Gene–environment interactions in psychiatry: joining forces with neuroscience

Abstract

Gene–environment interaction research in psychiatry is new, and is a natural ally of neuroscience. Mental disorders have known environmental causes, but there is heterogeneity in the response to each causal factor, which gene–environment findings attribute to genetic differences at the DNA sequence level. Such findings come from epidemiology, an ideal branch of science for showing that gene–environment interactions exist in nature and affect a significant fraction of disease cases. The complementary discipline of epidemiology, experimental neuroscience, fuels gene–environment hypotheses and investigates underlying neural mechanisms. This article discusses opportunities and challenges in the collaboration between psychiatry, epidemiology and neuroscience in studying gene–environment interactions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Approaches to psychiatric genetics research.
Figure 2: Integrating neuroscience and gene–environment interaction research.
Figure 3: Exposure to adverse rearing, genotype and adrenocorticotropin hormone (ACTH) levels.

References

  1. 1

    Caspi, A. et al. Role of genotype in the cycle of violence in maltreated children. Science 297, 851–854 (2002).

    CAS  PubMed  Google Scholar 

  2. 2

    Levinson, D. F. The genetics of depression. Biol. Psychiatry 18 Nov 2005 (doi: 10.1016/j.biopsych.2005.08.024).

  3. 3

    Owen, M. J., Williams, N. H. & O'Donovan, M. C. The molecular genetics of schizophrenia: new findings promise new insights. Mol. Psychiatry 9, 14–27 (2004).

    CAS  PubMed  Google Scholar 

  4. 4

    Goldman, D., Orozsi, G. & Ducci, F. The genetics of addictions: uncovering the genes. Nature Rev. Genet. 6, 521–532 (2005).

    CAS  PubMed  Google Scholar 

  5. 5

    Insel, T. & Collins, F. S. Psychiatry in the genomics era. Am. J. Psychiatry 160, 616–620 (2003).

    PubMed  Google Scholar 

  6. 6

    Hamer, D. Rethinking behavior genetics. Science 298, 71–72 (2002).

    CAS  PubMed  Google Scholar 

  7. 7

    Gottesman, I. I. & Gould, T. D. The endophenotype concept in psychiatry: etymology and strategic intentions. Am. J. Psychiatry 160, 636–645 (2003).

    PubMed  Google Scholar 

  8. 8

    Moffitt, T. E., Caspi, A. & Rutter, M. Strategy for investigating interactions between measured genes and measured environments. Arch. Gen. Psychiatry 62, 473–481 (2005).

    CAS  PubMed  Google Scholar 

  9. 9

    Moffitt, T. E. The new look of behavioral genetics in developmental psychopathology. Psychol. Bull. 131, 533–554 (2005).

    Google Scholar 

  10. 10

    Rutter, M. Environmentally mediated risks for psychopathology: research strategies and findings. J. Am. Acad. Child. Adolesc. Psychiatry 44, 3–18 (2005).

    PubMed  Google Scholar 

  11. 11

    Heath, A. C. & Nelson, E. C. Effects of the interaction between genotype and environment: research into the genetic epidemiology of alcohol dependence. Alcohol Res. Health 26, 193–201 (2002).

    PubMed  Google Scholar 

  12. 12

    Loeber, R. & Farrington, D. P. Serious and Violent Juvenile Offenders: Risk Factors and Successful Interventions (Sage, Thousand Oaks, California, 1998).

    Google Scholar 

  13. 13

    Kendler, K. S., Gardner, C. O. & Prescott, C. A. Toward a comprehensive developmental model for major depression in women. Am. J. Psychiatry 159, 1133–1145 (2002).

    PubMed  Google Scholar 

  14. 14

    Tsuang, M. T., Stone, W. S. & Faraone, S. V. Genes, environment and schizophrenia. Br. J. Psychiatry 178, S18–S24 (2001).

    Google Scholar 

  15. 15

    van Os, J., Krabbendam, L., Myin-Gerneys, L. & Delespaul, P. The schizophrenia environment. Curr. Opin. Psychiatry 18, 141–145 (2005).

    PubMed  Google Scholar 

  16. 16

    Plomin, R., DeFries, J. C., McClearn, G. E. & McGuffin, P. Behavioral Genetics (W. H. Freeman, New York, 2001).

    Google Scholar 

  17. 17

    King, M. -C., Marks, J. H. & Mandell, J. B. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science 302, 643–646 (2003).

    CAS  Google Scholar 

  18. 18

    O'Rahilly, S., Barroso, I. & Wareham, N. J. Genetic factors in type 2 diabetes: the end of the beginning? Science 307, 370–373 (2005).

    CAS  PubMed  Google Scholar 

  19. 19

    Corella, D. & Ordovas, J. M. Single nucleotide polymorphisms that influence lipid metabolism: interaction with dietry factors. Annu. Rev. Nutr. 25, 341–390 (2005).

    CAS  PubMed  Google Scholar 

  20. 20

    Smith, M. W. et al. Contrasting genetic influence of CCR2 and CCR5 variants on HIV-1 infection and disease progression. Science 277, 959–965 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Kotb, M. et al. An immunogenetic and molecular basis for differences in outcomes of invasive group A streptococcal infections. Nature Med. 8, 1398–1404 (2002).

    CAS  PubMed  Google Scholar 

  22. 22

    Kleeberger, S. R. & Peden, D. Gene-environment interactions in asthma and other respiratory diseases. Annu. Rev. Med. 56, 383–400 (2005).

    CAS  PubMed  Google Scholar 

  23. 23

    Caspi, A. et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301, 386–899 (2003).

    CAS  PubMed  Google Scholar 

  24. 24

    Caspi, A. et al. Moderation of the effect of adolescent-onset cannabis use on adult psychosis by a functional polymorphism in the COMT gene: longitudinal evidence of a gene X environment interaction. Biol. Psychiatry 57, 1117–1127 (2005).

    CAS  PubMed  Google Scholar 

  25. 25

    Brookes, K. -J. et al. A common haplotype of the dopamine transporter gene associated with attention-deficit/hyperactivity disorder and interacting with maternal use of alcohol during pregnancy. Arch. Gen. Psychiatry 63, 74–81 (2005).

    Google Scholar 

  26. 26

    Thapar, A. et al. Catechol-O-methyltransferase gene variant and birth weight predict early-onset antisocial behavior in children with attention-deficit/hyperactivity disorder. Arch. Gen. Psychiatry. 62, 1275–1278 (2005).

    CAS  PubMed  Google Scholar 

  27. 27

    Koenen, K. C. et al. Polymorphisms in FKBP5 are associated with peri-traumatic dissociation in medically injured children. Mol. Psychiatry 10, 1058–1059 (2005).

    CAS  PubMed  Google Scholar 

  28. 28

    Khouri, M. J., Millikan, R., Little, J. & Gwinn, M. The emergence of epidemiology in the genomics age. Int. J. Epidemiol. 33, 936–944 (2004).

    Google Scholar 

  29. 29

    Murphy, D. L. et al. Genetic perspectives on the serotonin transporter. Brain. Res. Bull. 56, 487–494 (2001).

    CAS  PubMed  Google Scholar 

  30. 30

    Bennett, A. J. et al. Early experience and serotonin transporter gene variation interact to influence primate CNS function. Mol. Psychiatry 7, 188–122 (2002).

    Google Scholar 

  31. 31

    Hariri, A. R. et al. Serotonin transporter genetic variation and the response of the human amygdala. Science 297, 400–404 (2002).

    CAS  PubMed  Google Scholar 

  32. 32

    Moffitt, T. E., Caspi, A. & Rutter, M. Measured gene-environment interactions in psychopathology: concepts, research strategies and implications for research, intervention and public understanding of genetics. Persp. Psychol. Sci. 1, 5–27 (2006).

    Google Scholar 

  33. 33

    Hunter, D. J. Gene-environment interactions in human diseases. Nature Rev. Genet. 6, 287–298 (2005).

    CAS  PubMed  Google Scholar 

  34. 34

    Foley, D. L. et al. Childhood adversity, monoamine oxidase A genotype, and risk for conduct disorder. Arch. Gen. Psychiatry 61, 738–744 (2004).

    CAS  PubMed  Google Scholar 

  35. 35

    Haberstick, B. C. et al. Monoamine oxidase A (MAOA) and antisocial behaviors in the presence of childhood and adolescent maltreatment. Am. J. Med. Genet 135B, 59–64 (2005).

    PubMed  Google Scholar 

  36. 36

    Kim-Cohen, J. et al. MAOA, early adversity and gene-environment interaction predicting children's mental health: new evidence and a meta-analysis. Mol. Psychiatry (in the press).

  37. 37

    Nilsson, K. W. et al. Role of monoamine oxidase A genotype and psychosocial factors in male adolescent criminal activity. Biol. Psychiatry 59, 121–127 (2005).

    PubMed  Google Scholar 

  38. 38

    Young, S. E. et al. Interaction between MAO-A genotype and maltreatment in the risk for conduct disorder: failure to confirm in adolescent patients. Am. J. Psychiatry 163, 1019–1025 (2006).

    PubMed  Google Scholar 

  39. 39

    Eley, T. C. et al. Gene-environment interaction analysis of serotonin system markers with adolescent depression. Mol. Psychiatry 9, 908–915 (2004).

    CAS  PubMed  Google Scholar 

  40. 40

    Grabe, H. J. et al. Mental and physical distress is modulated by a polymorphism in the 5-HT transporter gene interacting with social stressors and chronic disease burden. Mol. Psychiatry 10, 220–224 (2005).

    CAS  PubMed  Google Scholar 

  41. 41

    Jacobs, N. et al. Stress-related negative affectivity and genetically reduced 5-HTT function: evidence for synergism in shaping risk for depression. Arch. Gen. Psychiatry (in the press).

  42. 42

    Kaufman, J. et al. Social support and serotonin transporter gene moderate depression in maltreated children. Proc. Natl Acad. Sci. 101, 17316–17321 (2004).

    CAS  PubMed  Google Scholar 

  43. 43

    Kaufman, J. et al. BDNF-5HTTLPR gene interactions and environmental modifiers of depression in children. Biol. Psychiatry 59, 673–680 (2006).

    CAS  PubMed  Google Scholar 

  44. 44

    Kendler, K. S., Kuhn, J. W., Vittum, J., Prescott, C. A. & Riley, B. The interaction of stressful life events and a serotonin transporter polymorphism in the prediction of episodes of major depression: a replication. Arch. Gen. Psychiatry 62, 529–535 (2005).

    CAS  PubMed  Google Scholar 

  45. 45

    Wilhelm, K. A. et al. Life events, first depression onset and the serotonin transporter gene. Br. J. Psychiatry 188, 210–215 (2006).

    PubMed  Google Scholar 

  46. 46

    Zalsman, G. et al. A triallelic serotonin transporter gene promoter polymorphism. Am. J. Psychiatry (in the press).

  47. 47

    Mandelli, L. et al. Interaction between serotonin transporter gene, catechol-O-methyltransferase gene and stressful like events in mood disorders. Int. J. Neuropsychopharmacol. 7 Jun 2006 (doi:10.1017/51461145706006882).

  48. 48

    Gillespie, N. A., Whitfield, J. B., Williams, B., Heath, A. C. & Martin, N. G. The relationship between stressful life events, the serotonin transporter (5-HTTLPR) genotype and major depression. Psychol. Med. 35, 101–111 (2005).

    PubMed  Google Scholar 

  49. 49

    Surtees, P. G. et al. Social adversity, the serotonin transporter (5HTTLPR) polymorphism and major depressive disorder. Biol. Psychiatry 59, 224–229 (2006).

    CAS  PubMed  Google Scholar 

  50. 50

    Merikangas, K. & Risch, N. Will the genomics revolution revolutionise psychiatry? Am. J. Psychiatry 160, 625–635 (2003).

    PubMed  Google Scholar 

  51. 51

    Ansorge, M. S., Zhou, M., Lira, A., Hen, R. & Gingrich, J. A. Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice. Science 306, 879–881 (2004).

    CAS  PubMed  Google Scholar 

  52. 52

    Fox, N. et al. Evidence for a gene-environment interaction in predicting behavioral inhibition in middle childhood. Psychol. Sci. 16, 921–926 (2005).

    PubMed  Google Scholar 

  53. 53

    Hariri, A. R. et al. A susceptibility gene for affective disorders and the response of the human amygdala. Arch. Gen. Psychiatry 62, 146–152 (2005).

    CAS  PubMed  Google Scholar 

  54. 54

    Pezawas, L. et al. 5-HTTLPR polymorphism impacts human cingulate-amydala interactions: A genetic susceptibility mechanism for depression. Nature Neurosci. 8, 828–834 (2005).

    CAS  PubMed  Google Scholar 

  55. 55

    Cases, O. et al. Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science 268, 1763–1766 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Brunner, H. G., Nelen, M., Breakefield, X. O., Ropers, H. H. & Vanoost, B. A. Abnormal-behavior associated with a point mutation in the structural gene for monoamine oxidase-A. Science 262, 578–580 (1993).

    CAS  PubMed  Google Scholar 

  57. 57

    Meyer-Lindenberg, A. et al. Neural mechanisms of genetic risk for impulsivity and violence in humans. Proc. Natl Acad. Sci. 103, 6269–6274 (2006).

    CAS  PubMed  Google Scholar 

  58. 58

    Bearden, C., Reus, V. I. & Freimer, N. B. Why genetic investigation of psychiatric disorders is so difficult. Curr. Opin. Genet. Dev. 14, 280–286 (2004).

    CAS  PubMed  Google Scholar 

  59. 59

    Colhoun, H. M., McKeigue, P. M. & Smith, G. D. Problems of reporting genetic associations with complex outcomes. Lancet 361, 865–872 (2003).

    PubMed  Google Scholar 

  60. 60

    Lohmueller, K. E., Pearce, C. L., Pike, M., Lander, E. S. & Hirschhorn, J. N. Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nature Genet. 33, 177–182 (2003).

    CAS  PubMed  Google Scholar 

  61. 61

    Plomin, R. & Crabbe, J. DNA. Psychol. Bull. 126, 806–828 (2000).

    PubMed  Google Scholar 

  62. 62

    McClelland, G. H. & Judd, C. M. Statistical difficulties of detecting interactions and moderator effects. Psychol. Bull. 114, 376–390 (1993).

    CAS  PubMed  Google Scholar 

  63. 63

    Plomin, R. & Bergeman, C. S. The nature of nurture: genetic influence on 'environmental' measures. Behav. Brain. Sci. 14, 373–386 (1991).

    Google Scholar 

  64. 64

    Rutter, M., Moffitt, T. E. & Caspi, A. Gene-environment interplay and psychopathology: multiple varieties but real effects. J. Child. Psychol. Psychiatry 47, 226–261 (2006).

    PubMed  Google Scholar 

  65. 65

    Wong, M. Y., Day, N. E., Luan, J. A., Chan, K. P. & Wareham, N. J. The detection of gene-environment interaction for continuous traits: should we deal with measurment error by bigger studies or better measurement? Int. J. Epidemiol. 32, 51–57 (2003).

    CAS  PubMed  Google Scholar 

  66. 66

    Sullivan, P. F., Eaves, L. J., Kendler, K. S. & Neale, M. C. Genetic case-control association studies in neuropsychiatry. Arch. Gen. Psychiatry. 58, 1015–1024 (2001).

    CAS  PubMed  Google Scholar 

  67. 67

    Cornelis, M. C., El-Sohemy, A., Kabagambe, E. K. & Campos, H. Coffee, CYP1A2 genotype, and risk of myocardial infarction. JAMA 10, 1135–1141 (2006).

    Google Scholar 

  68. 68

    Cronbach, L. J. & Meehl, P. E. Construct validity in psychological tests. Psychol. Bull. 52, 281–302 (1955).

    CAS  PubMed  Google Scholar 

  69. 69

    Hariri, A. R. & Holmes, A. Genetics of emotional regulation: the role of the serotonin transporter in neural function. Trends Cogn. Sci. 10, 182–191 (2006).

    PubMed  Google Scholar 

  70. 70

    Leonardo, E. D. & Hen, R. Genetics of affective and anxiety disorders. Annu. Rev. Psychol. 57, 117–137 (2006).

    CAS  PubMed  Google Scholar 

  71. 71

    Crabbe, J. C. in Behavioral Genetics in the Postgenomic Era (eds Plomin, R., DeFries, J. C., Craig, I. W. & McGuffin, P.) 291–308 (American Psychological Association, Washington, 2003).

    Google Scholar 

  72. 72

    Flint, J. in Behavioral Genetics in the Postgenomic Era (eds Plomin, R., DeFries, J. C., Craig, I. W. & McGuffin, P.) 425–442 (American Psychological Association, Washington DC, 2003).

    Google Scholar 

  73. 73

    Cryan, J. & Holmes, A. The ascent of mouse: advances in modelling human depression and anxiety. Nature Rev. Drug Discov. 4, 775–790 (2005).

    CAS  Google Scholar 

  74. 74

    Carola, V., Frazzetto, G. & Gross, C. Identifying interactions between genes and early environment in the mouse. Genes Brain Behav. 5, 189–199 (2006).

    CAS  PubMed  Google Scholar 

  75. 75

    Holmes, A., Murphy, D. L. & Crawley, J. N. Abnormal behavioral phenotypes of serotonin transporter knockout mice: parallels with human anxiety and depression. Biol. Psychiatry 54, 953–959 (2003).

    CAS  PubMed  Google Scholar 

  76. 76

    Lipoldova, M. & Demant, P. Genetic susceptibility to infectious disease: lessons from mouse models of leishmaniasis. Nature Rev. Genet. 7, 294–305 (2006).

    CAS  PubMed  Google Scholar 

  77. 77

    Egan, M. F. et al. Effect of COMT Val108/158Met genotype on frontal lobe function and risk for schizophrenia. Proc. Natl Acad. Sci. 98, 6917–6922 (2001).

    CAS  PubMed  Google Scholar 

  78. 78

    Egan, M. F. et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112, 257–269 (2003).

    CAS  PubMed  Google Scholar 

  79. 79

    Hariri, A. R., Drabant, E. M. & Weinberger, D. R. Imaging genetics: perspectives from studies of genetically driven variation in serotonin function and corticolimbic affective processing. Biol. Psychiatry 59, 888–897 (2006).

    CAS  PubMed  Google Scholar 

  80. 80

    Heinz, A. et al. Amygdala-prefrontal coupling depends on a genetic variation of the serotonin transporter. Nature Neurosci. 8, 20–21 (2005).

    CAS  PubMed  Google Scholar 

  81. 81

    Fallgatter, A. J. et al. Allelic variation of serotonin transporter function modulates the brain electrical response for error processing. Neuropsychopharmacology 29, 1506–1511 (2004).

    CAS  PubMed  Google Scholar 

  82. 82

    Battaglia, M. et al. Influence of the serotonin transporter promoter gene and shyness on children's cerebral responses to facial expressions. Arch. Gen. Psychiatry 62, 85–94 (2005).

    CAS  PubMed  Google Scholar 

  83. 83

    Finley, J. C. et al. A genetic polymorphisn of the α-2-adrenergic receptor increases autonomic responses to stress. J. Appl. Physiol. 96, 2231–2239 (2004).

    CAS  PubMed  Google Scholar 

  84. 84

    Wust, A. F. et al. Common polymorphisms in the glucocorticoid receptor gene are associated with the adrenocorticol responses to psychosocial stress. J. Clin. Endocrinol. Metab. 89, 565–573 (2004).

    PubMed  Google Scholar 

  85. 85

    Collins, F. S. The case for a US prospective cohort study of genes and environment. Nature 429, 475–477 (2004).

    CAS  PubMed  Google Scholar 

  86. 86

    Wright, A. F., Carothers, A. D. & Campbell, H. Gene-environment interactions — the Biobank UK study. J. Pharmacogenomics 2, 75–82 (2002).

    CAS  Google Scholar 

  87. 87

    Hattori, E., Liu, C., Zhu, H. & Gershon, E. S. Genetic tests of biological systems in affective disorders. Mol. Psychiatry 10, 719–740 (2005).

    CAS  PubMed  Google Scholar 

  88. 88

    Charney, D. S. Psychobiological mechanisms of resilience and vulnerability: implications for successful adaptation to extreme stress. Am. J. Psychiatry 161, 195–216 (2004).

    PubMed  Google Scholar 

  89. 89

    de Kloet, E. R., Joë ls, M. & Holsboer, F. Stress and the brain: from adaptation to disease. Nature Rev. Neurosci. 6, 463–475 (2005).

    CAS  Google Scholar 

  90. 90

    Heim, C., Plotsky, P. M. & Nemeroff, C. B. Importance of studying the contributions of early adverse experience to neurobiological findings in depression. Neuropsychopharmacology 29, 641–648 (2004).

    PubMed  Google Scholar 

  91. 91

    Hirschhorn, J. N. & Daly, M. J. Genome-wide association studies for common diseases and complex traits. Nature Rev. Genet. 6, 95–108 (2005).

    CAS  Google Scholar 

  92. 92

    Rutter, M., Caspi, A. & Moffitt, T. E. Using sex differences in psychopathology to study causal mechanisms: unifying issues and research strategies. J. Child. Psychol. Psychiatry 44, 1092–1115 (2003).

    PubMed  Google Scholar 

  93. 93

    Arseneault, L., Cannon, M., Witton, J. & Murray, R. M. Causal association between cannabis and psychosis: examination of the evidence. Br. J. Psychiatry 184, 110–117 (2004).

    PubMed  Google Scholar 

  94. 94

    Henquet, C. et al. Prospective cohort study of cannabis use, predisposition for psychosis and psychotic symptoms in young people. Br. Med. J. 330, 11–15 (2005).

    Google Scholar 

  95. 95

    Solowij, N. S. et al. Cognitive functioning of long-term heavy cannabis users seeking treatment. JAMA 287, 1123–1131 (2002).

    PubMed  Google Scholar 

  96. 96

    Bunney, W. W. & Bunney, B. G. Evidence for a compromised dorsolateral prefrontal cortical parallel circuit in schizophrenia. Brain Res. Rev. 31, 138–146 (2000).

    CAS  PubMed  Google Scholar 

  97. 97

    Weinberger, D. R. et al. Prefontal neurons and the genetics of schizophrenia. Biol. Psychiatry 50, 825–844 (2001).

    CAS  PubMed  Google Scholar 

  98. 98

    Henquet, C. et al. An experimental study of COMT Val-158-Met moderation of cannabis-induced effects on psychosis and cognition (manuscript in preparation).

  99. 99

    Castle, D. & Murray, R. Marijuana and Madness (Cambridge University Press, Cambridge, 2004).

    Google Scholar 

  100. 100

    Hutchison, K. E., McGeary, J., Smolen, A., Brayn, A. & Swift, R. M. The DRD4 VNTR polymorphism moderates craving after alcohol consumption. Health Psychol. 21, 139–149 (2002).

    PubMed  Google Scholar 

  101. 101

    Hutchison, K. E. et al. Olanzapine reduces craving for alcohol: a DRD4 VNTR polymorphism by pharmacotherapy interaction. Neuropsychopharmacology 28, 1882–1888 (2003).

    CAS  PubMed  Google Scholar 

  102. 102

    Hutchison, K. E. et al. The effect of olanzapine on craving and alcohol consumption. Neuropsychopharmacology 31, 1310–1317 (2006).

  103. 103

    Hutchison, K. E., La Chance, H., Naiura, R., Bryan, A. & Smolen, A. The DRD4 VNTR polymorphism influences reactivity to smoking cues. J. Abnorm. Psychol. 111, 134–143 (2002).

    PubMed  Google Scholar 

  104. 104

    Slutske, W. S., Caspi, A., Moffitt, T. E. & Poulton, R. Personality and problem gambling: a prospective study of a birth cohort of young adults. Arch. Gen. Psychiatry. 69, 769–775 (2005).

    Google Scholar 

  105. 105

    Barr, C. S. et al. Rearing condition and rh5-HTTLPR interact to influence limbic-hypothalamic-pituitary-adrenal axis response to stress in infant macaques. Biol. Psychiatry 55, 733–738 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by the UK Medical Research Council, the National Institute of Mental Health, National Institutes of Health, the William T. Grant Foundation, and Royal Society Wolfson Merit Awards to T.E.M. and A.C. We thank the reviewers for their helpful comments.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Avshalom Caspi or Terrie E. Moffitt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

ADHD

FURTHER INFORMATION

Center for Disease Control, Office of Genomics and Disease Prevention

Kyoto Encyclopedia of Genes and Genomes (KEGG)

UK Biobank

US National Institute of Environmental Health Sciences Environmental Genome Project

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Caspi, A., Moffitt, T. Gene–environment interactions in psychiatry: joining forces with neuroscience. Nat Rev Neurosci 7, 583–590 (2006). https://doi.org/10.1038/nrn1925

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing