Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Binocular depth perception and the cerebral cortex

Key Points

  • Humans and some other animals use their two eyes in coordination to support binocular depth perception. The left and right eyes obtain images of the visual scene from slightly different viewpoints, leading to small differences between the left and right images called binocular disparities.

  • Measurement of the tuning functions of neurons in the visual cortex for disparity gives important information about how the visual stimulus influences the firing of neurons but does little to reveal the roles of different neurons in binocular depth perception.

  • Known features of binocular stereoscopic depth perception can be used to set up tests of the role of individual neurons and individual cortical areas.

  • One early hypothesis was that the dorsal visual cortical pathways are pre-eminently responsible for binocular depth perception. Other views have assigned different roles to the dorsal and ventral streams.

  • Neurons outside the primary visual cortex (V1) respond consistently to relative disparity. Neurons in both dorsal and ventral extrastriate visual areas respond to relative disparity.

  • It is proposed that dorsal areas are predominantly involved in processing extended visual surfaces and resolving depth structure during self-movement, whereas ventral visual areas process relative disparity to support the analysis of the three-dimensional shape of objects.

  • Binocular anticorrelation can be used to map the role of different sites in the visual cortex in the generation of binocular depth perception.

  • Dorsal visual areas appear to use a computational strategy based on a simple algorithm that approximately measures the cross-correlation between image regions on the left and right eyes. Ventral visual areas appear to use a more sophisticated algorithm that makes point-for-point matches between specific features on the left and right retinas.

  • Binocular depth perception has been recently studied at the neuronal level using the measurement of choice probabilities and the application of electrical microstimulation within selected parts of the visual cortex.

  • The identification of a significant role for the extrastriate visual cortex in the generation of binocular depth perception leads to a broadened interest in the roles of these areas in explaining some phenomena associated with the human clinical condition of amblyopia.

Abstract

Our ability to coordinate the use of our left and right eyes and to make use of subtle differences between the images received by each eye allows us to perceive stereoscopic depth, which is important for the visual perception of three-dimensional space. Binocular neurons in the visual cortex combine signals from the left and right eyes. Probing the roles of binocular neurons in different perceptual tasks has advanced our understanding of the stages within the visual cortex that lead to binocular depth perception.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Recording from binocular neurons.
Figure 2: Responses to binocular anticorrelation.
Figure 3: Stereo vision in dorsal and ventral pathways.
Figure 4: Intervening in judgements about binocular depth.

References

  1. Cumming, B. G. & DeAngelis, G. C. The physiology of stereopsis. Ann. Rev. Neurosci. 24, 203–238 (2001). A core review article that comprehensively and critically summarises the field.

    CAS  PubMed  Article  Google Scholar 

  2. Hubel, D. H. & Livingstone, M. S. Segregation of form, color, and stereopsis in primate area-18. J. Neurosci. 7, 3378–3415 (1987).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. Hubel, D. H. & Wiesel, T. N. Cells sensitive to binocular depth in area-18 of macaque monkey cortex. Nature 225, 41–42 (1970).

    CAS  PubMed  Article  Google Scholar 

  4. Poggio, G. F. & Poggio, T. The analysis of stereopsis. Ann. Rev. Neurosci. 7, 379–412 (1984).

    CAS  PubMed  Article  Google Scholar 

  5. Poggio, G. F. & Talbot, W. H. Mechanisms of static and dynamic stereopsis in foveal cortex of the rhesus-monkey. J. Physiol. 315, 469–492 (1981).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. Merigan, W. H., Katz, L. M. & Maunsell, J. H. R. The effects of parvocellular lateral geniculate lesions on the acuity and contrast sensitivity of macaque monkeys. J. Neurosci. 11, 994–1001 (1991).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. Merigan, W. H. & Maunsell, J. H. R. How parallel are the primate visual pathways. Ann. Rev. Neurosci. 16, 369–402 (1993).

    CAS  PubMed  Article  Google Scholar 

  8. Barberini, C. L., Cohen, M. R., Wandell, B. A. & Newsome, W. T. Cone signal interactions in direction-selective neurons in the middle temporal visual area (MT). J. Vis. 5, 603–621 (2005).

    PubMed  Article  Google Scholar 

  9. Callaway, E. M. in Cortical Function: A View From the Thalamus (eds Casagrande, V. A., Guillery, R. W. & Sherman, S. M.) 59–64 (Elsevier, Amsterdam, 2005).

    Book  Google Scholar 

  10. Nassi, J. J., Lyon, D. C. & Callaway, E. M. The parvocellular LGN provides a robust disynaptic input to the visual motion area MT. Neuron 50, 319–327 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. Yoshioka, T., Levitt, J. B. & Lund, J. S. Independence and merger of thalamocortical channels within macaque monkey primary visual cortex: anatomy of interlaminar projections. Vis. Neurosci. 11, 467–489 (1994).

    CAS  PubMed  Article  Google Scholar 

  12. Livingstone, M. S. & Hubel, D. H. Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. J. Neurosci. 7, 3416–3468 (1987).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. Tyler, C. W. A stereoscopic view of visual processing streams. Vision Res. 30, 1877–1895 (1990).

    CAS  PubMed  Article  Google Scholar 

  14. Schiller, P. H. The effects of V4 and middle temporal (MT) area lesions on visual performance in the rhesus-monkey. Vis. Neurosci. 10, 717–746 (1993).

    CAS  PubMed  Article  Google Scholar 

  15. Prince, S. J. D., Cumming, B. G. & Parker, A. J. Range and mechanism of encoding of horizontal disparity in macaque V1. J. Neurophysiol. 87, 209–221 (2002).

    CAS  PubMed  Article  Google Scholar 

  16. Tanabe, S., Doi, T., Umeda, K. & Fujita, I. Disparity-tuning characteristics of neuronal responses to dynamic random-dot stereograms in macaque visual area V4. J. Neurophysiol. 94, 2683–2699 (2005).

    PubMed  Article  Google Scholar 

  17. Tanabe, S., Umeda, K. & Fujita, I. Rejection of false matches for binocular correspondence in macaque visual cortical area V4. J. Neurosci. 24, 8170–8180 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. DeAngelis, G. C. & Uka, T. Coding of horizontal disparity and velocity by MT neurons in the alert macaque. J. Neurophysiol. 89, 1094–1111 (2003).

    PubMed  Article  Google Scholar 

  19. Peterhans, E. & Von Der Heydt, R. Functional-organization of area V2 in the alert macaque. Eur. J. Neurosci. 5, 509–524 (1993).

    CAS  PubMed  Article  Google Scholar 

  20. Ts'o, D. Y., Roe, A. W. & Gilbert, C. D. A hierarchy of the functional organization for color, form and disparity in primate visual area V2. Vision Res. 41, 1333–1349 (2001).

    CAS  PubMed  Article  Google Scholar 

  21. Backus, B. T., Fleet, D. J., Parker, A. J. & Heeger, D. J. Human cortical activity correlates with stereoscopic depth perception. J. Neurophysiol. 86, 2054–2068 (2001).

    CAS  PubMed  Article  Google Scholar 

  22. Tsao, D. Y. et al. Stereopsis activates V3A and caudal intraparietal areas in macaques and humans. Neuron 39, 555–568 (2003).

    CAS  PubMed  Article  Google Scholar 

  23. Cumming, B. G. & Parker, A. J. Binocular neurons in V1 of awake monkeys are selective for absolute, not relative, disparity. J. Neurosci. 19, 5602–5618 (1999). Establishes that V1 neurons code absolute disparity and identified the need to search elsewhere for neurons that code relative disparity.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. Rashbass, C. & Westheimer, G. Independence of conjugate and disjunctive eye movements. J. Physiol. 159, 361–364 (1961).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Westheimer, G. Co-operative neural processes involved in stereoscopic acuity. Exp. Brain Res. 36, 585–597 (1979).

    CAS  PubMed  Article  Google Scholar 

  26. Regan, D., Erkelens, C. J. & Collewijn, H. Necessary conditions for the perception of motion in depth. Invest. Ophthalmol. Vis. Sci. 27, 584–597 (1986).

    CAS  PubMed  Google Scholar 

  27. Erkelens, C. J. & Collewijn, H. Stereopsis, vergence and motion perception during dichoptic vision of moving random-dot stereograms. Experientia 40, 1300–1301 (1984).

    Google Scholar 

  28. Erkelens, C. J. & Collewijn, H. Eye-movements and stereopsis during dichoptic viewing of moving random-dot stereograms. Vision Res. 25, 1689–1700 (1985).

    CAS  PubMed  Article  Google Scholar 

  29. Erkelens, C. J. & Collewijn, H. Motion perception during dichoptic viewing of moving random-dot stereograms. Vision Res. 25, 583–588 (1985).

    CAS  PubMed  Article  Google Scholar 

  30. Erkelens, C. J. & Collewijn, H. Eye-movements in relation to loss and regaining of fusion of disjunctively moving random-dot stereograms. Hum. Neurobiol. 4, 181–188 (1985).

    CAS  PubMed  Google Scholar 

  31. Thomas, O. M., Cumming, B. G. & Parker, A. J. A specialization for relative disparity in V2. Nature Neurosci. 5, 472–478 (2002). Discovers sensitivity for relative disparity in V2, and proposes a model for the transformation from absolute to relative disparity.

    CAS  PubMed  Article  Google Scholar 

  32. Bredfeldt, C. E. & Cumming, B. G. A simple account of cyclopean edge responses in macaque V2. J. Neurosci. 26, 7581–7596 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. Zhou, H., Friedman, H. S. & von der Heydt, R. Coding of border ownership in monkey visual cortex. J. Neurosci. 20, 6594–6611 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. von der Heydt, R., Zhou, H. & Friedman, H. S. Representation of stereoscopic edges in monkey visual cortex. Vision Res. 40, 1955–1967 (2000).

    CAS  PubMed  Article  Google Scholar 

  35. Cowey, A. & Wilkinson, F. The role of the corpus-callosum and extra striate visual areas in stereoacuity in macaque monkeys. Neuropsychologia 29, 465–479 (1991).

    CAS  PubMed  Article  Google Scholar 

  36. Janssen, P., Vogels, R. & Orban, G. A. Three-dimensional shape coding in inferior temporal cortex. Neuron 27, 385–397 (2000). Breaks new ground by identifying a region of inferior temporal cortex responsible for the analysis of three-dimensional shape from stereoscopic cues.

    CAS  PubMed  Article  Google Scholar 

  37. Neri, P., Bridge, H. & Heeger, D. J. Stereoscopic processing of absolute and relative disparity in human visual cortex. J. Neurophysiol. 92, 1880–1891 (2004). This ingenious paper made a clear quantitative justification for a division of stereoscopic depth functions between the dorsal and ventral streams on the basis of human fMRI results.

    PubMed  Article  Google Scholar 

  38. Umeda, K., Tanabe, S. & Fujita, I. Relative-disparity-based coding of stereoscopic depth in V4. Soc. Neurosci. Abstr. 865.8 (2004).

  39. Nguyenkim, J. D. & DeAngelis, G. C. Disparity-based coding of three-dimensional surface orientation by macaque middle temporal neurons. J. Neurosci. 23, 7117–7128 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. Uka, T. & DeAngelis, G. C. Linking neural representation to function in stereoscopic depth perception: roles of the middle temporal area in coarse versus fine disparity discrimination. J. Neurosci. 26, 6791–6802 (2006). A careful and incisive analysis of the role of single neurons in stereo depth perception that demonstrates the task-specific role of cortical area V5/MT.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Bradley, D. C., Qian, N. & Andersen, R. A. Integration of motion and stereopsis in middle temporal cortical area of macaques. Nature 373, 609–611 (1995).

    CAS  PubMed  Article  Google Scholar 

  42. Bradley, D. C., Chang, G. C. & Andersen, R. A. Encoding of three-dimensional structure-from-motion by primate area MT neurons. Nature 392, 714–717 (1998).

    CAS  PubMed  Article  Google Scholar 

  43. Dodd, J. V., Krug, K., Cumming, B. G. & Parker, A. J. Perceptually bistable three-dimensional figures evoke high choice probabilities in cortical area. J. Neurosci. 21, 4809–4821 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. Parker, A. J., Krug, K. & Cumming, B. G. Neuronal activity and its links with the perception of multi-stable figures. Philos. Trans. R. Soc. Lond. B Biol. Sci. 357, 1053–1062 (2002).

    PubMed  PubMed Central  Article  Google Scholar 

  45. Prince, S. J. D., Pointon, A. D., Cumming, B. G. & Parker, A. J. The precision of single neuron responses in cortical area V1 during stereoscopic depth judgments. J. Neurosci. 20, 3387–3400 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. Read, J. C. & Eagle, R. A. Reversed stereo and motion direction with anti-correlated stimuli. Vision Res. 40, 3345–3358 (2000).

    CAS  PubMed  Article  Google Scholar 

  47. Julesz, B. Foundations of Cyclopean Perception (Univ. Chicago Press, Chicago, 1971).

    Google Scholar 

  48. Cumming, B. G., Shapiro, S. E. & Parker, A. J. Disparity detection in anticorrelated stereograms. Perception 27, 1367–1377 (1998).

    CAS  PubMed  Article  Google Scholar 

  49. Cogan, A. I., Kontsevich, L. L., Lomakin, A. J., Halpern, D. L. & Blake, R. Binocular disparity processing with opposite-contrast stimuli. Perception 24, 33–47 (1995).

    CAS  PubMed  Article  Google Scholar 

  50. Cogan, A. I., Lomakin, A. J. & Rossi, A. F. Depth in anticorrelated stereograms — effects of spatial density and interocular delay. Vision Res. 33, 1959–1975 (1993).

    CAS  PubMed  Article  Google Scholar 

  51. Cumming, B. G. & Parker, A. J. Responses of primary visual cortical neurons to binocular disparity without depth perception. Nature 389, 280–283 (1997). Demonstrates that disparity-selective V1 neurons respond systematically to the binocular disparity of anticorrelated random-dot stereograms, despite the fact that viewing the same visual patterns does not generate the perception of stereoscopic depth.

    CAS  PubMed  Article  Google Scholar 

  52. Takemura, A., Inoue, Y., Kawano, K., Quaia, C. & Miles, F. A. Single-unit activity in cortical area MST associated with disparity-vergence eye movements: evidence for population coding. J. Neurophysiol. 85, 2245–2266 (2001). An elegant analysis that demonstrates that the firing within the neuronal population of MST is sufficient to account for the vergence eye movement responses to binocularly correlated and anticorrelated visual patterns.

    CAS  PubMed  Article  Google Scholar 

  53. Krug, K., Cumming, B. G. & Parker, A. J. Comparing perceptual signals of single V5/MT neurons in two binocular depth tasks. J. Neurophysiol. 92, 1586–1596 (2004).

    CAS  PubMed  Article  Google Scholar 

  54. Neri, P., Parker, A. J. & Blakemore, C. Probing the human stereoscopic system with reverse correlation. Nature 401, 695–698 (1999).

    CAS  PubMed  Article  Google Scholar 

  55. Fujita, I., Yasuoka, S. & Tanabe, S. Dissociation of stereoscopic depth judgment from perception of a plane-in-depth: implication for neural mechanism of stereopsis. Soc. Neurosci. Abstr. 583.1 (2005).

  56. Doi, T., Tanabe, S. & Fujita, I. Computations underlying fine and coarse depth discrimination in human stereopsis. Soc. Neurosci. Abstr. 801.5 (2006).

  57. Masson, G. S., Busettini, C. & Miles, F. A. Vergence eye movements in response to binocular disparity without depth perception. Nature 389, 283–286 (1997).

    CAS  PubMed  Article  Google Scholar 

  58. Ohzawa, I., DeAngelis, G. C. & Freeman, R. D. Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. Science 249, 1037–1041 (1990). A highly influential and successful model of the responses of disparity-selective neurons in the primary visual cortex.

    CAS  PubMed  Article  Google Scholar 

  59. Read, J. C. A., Parker, A. J. & Cumming, B. G. A simple model accounts for the response of disparity-tuned V1 neurons to anticorrelated images. Vis. Neurosci. 19, 735–753 (2002).

    PubMed  Article  Google Scholar 

  60. Read, J. C. A. & Cumming, B. G. Testing quantitative models of binocular disparity selectivity in primary visual cortex. J. Neurophysiol. 90, 2795–2817 (2003).

    PubMed  Article  Google Scholar 

  61. Allouni, A. K., Thomas, O. M., Solomon, S. G., Krug, K. & Parker, A. J. Local and global binocular matching in V2 of the awake macaque. Soc. Neurosci. Abstr. 510.8 (2005).

  62. Janssen, P., Vogels, R., Liu, Y. & Orban, G. A. At least at the level of inferior temporal cortex, the stereo correspondence problem is solved. Neuron 37, 693–701 (2003). An important finding that establishes one cortical site where the response to binocular anticorrelation is eliminated.

    CAS  Article  PubMed  Google Scholar 

  63. Akao, T., Mustari, M. J., Fukushima, J., Kurkin, S. & Fukushima, K. Discharge characteristics of pursuit neurons in MST during vergence eye movements. J. Neurophysiol. 93, 2415–2434 (2005).

    PubMed  Article  Google Scholar 

  64. Goodale, M. A. & Milner, A. D. Separate visual pathways for perception and action. Trends Neurosci. 15, 20–25 (1992).

    CAS  Article  PubMed  Google Scholar 

  65. Mitchison, G. Planarity and segmentation in stereo matching. Perception 17, 753–782 (1987).

    Article  Google Scholar 

  66. Cumming, B. G. & Parker, A. J. Local disparity not perceived depth is signaled by binocular neurons in cortical area V1 of the macaque. J. Neurosci. 20, 4758–4767 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  67. Bakin, J. S., Nakayama, K. & Gilbert, C. D. Visual responses in monkey areas V1 and V2 to three-dimensional surface configurations. J. Neurosci. 20, 8188–8198 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  68. Orban, G. A., Janssen, P. & Vogels, R. Extracting 3D structure from disparity. Trends Neurosci. 29, 466–473 (2006).

    CAS  PubMed  Article  Google Scholar 

  69. Upadhyay, U. D., Page, W. K. & Duffy, C. J. MST responses to pursuit across optic flow with motion parallax. J. Neurophysiol. 84, 818–826 (2000).

    CAS  PubMed  Article  Google Scholar 

  70. Roy, J. P. & Wurtz, R. H. The role of disparity-sensitive cortical-neurons in signaling the direction of self-motion. Nature 348, 160–162 (1990).

    CAS  PubMed  Article  Google Scholar 

  71. Roy, J. P., Komatsu, H. & Wurtz, R. H. Disparity sensitivity of neurons in monkey extrastriate area MST. J. Neurosci. 12, 2478–2492 (1992).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  72. Uka, T., Tanabe, S., Watanabe, M. & Fujita, I. Neural correlates of fine depth discrimination in monkey inferior temporal cortex. J. Neurosci. 25, 10796–10802 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  73. Janssen, P., Vogels, R., Liu, Y. & Orban, G. A. Macaque inferior temporal neurons are selective for three-dimensional boundaries and surfaces. J. Neurosci. 21, 9419–9429 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. Tsutsui, K. I., Jiang, M., Yara, K., Sakata, H. & Taira, M. Integration of perspective and disparity cues in surface- orientation-selective neurons of area CIP. J. Neurophysiol. 86, 2856–2867 (2001).

    CAS  PubMed  Article  Google Scholar 

  75. Tanaka, H., Uka, T., Yoshiyama, K., Kato, M. & Fujita, I. Processing of shape defined by disparity in monkey inferior temporal cortex. J. Neurophysiol. 85, 735–744 (2001).

    CAS  PubMed  Article  Google Scholar 

  76. Liu, Y., Vogels, R. & Orban, G. A. Convergence of depth from texture and depth from disparity in macaque inferior temporal cortex. J. Neurosci. 24, 3795–3800 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  77. Pouget, A., Dayan, P. & Zemel, R. S. Inference and computation with population codes. Ann. Rev. Neurosci. 26, 381–410 (2003).

    CAS  PubMed  Article  Google Scholar 

  78. Pouget, A., Deneve, S. & Duhamel, J. R. A computational perspective on the neural basis of multisensory spatial representations. Nature Rev. Neurosci. 3, 741–747 (2002).

    CAS  Article  Google Scholar 

  79. Deneve, S., Latham, P. E. & Pouget, A. Reading population codes: a neural implementation of ideal observers. Nature Neurosci. 2, 740–745 (1999).

    CAS  PubMed  Article  Google Scholar 

  80. Nienborg, H. & Cumming, B. G. Macaque V2 neurons, but not V1 neurons, show choice-related activity. J. Neurosci. 26, 9567–9578 (2006). A meticulously conducted study that demonstrates a significant involvement of single V2 neurons in judgements about binocular depth.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  81. Uka, T. & DeAngelis, G. C. Contribution of area MT to stereoscopic depth perception: choice-related response modulations reflect task strategy. Neuron 42, 297–310 (2004).

    CAS  PubMed  Article  Google Scholar 

  82. Parker, A. J. & Newsome, W. T. Sense and the single neuron: probing the physiology of perception. Ann. Rev. Neurosci. 21, 227–277 (1998).

    CAS  PubMed  Article  Google Scholar 

  83. Salzman, C. D., Britten, K. H. & Newsome, W. T. Cortical microstimulation influences perceptual judgments of motion direction. Nature 346, 174–177 (1990).

    CAS  PubMed  Article  Google Scholar 

  84. DeAngelis, G. C., Cumming, B. G. & Newsome, W. T. Cortical area MT and the perception of stereoscopic depth. Nature 394, 677–680 (1998).

    CAS  PubMed  Article  Google Scholar 

  85. Krug, K., Cumming, B. G. & Parker, A. J. Microstimulation alters the perceptual appearance of a rotating cylinder in the awake macaque. Soc. Neurosci. Abstr. 621.2 (2005).

  86. Grunewald, A., Bradley, D. C. & Andersen, R. A. Neural correlates of structure-from-motion perception in macaque V1 and MT. J. Neurosci. 22, 6195–6207 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  87. Hegde, J. & Van Essen, D. C. Stimulus dependence of disparity coding in primate visual area V4. J. Neurophysiol. 93, 620–626 (2005).

    PubMed  Article  Google Scholar 

  88. Sakata, H., Taira, M., Kusunoki, M., Murata, A. & Tanaka, Y. The TINS lecture. The parietal association cortex in depth perception and visual control of hand action. Trends Neurosci. 20, 350–357 (1997).

    CAS  PubMed  Article  Google Scholar 

  89. Galletti, C., Fattori, P., Gamberini, M. & Kutz, D. F. The cortical visual area V6: brain location and visual topography. Eur. J. Neurosci. 11, 3922–3936 (1999).

    CAS  PubMed  Article  Google Scholar 

  90. Galletti, C., Fattori, P., Kutz, D. F. & Gamberini, M. Brain location and visual topography of cortical area V6A in the macaque monkey. Eur. J. Neurosci. 11, 575–582 (1999).

    CAS  PubMed  Article  Google Scholar 

  91. Shipp, S., Blanton, M. & Zeki, S. A visuo-somatomotor pathway through superior parietal cortex in the macaque monkey: cortical connections of areas V6 and V6A. Eur. J. Neurosci. 10, 3171–3193 (1998).

    CAS  PubMed  Article  Google Scholar 

  92. Rosa, M. G. P. & Tweedale, R. The dorsomedial visual areas in new world and old world monkeys: homology and function. Eur. J. Neurosci. 13, 421–427 (2001).

    CAS  PubMed  Article  Google Scholar 

  93. Marshall, M. P. Strabismus care: past, present and future. Documenta Ophthalmologica V34, 301–315 (1973).

    Google Scholar 

  94. Hubel, D. H. & Wiesel, T. N. Functional architecture of macaque monkey visual-cortex. Proc. R. Soc. Lond. B Biol. Sci. 198, 1–59 (1977).

    CAS  PubMed  Article  Google Scholar 

  95. Hubel, D. H. & Wiesel, T. N. Period of susceptibility to physiological effects of unilateral eye closure in kittens. J. Physiol. 206, 419–436 (1970).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. Levi, D. M. Visual processing in amblyopia: human studies. Strabismus 14, 11–19 (2006).

    PubMed  Article  Google Scholar 

  97. Kiorpes, L. Visual processing in amblyopia: animal studies. Strabismus 14, 3–10 (2006).

    PubMed  Article  Google Scholar 

  98. Davis, A. P. et al. Electrophysiological and psychophysical differences between early- and late-onset strabismic amblyopia. Invest. Ophthalmol. Vis. Sci. 44, 610–617 (2003).

    PubMed  Article  Google Scholar 

  99. Anderson, S. J. & Swettenham, J. B. Neuroimaging in human amblyopia. Strabismus 14, 21–35 (2006).

    PubMed  Article  Google Scholar 

  100. di Stefano, M. & Gargini, C. Cortical binocularity in convergent strabismus after section of the optic chiasm. Exp. Brain Res. 147, 64–70 (2002).

    PubMed  Article  Google Scholar 

  101. Harwerth, R. S., Smith, E. L., Crawford, M. L. J. & vonNoorden, G. K. Stereopsis and disparity vergence in monkeys with subnormal binocular vision. Vision Res. 37, 483–493 (1997).

    CAS  PubMed  Article  Google Scholar 

  102. Levi, D. M. & Polat, U. Neural plasticity in adults with amblyopia. Proc. Natl Acad. Sci. USA 93, 6830–6834 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  103. Levi, D. M., Polat, U. & Hu, Y. S. Improvement in vernier acuity in adults with amblyopia. Practice makes better. Invest. Ophthalmol. Vis. Sci. 38, 1493–1510 (1997).

    CAS  PubMed  Google Scholar 

  104. Sacks, O. L. Stereo Sue: why two eyes are better than one. The New Yorker 82, 64–93 (2006).

    Article  Google Scholar 

  105. Jaschinski, W., Konig, M., Schmidt, R. & Methling, D. Vergence dynamics and variability of fixation disparity in dyslexic children. Klin. Monatsbl. Augenheilkd. 221, 854–861 (2004).

    CAS  PubMed  Article  Google Scholar 

  106. Stein, J. F., Richardson, A. J. & Fowler, M. S. Monocular occlusion can improve binocular control and reading in dyslexics. Brain 123, 164–170 (2000).

    PubMed  Article  Google Scholar 

  107. Evans, B. J. W., Drasdo, N. & Richards, I. L. Dyslexia: the link with visual deficits. Ophthalmic Physiol. Opt. 16, 3–10 (1996).

    CAS  PubMed  Article  Google Scholar 

  108. Livingstone, M. S., Rosen, G. D., Drislane, F. W. & Galaburda, A. M. Physiological and anatomical evidence for a magnocellular defect in developmental dyslexia. Proc. Natl Acad. Sci. USA 88, 7943–7947 (1991).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  109. Silvanto, J., Cowey, A., Lavie, N. & Walsh, V. Striate cortex (V1) activity gates awareness of motion. Nature Neurosci. 8, 143–144 (2005).

    CAS  PubMed  Article  Google Scholar 

  110. Driver, J. & Mattingley, J. B. Parietal neglect and visual awareness. Nature Neurosci. 1, 17–22 (1998).

    CAS  PubMed  Article  Google Scholar 

  111. Rees, G., Kreiman, G. & Koch, C. Neural correlates of consciousness in humans. Nature Rev. Neurosci. 3, 261–270 (2002).

    CAS  Article  Google Scholar 

  112. Halligan, P. W. & Marshall, J. C. Left neglect for near but not far space in man. Nature 350, 498–500 (1991).

    CAS  PubMed  Article  Google Scholar 

  113. Nishihara, H. K. Practical real-time imaging stereo matcher. Opt. Eng. 23, 536–545 (1984).

    Article  Google Scholar 

  114. Adelson, E. H. & Bergen, J. R. Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2, 284–299 (1985).

    CAS  Article  Google Scholar 

  115. Prince, S. J. D., Pointon, A. D., Cumming, B. G. & Parker, A. J. Quantitative analysis of the responses of V1 neurons to horizontal disparity in dynamic random-dot stereograms. J. Neurophysiol. 87, 191–208 (2002).

    CAS  PubMed  Article  Google Scholar 

  116. Zigmond, M. J., Bloom, F. E., Landis, S. C., Roberts, J. L. & Squire, L. R. Fundamental Neuroscience (Academic, San Diego, 1999).

    Google Scholar 

Download references

Acknowledgements

This work was supported by research grants from the Wellcome Trust and the James S. McDonnell Foundation. The author holds a Royal Society Wolfson Research Merit Award. I should like to thank H. Bridge, B. Cumming, I. Fujita, A. Glennerster, K. Krug and L. Minini for their time and patience in providing comments on earlier drafts of this article. I would also like to thank B. Cumming, G. DeAngelis, I. Fujita and A. Takemura for generously providing access to unpublished data values in the preparation of Figure 1 and elsewhere. I am grateful to A.T. for kindly recalculating the ratio of anticorrelated to correlated responses for cortical area MST from the data described in their paper52. The section of the macaque monkey brain shown in Figure 4 was prepared by K. Krug, Dept. Physiology, Anatomy & Genetics, Oxford, UK.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Parker's homepage

Glossary

Tuning function

A set of measurements that summarize the selectivity of a sensory neuron for some particular aspect of the stimulus, such as orientation, visual motion or binocular disparity.

Disparity selectivity

The selectivity of a visual neuron for binocular disparity, usually summarized in the form of a tuning function.

Magnocellular pathway

Distinct pathway from retina to cortex that has synaptic relays in the lateral geniculate nucleus, which arrive in layers that consist of large cell bodies. Magnocellular neurons do not transmit colour information and have fast responses.

Parvocellular pathway

Distinct pathway from retina to cortex that has synaptic relays in the lateral geniculate nucleus, which arrive in layers that consist of small cell bodies. Parvocellular neurons carry information about colour and fine spatial detail, and have slower responses.

Stereopsis

The sense of depth that is generated when the brain combines information from the left and right eyes.

Coarse stereopsis

Binocular depth perception outside the range for stereoscopic acuity, processing disparities greater than 0.3 degrees in the human fovea.

Fine stereopsis

Binocular depth perception responsible for stereoscopic acuity and normally taken as processing disparities within the range of 0.3 degrees in the human fovea. This range is larger at greater visual eccentricities.

Single-unit recording

An experimental method of studying the nervous system in which the electrical impulses from single nerve cells are measured and analysed.

Visual eccentricity

The location of an object in visual space with respect to the line of sight from the eye, usually measured in degrees of angle between the line of sight and a line projecting from the eye to the object. It also refers to the location of a visual receptive field projected out into visual space.

Fovea

The most central region of the retina, which contains a high concentration of cone photoreceptors and forms a slight depression in the retinal surface. It projects into visual space to a region about 5 degrees across, equivalent to an object 8.7cm in diameter viewed from 1m away.

Extrastriate cortex

A belt of visually responsive areas of cortex surrounding the primary visual cortex.

Random-dot stereograms

A pair of images, one for each eye, composed of picture elements that are randomly either black or white. When combined, stereopsis reveals a previously hidden figure, which the brain detects by matching up the picture elements presented independently to each eye.

Correlation detection

A measurement that provides a simple summary of the similarity between two sets of data. In this context, the two data sets are the neural signals arising from small patches of retina at closely similar locations in the left and right eyes.

Saccadic eye movement

The transfer of gaze from one location to another by rapid, coordinated movement of the eyes.

Simple cell

Neuron of the primary visual cortex, the visual receptive field of which is orientation selective and can be divided into spatially distinct regions that are mutually antagonistic and in which light either enhances or suppresses action potentials from the neuron.

Complex cell

Neuron of the primary visual cortex, the visual receptive field of which is orientation selective but, unlike simple cells, cannot be divided into spatially distinct regions.

Energy model

A computational model of visual neuronal processing that consists of a quadrature pair of linear filters followed by the nonlinear operation of squaring and combination across those filters.

Even-symmetric function

A mathematical function for which F(−x) = F(x), where x>0.

Odd-symmetric function

A mathematical function for which F(−x) = −F(x), where x>0.

Quadrature pair

Pair of functions which have an identical Fourier amplitude spectrum in the frequency domain, but have a Fourier phase spectrum that differs by 90 degrees at all frequencies.

Near–far discrimination task

Visual task that requires the individual to judge whether a visual feature (such as a cluster of dots) is nearer or further than the distance to the visual fixation point.

Squint

A human clinical condition, manifest when a person tries to look at a target with both eyes, but the line of sight of one eye consistently deviates from the target while the other eye is successfully aligned.

Amblyopia

Poor vision through an eye that is otherwise physically healthy, but has faulty connections with the rest of the brain; there is disrupted transmission of the visual image, most often due to adverse events during a developmental critical period. It affects 2–5% of the global population.

Esotropia

Form of squint in which the deviating eye turns inwards, towards the nose (in exotropia the eye turns outwards, away from the nose).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Parker, A. Binocular depth perception and the cerebral cortex. Nat Rev Neurosci 8, 379–391 (2007). https://doi.org/10.1038/nrn2131

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2131

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing