour and have historically been considered opposites. Emerging evidence from the pain and reward research fields points to extensive similarities in the anatomical substrates of painful and pleasant sensations. Recent molecular-imaging and animal studies have demonstrated the important role of the opioid and dopamine systems in modulating both pain and pleasure. Understanding the mutually inhibitory effects that pain and reward processing have on each other, and the neural mechanisms that underpin such modulation, is important for alleviating unnecessary suffering and improving well-being.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic illustration of pain–pleasure inhibition.
Figure 2: Brains regions implicated in pain and pleasure processing.

References

  1. 1

    Petrovic, P., Kalso, E., Petersson, K. M. & Ingvar, M. Placebo and opioid analgesia — imaging a shared neuronal network. Science 295, 1737–1740 (2002).

  2. 2

    Zubieta, J.-K. et al. Placebo effects mediated by endogenous opioid activity on μ-opioid receptors. J. Neurosci. 25, 7754–7762 (2005).

  3. 3

    Scott, D. J. et al. Individual differences in reward responding explain placebo-induced expectations and effects. Neuron 55, 325–336 (2007).

  4. 4

    Fields, H. L. Understanding how opioids contribute to reward and analgesia. Reg. Anesth. Pain Med. 32, 242–246 (2007).

  5. 5

    Seymour, B., Daw, N., Dayan, P., Singer, T. & Dolan, R. Differential encoding of losses and gains in the human striatum. J. Neurosci. 27, 4826–4831 (2007).

  6. 6

    Cabanac, M. Sensory pleasure. Q. Rev. Biol. 54, 1–29 (1979).

  7. 7

    Bentham, J. An introduction to the principles of morals and legislation (Clarendon 1907) Accessible online at http://www.econlib.org/library/Bentham/bnthPML1.html.

  8. 8

    Cannon, W. B. The wisdom of the body (Norton and Co., New York, 1932).

  9. 9

    Kringelbach, M. L., O'Doherty, J., Rolls, E. T. & Andrews, C. Activation of the human orbitofrontal cortex to a liquid food stimulus is correlated with its subjective pleasantness. Cereb. Cortex 13, 1064–1071 (2003).

  10. 10

    Craig, A. D. A new view of pain as a homeostatic emotion. Trends Neurosci. 26, 303–307 (2003).

  11. 11

    Leknes, S., Wiech, K., Brooks, J. C. W. & Tracey, I. Is there more to pain relief than a reduction in pain intensity? A psychophysical investigation. Eur. J. Pain 10, S78 (2006).

  12. 12

    Price, D. D., Harkins, S. W. & Baker, C. Sensory-affective relationships among different types of clinical and experimental pain. Pain 28, 297–307 (1987).

  13. 13

    Harper, P. No pain, no gain: pain behaviour in the armed forces. Br. J. Nurs. 15, 548–551 (2006).

  14. 14

    Fields, H. L. in Proceedings of the 11th World Congress on Pain (eds Flor, H., Kalso, E. & Dostrovsky, J. O.) 449–459 (IASP Press, Seattle, 2006).

  15. 15

    Tracey, I. & Mantyh, P. W. The cerebral signature for pain perception and its modulation. Neuron 55, 377–391 (2007).

  16. 16

    Dum, J. & Herz, A. Endorphinergic modulation of neural reward systems indicated by behavioral changes. Pharmacol. Biochem. Behav. 21, 259–266 (1984).

  17. 17

    Reboucas, E. C. et al. Effect of the blockade of μ1-opioid and 5HT2A-serotonergic/α1-noradrenergic receptors on sweet-substance-induced analgesia. Psychopharmacology (Berl.) 179, 349–55 (2005).

  18. 18

    Forsberg, G., Wiesenfeld-Hallin, Z., Eneroth, P. & Sodersten, P. Sexual behavior induces naloxone-reversible hypoalgesia in male rats. Neurosci. Lett. 81, 151–154 (1987).

  19. 19

    Szechtman, H., Hershkowitz, M. & Simantov, R. Sexual behavior decreases pain sensitivity and stimulated endogenous opioids in male rats. Eur. J. Pharmacol. 70, 279–285 (1981).

  20. 20

    Gear, R. W., Aley, K. O. & Levine, J. D. Pain-induced analgesia mediated by mesolimbic reward circuits. J. Neurosci. 19, 7175–7181 (1999).

  21. 21

    Villemure, C., Slotnick, B. M. & Bushnell, M. C. Effects of odors on pain perception: deciphering the roles of emotion and attention. Pain 106, 101–108 (2003).

  22. 22

    Kenntner-Mabiala, R. & Pauli, P. Affective modulation of brain potentials to painful and nonpainful stimuli. Psychophysiology 42, 559–567 (2005).

  23. 23

    Roy., M., Peretz, I. & Rainville, P. Emotional valence contributes to music-induced analgesia. Pain 134, 140–147 (2008).

  24. 24

    de la Fuente-Fernandez, R. et al. Expectation and dopamine release: mechanism of the placebo effect in Parkinson's disease. Science 293, 1164–1166 (2001).

  25. 25

    Petrovic, P. et al. Placebo in emotional processing—induced expectations of anxiety relief activate a generalized modulatory network. Neuron 46, 957–969 (2005).

  26. 26

    Benedetti, F., Mayberg, H. S., Wager, T. D., Stohler, C. S. & Zubieta, J.-K. Neurobiological mechanisms of the placebo effect. J. Neurosci. 25, 10390–10402 (2005).

  27. 27

    Stevenson, G. W., Bilsky, E. J. & Negus, S. S. Targeting pain-suppressed behaviors in preclinical assays of pain and analgesia: effects of morphine on acetic acid-suppressed feeding in C57BL/6J mice. J. Pain 7, 408–416 (2006).

  28. 28

    Narita, M. et al. Direct evidence for the involvement of the mesolimbic κ-opioid system in the morphine-induced rewarding effect under an inflammatory pain-like state. Neuropsychopharmacology 30, 111–118 (2004).

  29. 29

    Marbach, J. J. & Lund, P. Depression, anhedonia and anxiety in temporomandibular joint and other facial pain syndromes. Pain 11, 73–84 (1981).

  30. 30

    Berridge, K. The debate over dopamine's role in reward: the case for incentive salience. Psychopharmacology 191, 391–431 (2007).

  31. 31

    Berridge, K. C. Pleasures of the brain. Brain Cogn. 52, 106–128 (2003).

  32. 32

    Pecina, S., Cagniard, B., Berridge, K. C., Aldridge, J. W. & Zhuang, X. Hyperdopaminergic mutant mice have higher “wanting” but not “liking” for sweet rewards. J. Neurosci. 23, 9395–9402 (2003).

  33. 33

    Hnasko, T. S., Sotak, B. N. & Palmiter, R. D. Morphine reward in dopamine-deficient mice. Nature 438, 854–857 (2005).

  34. 34

    Barbano, M. F. & Cador, M. Differential regulation of the consummatory, motivational and anticipatory aspects of feeding behavior by dopaminergic and opioidergic drugs. Neuropsychopharmacology 31, 1371–1381 (2006).

  35. 35

    Barbano, M. & Cador, M. Opioids for hedonic experience and dopamine to get ready for it. Psychopharmacology 191, 497–506 (2007).

  36. 36

    Zubieta, J.-K. et al. Regional mu opioid receptor regulation of sensory and affective dimensions of pain. Science 293, 311–315 (2001).

  37. 37

    Murphy, M. R., Checkley, S. A., Seckl, J. R. & Lightman, S. L. Naloxone inhibits oxytocin release at orgasm in man. J. Clin. Endocrinol. Metab. 71, 1056–1058 (1990).

  38. 38

    Zhao, Z.-Q. et al. Central serotonergic neurons are differentially required for opioid analgesia but not for morphine tolerance or morphine reward. Proc. Natl Acad. Sci. USA 104, 14519–14524 (2007).

  39. 39

    Mucha, R. F. & Herz, A. Motivational properties of kappa and mu opioid receptor agonists studied with place and taste preference conditioning. Psychopharmacology 86, 274–280 (1985).

  40. 40

    Hirakawa, N., Tershner, S. A., Fields, H. L. & Manning, B. H. Bi-directional changes in affective state elicited by manipulation of medullary pain-modulatory circuitry. Neuroscience 100, 861–871 (2000).

  41. 41

    Drevets, W. C. et al. Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria. Biol. Psychiatry 49, 81–96 (2001).

  42. 42

    Schultz, W. Behavioral dopamine signals. Trends Neurosci. 30, 203–210 (2007).

  43. 43

    Scott, D. J., Heitzeg, M. M., Koeppe, R. A., Stohler, C. S. & Zubieta, J.-K. Variations in the human pain stress experience mediated by ventral and dorsal basal ganglia dopamine activity. J. Neurosci. 26, 10789–10795 (2006).

  44. 44

    Jensen, J. et al. Direct activation of the ventral striatum in anticipation of aversive stimuli. Neuron 40, 1251–1257 (2003).

  45. 45

    Schultz, W. Multiple dopamine functions at different time courses. Annu. Rev. Neurosci. 30, 259–288 (2007).

  46. 46

    Ungless, M. A., Magill, P. J. & Bolam, J. P. Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science 303, 2040–2042 (2004).

  47. 47

    Hagelberg, N. et al. Alfentanil increases cortical dopamine D2/D3 receptor binding in healthy subjects. Pain 109, 86–93 (2004).

  48. 48

    Wood, P. B. et al. Fibromyalgia patients show an abnormal dopamine response to pain. Eur. J. Neurosci. 25, 3576–3582 (2007).

  49. 49

    Altier, N. & Stewart, J. The role of dopamine in the nucleus accumbens in analgesia. Life Sci. 65, 2269–2287 (1999).

  50. 50

    Gerdelat-Mas, A. et al. Levodopa raises objective pain threshold in Parkinson's disease: a RIII reflex study. J. Neurol. Neurosurg. Psychiatry 78, 1140–1142 (2007).

  51. 51

    Wood, P. B. Mesolimbic dopaminergic mechanisms and pain control. Pain 120, 230–234 (2006).

  52. 52

    Bilder, R. M., Volavka, J., Lachman, H. M. & Grace, A. A. The catechol-O-methyltransferase polymorphism: relations to the tonic-phasic dopamine hypothesis and neuropsychiatric phenotypes. Neuropsychopharmacology 29, 1943–1961 (2004).

  53. 53

    Zubieta, J.-K. et al. COMT val158met genotype affects μ-opioid neurotransmitter responses to a pain stressor. Science 299, 1240–1243 (2003).

  54. 54

    Khachaturian, H. & Watson, S. J. Some perspectives on monoamine-opioid peptide interaction in rat central nervous system. Brain Res. Bull. 9, 441–462 (1982).

  55. 55

    Roth-Deri, I. et al. Effect of experimenter-delivered and self-administered cocaine on extracellular β-endorphin levels in the nucleus accumbens. J. Neurochem. 84, 930–938 (2003).

  56. 56

    King, M. A., Bradshaw, S., Chang, A. H., Pintar, J. E. & Pasternak, G. W. Potentiation of opioid analgesia in dopamine2 receptor knock-out mice: evidence for a tonically active anti-opioid system. J. Neurosci. 21, 7788–7792 (2001).

  57. 57

    Johnson, S. W. & North, R. A. Opioids excite dopamine neurons by hyperpolarization of local interneurons. J. Neurosci. 12, 483–488 (1992).

  58. 58

    Nugent, F. S., Penick, E. C. & Kauer, J. A. Opioids block long-term potentiation of inhibitory synapses. Nature 446, 1086–1090 (2007).

  59. 59

    Hagelberg, N. et al. μ-Receptor agonism with alfentanil increases striatal dopamine D2 receptor binding in man. Synapse 45, 25–30 (2002).

  60. 60

    Gray, J. A. & McNaughton, N. The neuropsychology of anxiety (Oxford Univ. Press, Oxford, 2000).

  61. 61

    Seymour, B. et al. Opponent appetitive-aversive neural processes underlie predictive learning of pain relief. Nature Neurosci. 8, 1234–1240 (2005).

  62. 62

    Tindell, A. J., Smith, K. S., Pecina, S., Berridge, K. C. & Aldridge, J. W. Ventral pallidum firing codes hedonic reward: when a bad taste turns good. J. Neurophysiol. 96, 2399–2409 (2006).

  63. 63

    Paton, J. J., Belova, M. A., Morrison, S. E. & Salzman, C. D. The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature 439, 865–870 (2006).

  64. 64

    Blood, A. J. & Zatorre, R. J. Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc. Natl Acad. Sci. USA 98, 11818–11823 (2001).

  65. 65

    Smith, K. S. & Berridge, K. C. Opioid limbic circuit for reward: interaction between hedonic hotspots of nucleus accumbens and ventral pallidum. J. Neurosci. 27, 1594–1605 (2007).

  66. 66

    Miller, J. M. et al. Anhedonia after a selective bilateral lesion of the globus pallidus. Am. J. Psychiatry 163, 786–788 (2006).

  67. 67

    Schlaepfer, T. E. et al. Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Neuropsychopharmacology 33, 368–377 (2007).

  68. 68

    Wager, T. D., Scott, D. J. & Zubieta, J. K. Placebo effects on human μ-opioid activity during pain. Proc. Natl Acad. Sci. USA 104, 11056–11061 (2007).

  69. 69

    Fields, H. State-dependent opioid control of pain. Nature Rev. Neurosci. 5, 565–575 (2004).

  70. 70

    Bingel, U., Lorenz, J., Schoell, E., Weiller, C. & Buchel, C. Mechanisms of placebo analgesia: rACC recruitment of a subcortical antinociceptive network. Pain 120, 8–15 (2006).

  71. 71

    Harris, R. E. et al. Decreased central μ-opioid receptor availability in fibromyalgia. J. Neurosci. 27, 10000–10006 (2007).

  72. 72

    Braz, J. M., Nassar, M. A., Wood, J. N. & Basbaum, A. I. Parallel “pain” pathways arise from subpopulations of primary afferent nociceptor. Neuron 47, 787–793 (2005).

  73. 73

    Reynolds, S. M. & Berridge, K. C. Positive and negative motivation in nucleus accumbens shell: bivalent rostrocaudal gradients for GABA-elicited eating, taste “liking”/“disliking” reactions, place preference/avoidance, and fear. J. Neurosci. 22, 7308–7320 (2002).

  74. 74

    Rolls, E. T. et al. Representations of pleasant and painful touch in the human orbitofrontal and cingulate cortices. Cereb. Cortex 13, 308–317 (2003).

  75. 75

    Small, D. M., Zatorre, R. J., Dagher, A., Evans, A. C. & Jones-Gotman, M. Changes in brain activity related to eating chocolate: from pleasure to aversion. Brain 124, 1720–1733 (2001).

  76. 76

    Tremblay, L. & Schultz, W. Relative reward preference in primate orbitofrontal cortex. Nature 398, 704–708 (1999).

  77. 77

    Kringelbach, M. L. The human orbitofrontal cortex: linking reward to hedonic experience. Nature Rev. Neurosci. 6, 691–702 (2005).

  78. 78

    Nutt, D. et al. The other face of depression, reduced positive affect: the role of catecholamines in causation and cure. J. Psychopharmacol. 21, 461–471 (2007).

  79. 79

    Dawkins, L., Powell, J. H., West, R., Powell, J. & Pickering, A. A double-blind placebo controlled experimental study of nicotine: I—effects on incentive motivation. Psychopharmacology 189, 355–367 (2006).

  80. 80

    Ashby, F. G., Isen, A. M. & Turken, A. U. A neuropsychological theory of positive affect and its influence on cognition. Psychol. Rev. 106, 529–550 (1999).

  81. 81

    de Vasconcellos, A. P. S., Nieto, F. B., Fontella, F. U., da Rocha, E. R. & Dalmaz, C. The nociceptive response of stressed and lithium-treated rats is differently modulated by different flavors. Physiol. Behav. 88, 382–388 (2006).

  82. 82

    Zubieta, J.-K. et al. Regulation of human affective responses by anterior cingulate and limbic μ-opioid neurotransmission. Arch. Gen. Psychiatry 60, 1145–1153 (2003).

  83. 83

    Willoch, F. et al. Central poststroke pain and reduced opioid receptor binding within pain processing circuitries: a [11C]diprenorphine PET study. Pain 108, 213–220 (2004).

  84. 84

    Pressman, S. D. & Cohen, S. Does positive affect influence health? Psychol. Bull. 131, 925–71 (2005).

  85. 85

    Seligman, M. in Handbook of Positive Psychology (eds Snyder, C. R. & Lopez, S. J.) (Oxford Univ. Press, New York, 2005).

  86. 86

    Driscoll, R. & Edwards, L. The misconception of Christian suffering. Pastoral Psychol. 32, 34–48 (1983).

  87. 87

    Nagel, T. What is it like to be a bat? Philos. Rev. 83, 435–450 (1974).

  88. 88

    Price, D. D., Barrell, J. J. & Gracely, R. H. A psychophysical analysis of experiential factors that selectively influence the affective dimension of pain. Pain 8, 137–149 (1980).

  89. 89

    Lowe, M. R. & Butryn, M. L. Hedonic hunger: a new dimension of appetite? Physiol. Behav. 91, 432–439 (2007).

  90. 90

    Damasio, A. Descartes' Error: Emotion, Reason, and the Human Brain (Grosset/Putnam, New York, 1994).

  91. 91

    Peters, E., Västfjäll, D., Gärling, T. & Slovic, P. Affect and decision making: a 'hot' topic. J. Behav. Decision Making 19, 79–85 (2006).

  92. 92

    Harbaugh, W. T., Mayr, U. & Burghart, D. R. Neural responses to taxation and voluntary giving reveal motives for charitable donations. Science 316, 1622–1625 (2007).

  93. 93

    Koob, G. F. & Moal, M. L. Drug abuse: hedonic homeostatic dysregulation. Science 278, 52–58 (1997).

  94. 94

    Moss, J. in Oxford Studies in Ancient Philosophy (ed. Sedley, D.) (Oxford Univ. Press, USA, 2005).

  95. 95

    Ballantyne, J. C. & LaForge, K. S. Opioid dependence and addiction during opioid treatment of chronic pain. Pain 129, 235–255 (2007).

  96. 96

    Franken, I. H. A., Zijlstra, C. & Muris, P. Are nonpharmacological induced rewards related to anhedonia? A study among skydivers. Prog. Neuropsychopharmacol. Biol. Psychiatry 30, 297–300 (2006).

  97. 97

    Symons, F., Thompson, A. & Rodriguez, M. Self-injurious behavior and the efficacy of naltrexone treatment: a quantitative synthesis. Ment. Retard. Dev. Disabil. Res. Rev. 10, 193–200 (2004).

  98. 98

    Grace, A. A. Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41, 1–24 (1991).

  99. 99

    Floresco, S. B., West, A. R., Ash, B., Moore, H. & Grace, A. A. Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nature Neurosci. 6, 968–973 (2003).

  100. 100

    Gut-Fayand, A. et al. Substance abuse and suicidality in schizophrenia: a common risk factor linked to impulsivity. Psychiatry Res. 102, 65–72 (2001).

  101. 101

    Kringelbach, M. L., de Araujo, I. E. T. & Rolls, E. T. Taste-related activity in the human dorsolateral prefrontal cortex. Neuroimage 21, 781–788 (2004).

  102. 102

    Lorenz, J., Minoshima, S. & Casey, K. L. Keeping pain out of mind: the role of the dorsolateral prefrontal cortex in pain modulation. Brain 126, 1079–1091 (2003).

  103. 103

    Wiech, K. et al. Anterolateral prefrontal cortex mediates the analgesic effect of expected and perceived control over pain. J. Neurosci. 26, 11501–11509 (2006).

  104. 104

    Pelchat, M. L., Johnson, A., Chan, R., Valdez, J. & Ragland, J. D. Images of desire: food-craving activation during fMRI. Neuroimage 23, 1486–1493 (2004).

  105. 105

    Brooks, J. C. W., Zambreanu, L., Godinez, A., Craig, A. D. & Tracey, I. Somatotopic organisation of the human insula to painful heat studied with high resolution functional imaging. Neuroimage 27, 201–209 (2005).

  106. 106

    Wager, T. D. et al. Placebo-induced changes in fMRI in the anticipation and experience of pain. Science 303, 1162–1167 (2004).

  107. 107

    Wittmann, M., Leland, D. & Paulus, M. Time and decision making: differential contribution of the posterior insular cortex and the striatum during a delay discounting task. Exp. Brain Res. 179, 643–653 (2007).

  108. 108

    Ostrowsky, K. et al. Representation of pain and somatic sensation in the human insula: a study of responses to direct electrical cortical stimulation. Cereb. Cortex 12, 376–385 (2002).

  109. 109

    Knutson, B., Fong, G. W., Bennett, S. M., Adams, C. M. & Hommer, D. A region of mesial prefrontal cortex tracks monetarily rewarding outcomes: characterization with rapid event-related fMRI. Neuroimage 18, 263–272 (2003).

  110. 110

    Porro, C. A., Cettolo, V., Francescato, M. P. & Baraldi, P. Functional activity mapping of the mesial hemispheric wall during anticipation of pain. Neuroimage 19, 1738–1747 (2003).

  111. 111

    Ochsner, K. N. et al. Neural correlates of individual differences in pain-related fear and anxiety. Pain 120, 69–77 (2006).

  112. 112

    Shidara, M. & Richmond, B. J. Anterior cingulate: single neuronal signals related to degree of reward expectancy. Science 296, 1709–1711 (2002).

  113. 113

    Rainville, P., Duncan, G. H., Price, D. D., Carrier, B. & Bushnell, M. C. Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 277, 968–971 (1997).

  114. 114

    O'Doherty, J. et al. Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science 304, 452–454 (2004).

  115. 115

    Delgado, M. R., Stenger, V. A. & Fiez, J. A. Motivation-dependent responses in the human caudate nucleus. Cereb. Cortex 14, 1022–1030 (2004).

  116. 116

    Bingel, U., Glascher, J., Weiller, C. & Buchel, C. Somatotopic representation of nociceptive information in the putamen: an event-related fMRI study. Cereb. Cortex 14, 1340–1345 (2004).

  117. 117

    Menon, V. & Levitin, D. J. The rewards of music listening: response and physiological connectivity of the mesolimbic system. Neuroimage 28, 175–184 (2005).

  118. 118

    Bussone, G. et al. Deep brain stimulation in craniofacial pain: seven years' experience. Neurol. Sci. 28, S146–S149 (2007).

  119. 119

    Fairhurst, M., Wiech, K., Dunckley, P. & Tracey, I. Anticipatory brainstem activity predicts neural processing of pain in humans. Pain 128, 101–110 (2007).

  120. 120

    Becerra, L., Breiter, H. C., Wise, R., Gonzalez, R. G. & Borsook, D. Reward circuitry activation by noxious thermal stimuli. Neuron 32, 927–946 (2001).

  121. 121

    Ramnani, N., Elliott, R., Athwal, B. S. & Passingham, R. E. Prediction error for free monetary reward in the human prefrontal cortex. Neuroimage 23, 777–786 (2004).

  122. 122

    Ploghaus, A. et al. Exacerbation of pain by anxiety is associated with activity in a hippocampal network. J. Neurosci. 21, 9896–9903 (2001).

  123. 123

    Zambreanu, L., Wise, R. G., Brooks, J. C. W., Iannetti, G. D. & Tracey, I. A role for the brainstem in central sensitisation in humans. Evidence from functional magnetic resonance imaging. Pain 114, 397–407 (2005).

  124. 124

    Pecina, S. & Berridge, K. C. Brainstem mediates diazepam enhancement of palatability and feeding: microinjections into fourth ventricle versus lateral ventricle. Brain Res. 727, 22–30 (1996).

Download references

Acknowledgements

The authors wish to thank L. Moseley and M. Kringelbach for their helpful advice on the figures, the Wellcome Trust and the Medical Research Council (Functional Magnetic Resonance Imaging of the Brain Centre).

Author information

Correspondence to Irene Tracey.

Related links

Related links

FURTHER INFORMATION

Irene Tracey's homepage

International Association for the study of Pain

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Leknes, S., Tracey, I. A common neurobiology for pain and pleasure. Nat Rev Neurosci 9, 314–320 (2008) doi:10.1038/nrn2333

Download citation

Further reading