Why sex matters for neuroscience

Key Points

  • This review addresses some of the primary reasons why the sex of participants is an important factor that should be considered in studies at all levels of neuroscience.

  • There are widespread misconceptions about brain sex differences in the field.

  • Sex differences exist in every major part of the brain.

  • New methods are revealing previously unsuspected sex differences.

  • Many regions of the brain that are responsible for cognitive processes, such as the hippocampus, amygdala and neocortex, are sexually dimorphic.

  • A consideration of sex influences can help to reconcile seemingly contradictory findings in neuroscientific research.

  • Active investigation of sex influences is mandatory to fully understand and treat a host of brain disorders with sex differences in the incidence and/or nature.

  • Sex matters for understanding brain function much more than has been widely assumed in neuroscience, and perhaps much more than we yet recognize.


A rapidly burgeoning literature documents copious sex influences on brain anatomy, chemistry and function. This article highlights some of the more intriguing recent discoveries and their implications. Consideration of the effects of sex can help to explain seemingly contradictory findings. Research into sex influences is mandatory to fully understand a host of brain disorders with sex differences in their incidence and/or nature. The striking quantity and diversity of sex-related influences on brain function indicate that the still widespread assumption that sex influences are negligible cannot be justified, and probably retards progress in our field.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: An illustration of sex differences in the size of various human brain regions.
Figure 2: Demonstration of oestrus cycle influence on maze learning strategy in rats.
Figure 3: Sex differences in the relationship between amygdala activity during emotional experiences and memory for those experiences.
Figure 4: Rates of serotonin synthesis in men and women.


  1. 1

    Levine, S. Sex differences in the brain. Scientific American 214, 84–90 (1966).

    Google Scholar 

  2. 2

    McFadden, D. Masculinizing effects on otoacoustic emissions and auditory evoked potentials in women using oral contraceptives. Hearing Research 142, 23–33 (2000).

    CAS  PubMed  Google Scholar 

  3. 3

    Hines, M. Brain Gender (Oxford Univ. Press, New York, 2004).

    Google Scholar 

  4. 4

    Maccoby, E. E. & Jacklin, C. N. The Psychology of Sex Differences Vol. 1 (Stanford Univ. Press, Stanford, 1974).

    Google Scholar 

  5. 5

    Kimura, D. Sex, sexual orientation and sex hormones influence human cognitive function. Curr. Opin. Neurobiol. 6, 259–263 (1996).

    CAS  PubMed  Google Scholar 

  6. 6

    Witelson, S. F. Neural sexual mosaicism: sexual differentiation of the human temporo-parietal region for functional asymmetry. Psychoneuroendocrinology 16, 131–153 (1991).

    CAS  PubMed  Google Scholar 

  7. 7

    Fuchs, R. A., Evans, A., Mehta, R., Case, J. M. & See, R. E. Influence of sex and estrous cyclicity on conditioned cue-induced reinstatement of cocaine-seeking behavior. Psychopharmacology 179, 662–672 (2005).

    CAS  PubMed  Google Scholar 

  8. 8

    Arnold, A. P. Sex chromosomes and brain gender. Nature Rev. Neurosci. 5, 701–708 (2004). Provides an excellent overview of striking developments in molecular neurobiology that are generating new insight into neural mechanisms behind sexual differentiation of the brain.

    CAS  Google Scholar 

  9. 9

    Reisert, I. & Pilgrim, C. Sexual differentiation of monoaminergic neurons — genetic or epigenetic? Trends Neurosci. 14, 468–473 (1991).

    CAS  PubMed  Google Scholar 

  10. 10

    Piefke, M., Weiss, P., Markowitsch, H. & Fink, G. Gender differences in the functional neuroanatomy of emotional episodic autobiographical memory. Hum. Brain Mapp. 24, 313–324 (2005).

    PubMed  Google Scholar 

  11. 11

    Grabowski, T. J., Damasio, H., Eichhorn, G. R. & Tranel, D. Effects of gender on blood flow correlates of naming concrete entities. Neuroimage 20, 940–954 (2003).

    PubMed  Google Scholar 

  12. 12

    De Vries, G. J. Sex differences in adult and developing brains: compensation, compensation, compensation. Endocrinology 145, 1063–1068 (2004). Excellent review of the evidence supporting an often underappreciated concept, namely, that sexual dimorphisms in the brain may exist to prevent, rather than create, sexual dimorphisms in behaviour.

    CAS  PubMed  Google Scholar 

  13. 13

    Juraska, J. M. Sex differences in 'cognitive' regions of the rat brain. Psychoneuroendocrinology 16, 105–109 (1991).

    CAS  PubMed  Google Scholar 

  14. 14

    Luders, E. et al. Gender effects on cortical thickness and the influence of scaling. Hum. Brain. Mapp. 27, 314–324 (2005).

    Google Scholar 

  15. 15

    Allen, J. S., Damasio, H., Grabowski, T. J., Bruss, J. & Zhang, W. Sexual dimorphism and asymmetries in the gray–white composition of the human cerebrum. Neuroimage 18, 880–894 (2003).

    PubMed  Google Scholar 

  16. 16

    Shah, N. M. et al. Visualizing sexual dimorphism in the brain. Neuron 43, 313–319 (2004). Illustration of the ability of some newer methodologies to reveal sexual dimorphisms in the brain missed by more traditional methods.

    CAS  PubMed  Google Scholar 

  17. 17

    Bielsky, I. F., Hu, S. B. & Young, L. J. Sexual dimorphism in the vasopressin system: lack of an altered behavioral phenotype in female V1a receptor knockout mice. Behav. Brain Res. 164, 132–136 (2005).

    CAS  PubMed  Google Scholar 

  18. 18

    Mechelli, A., Friston, K. J., Frackowiak, R. S. & Price, C. J. Structural covariance in the human cortex. J. Neurosci. 25, 8303–8310 (2005). Findings suggest that the amygdala is probably an especially important locus of sex influences on brain function.

    CAS  PubMed  Google Scholar 

  19. 19

    Madeira, M. D. & Lieberman, A. R. Sexual dimorphism in the mammalian limbic system. Prog. Neurobiol. 45, 275–333 (1995).

    CAS  PubMed  Google Scholar 

  20. 20

    Goldstein, J. M. et al. Normal sexual dimorphism of the adult human brain assessed by in vivo magnetic resonance imaging. Cereb. Cortex 11, 490–497 (2001).

    CAS  PubMed  Google Scholar 

  21. 21

    Turner, B. B. & Weaver, D. A. Sexual dimorphism of glucocorticoid binding in rat brain. Brain Res. 343, 16–23 (1985).

    CAS  PubMed  Google Scholar 

  22. 22

    Teyler, T. J., Vardaris, R. M., Lewis, D. & Rawitch, A. B. Gonadal steroids: effects on excitability of hippocampal pyramidal cells. Science 209, 1017–1018 (1980).

    CAS  PubMed  Google Scholar 

  23. 23

    Cooke, B. M. & Woolley, C. S. Gonadal hormone modulation of dendrites in the mammalian CNS. J. Neurobiol. 64, 34–46 (2005).

    CAS  PubMed  Google Scholar 

  24. 24

    Romeo, R. D., McCarthy, J. B., Wang, A., Milner, T. A. & McEwen, B. S. Sex differences in hippocampal estradiol-induced N-methyl-D-aspartic acid binding and ultrastructural localization of estrogen receptor-α. Neuroendocrinology 81, 391–399 (2005).

    CAS  PubMed  Google Scholar 

  25. 25

    Packard, M., Kohlmaier, J. & Alexander, G. Posttraining intra-hippocampal estradiol injections enhance spatial memory in male rats: interaction with cholinergic systems. Behav. Neurosci. 110, 626–632 (1996).

    CAS  PubMed  Google Scholar 

  26. 26

    Maren, S., De Oca, B. & Fanselow, M. S. Sex differences in hippocampal long-term potentiation (LTP) and Pavlovian fear conditioning in rats: positive correlation between LTP and contextual learning. Brain Res. 661, 25–34 (1994).

    CAS  PubMed  Google Scholar 

  27. 27

    Ruecker, B. et al. Inhibitory avoidance task reveals differences in ectonucleotidase activities between male and female rats. Neurochem. Res. 29, 2231–2237 (2004).

    CAS  Google Scholar 

  28. 28

    Shors, T. Opposite effects of stressful experience on memory formation in males versus females. Dialogues Clin. Neurosci. 4, 139–147 (2002).

    PubMed  PubMed Central  Google Scholar 

  29. 29

    Jackson, E. D., Payne, J. D., Nadel, L. & Jacobs, W. J. Stress differentially modulates fear conditioning in healthy men and women. Biol. Psychiatry 59, 516–522 (2005).

    PubMed  Google Scholar 

  30. 30

    Juraska, J., Fitch, J., Henderson, C. & Rivers, N. Sex differences in the dendritic branching of dentate granule cells following differential experience. Brain Res. 333, 73–80 (1985).

    CAS  PubMed  Google Scholar 

  31. 31

    Korol, D. L. Role of estrogen in balancing contributions from multiple memory systems. Neurobiol. Learn. Mem. 82, 309–323 (2004). Summary of the recent studies demonstrating pronounced influences of sex hormones on learning strategies in rats.

    CAS  PubMed  Google Scholar 

  32. 32

    McEwen, B. S. The neurobiology of stress: from serendipity to clinical relevance. Brain Res. 886, 172–189 (2000).

    CAS  PubMed  Google Scholar 

  33. 33

    Cooke, B. M. & Woolley, C.S. Sexually dimorphic synaptic organization of the medial amygdala. J. Neurosci. 25, 10759–10767 (2005).

    CAS  PubMed  Google Scholar 

  34. 34

    Ziabreva, I., Poeggel, G., Schnabel, R. & Braun, K. Separation-induced receptor changes in the hippocampus and amygdala of Octodon degus: influence of maternal vocalizations. J. Neurosci. 23, 5329–5336 (2003). Demonstrates a qualitative difference in the neurochemical response to stress of an amygdala nucleus, the basomedial nucleus, not traditionally thought to be sexually dimorphic.

    CAS  PubMed  Google Scholar 

  35. 35

    Cahill, L. Sex- and hemisphere-related influences on the neurobiology of emotionally influenced memory. Prog. Neuropsychopharmacol. Biol. Psychiatry 27, 1235–1241 (2003).

    PubMed  Google Scholar 

  36. 36

    Hamann, S. Sex differences in the responses of the human amygdala. Neuroscientist 11, 288–293 (2005).

    PubMed  Google Scholar 

  37. 37

    McGaugh, J. L. The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu. Rev. Neurosci. 27, 1–28 (2004).

    CAS  PubMed  Google Scholar 

  38. 38

    Cahill, L. in The Amygdala: A Functional Analysis (ed. Aggleton, J.) 425–444 (Oxford Univ. Press, London, 2000).

    Google Scholar 

  39. 39

    Cahill, L. et al. Sex-related difference in amygdala activity during emotionally influenced memory storage. Neurobiol. Learn. Mem. 75, 1–9 (2001).

    CAS  PubMed  Google Scholar 

  40. 40

    Canli, T., Desmond, J., Zhao, Z. & Gabrieli, J. D. E. Sex differences in the neural basis of emotional memories. Proc. Natl Acad. Sci. USA 99, 10789–10794 (2002).

    CAS  PubMed  Google Scholar 

  41. 41

    Cahill, L., Uncapher, M., Kilpatrick, L., Alkire, M. T. & Turner, J. Sex-related hemispheric lateralization of amygdala function in emotionally influenced memory: an fMRI investigation. Learn. Mem. 11, 261–266 (2004).

    PubMed  PubMed Central  Google Scholar 

  42. 42

    Lalumiere, R. T. & McGaugh, J. L. Memory enhancement induced by post-training intrabasolateral amygdala infusions of β-adrenergic or muscarinic agonists requires activation of dopamine receptors: involvement of right, but not left, basolateral amygdala. Learn. Mem. 12, 527–532 (2005).

    PubMed  PubMed Central  Google Scholar 

  43. 43

    Killgore, W. & Yurgelun-Todd, D. Sex differences in amygdala activation during the perception of facial affect. Neuroreport 12, 2543–2547 (2001). One of the first studies to document sex differences in the function of the human amygdala.

    CAS  PubMed  Google Scholar 

  44. 44

    Williams, L. M. et al. Distinct amygdala–autonomic arousal profiles in response to fear signals in healthy males and females. Neuroimage 28, 618–626 (2005).

    PubMed  Google Scholar 

  45. 45

    Kilpatrick, L. A., Zald, D. H., Pardo, J. V. & Cahill, L. F. Sex-related differences in amygdala functional connectivity during resting conditions. Neuroimage 30, 452–461 (2006). Examines the functional connectivities of the left and right hemisphere amygdalae in a large sample of men and women who received PET scans while resting with their eyes closed. Indicates that sexually dimorphic amygdala function exists in the brain independently of overt stimulation.

    CAS  PubMed  Google Scholar 

  46. 46

    Skuse, D. H., Morris, J. S. & Dolan, R. J. Functional dissociation of amygdala-modulated arousal and cognitive appraisal, in Turner syndrome. Brain 128, 2084–2096 (2005).

    CAS  PubMed  Google Scholar 

  47. 47

    Drevets, W. Neuroimaging abnormalities in the amygdala in mood disorders. Ann. NY Acad. Sci. 985, 420–444 (2003).

    PubMed  Google Scholar 

  48. 48

    Naliboff, B. D. et al. Sex-related differences in IBS patients: central processing of visceral stimuli. Gastroenterology 124, 1738–1747 (2003).

    PubMed  Google Scholar 

  49. 49

    Nordeen, E. J. & Yahr, P. Hemispheric asymmetries in the behavioral and hormonal effects of sexually differentiating mammalian brain. Science 218, 391–394 (1982). A striking demonstration of hemispheric lateralization in the effects of a sex hormone on the developing brain.

    CAS  PubMed  Google Scholar 

  50. 50

    Wisniewski, A. B. Sexually-dimorphic patterns of cortical asymmetry, and the role for sex steroid hormones in determining cortical patterns of lateralization. Psychoneuroendocrinology 23, 519–547 (1998).

    CAS  PubMed  Google Scholar 

  51. 51

    Lansdell, H. Sex differences in hemispheric asymmetries of the human brain. Nature 203, 550 (1964).

    CAS  PubMed  Google Scholar 

  52. 52

    Bixo, M., Backstrom, T., Winblad, B. & Andersson, A. Estradiol and testosterone in specific regions of the human female brain in different endocrine states. J. Steroid Biochem. Mol. Biol. 55, 297–303 (1995).

    CAS  PubMed  Google Scholar 

  53. 53

    Duff, S. J. & Hampson, E. A sex difference on a novel spatial working memory task in humans. Brain Cogn. 47, 470–493 (2001).

    CAS  PubMed  Google Scholar 

  54. 54

    Speck, O. et al. Gender differences in the functional organization of the brain for working memory. Neuroreport 11, 2581–2585 (2000).

    CAS  PubMed  Google Scholar 

  55. 55

    Bland, S. T. et al. Expression of c-fos and BDNF mRNA in subregions of the prefrontal cortex of male and female rats after acute uncontrollable stress. Brain Res. 1051, 90–99 (2005).

    CAS  PubMed  Google Scholar 

  56. 56

    Shansky, R. M. et al. Estrogen mediates sex differences in stress-induced prefrontal cortex dysfunction. Mol. Psychiatry 9, 531–538 (2004).

    CAS  PubMed  Google Scholar 

  57. 57

    Goldman, P. S., Crawford, H. T., Stokes, L. P., Galkin, T. W. & Rosvold, H. E. Sex-dependent behavioral effects of cerebral cortical lesions in the developing rhesus monkey. Science 186, 540–542 (1974).

    CAS  PubMed  Google Scholar 

  58. 58

    Tranel, D., Damasio, H., Denburg, N. L. & Bechara, A. Does gender play a role in functional asymmetry of ventromedial prefrontal cortex? Brain 128, 2872–2881 (2005).

    PubMed  Google Scholar 

  59. 59

    Bolla, K. I., Eldreth, D. A., Matochik, J. A. & Cadet, J. L. Sex-related differences in a gambling task and its neurological correlates. Cereb. Cortex 14, 1226–1232 (2004). Together with reference 58, this suggests that the involvement of the prefrontal cortex in decision making is influenced both by a subject's sex and cerebral hemisphere, and suggests that attention to these variables can reconcile seemingly contradictory studies.

    CAS  PubMed  Google Scholar 

  60. 60

    Craft, R. M. Sex differences in opioid analgesia: 'from mouse to man'. Clin. J. Pain 19, 175–186 (2003).

    PubMed  Google Scholar 

  61. 61

    Robinson, D. S. et al. Monoamine metabolism in human brain. Arch. Gen. Psychiatry 34, 89–92 (1977).

    CAS  PubMed  Google Scholar 

  62. 62

    Curtis, A. L., Bethea, T. & Valentino, R. J. Sexually dimorphic responses of the brain norepinephrine system to stress and corticotropin-releasing factor. Neuropsychopharmacology 31, 544–554 (2005).

    Google Scholar 

  63. 63

    Nishizawa, S. et al. Differences between males and females in rates of serotonin synthesis in human brain. Proc. Natl Acad. Sci. USA 94, 5308–5313 (1997).

    CAS  PubMed  Google Scholar 

  64. 64

    Gottfries, C. G., Roos, B. E. & Winblad, B. Determination of 5-hydroxytryptamine, 5-hydroxyindoleacetic acid and homovanillic acid in brain tissue from an autopsy material. Acta. Psychiatr. Scand. 50, 496–507 (1974).

    CAS  PubMed  Google Scholar 

  65. 65

    Cordero, M. E., Rodriguez, A., Torres, R. & Valenzuela, C. Y. Human raphe magnus nucleus: a morphometric Golgi-Cox study with emphasis on sex differences. Brain Res. Dev. Brain Res. 131, 85–92 (2001).

    CAS  PubMed  Google Scholar 

  66. 66

    Zubieta, J. K., Dannals, R. & Frost, J. Gender and age influences on human brain mu-opiod receptor binding measured by PET. Am. J. Psychiatry 156, 842–848 (1999).

    CAS  PubMed  Google Scholar 

  67. 67

    Galanopoulou, A. S. GABA receptors as broadcasters of sexually differentiating signals in the brain. Epilepsia 46, 107–112 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Klein, L. C. & Corwin, E. J. Seeing the unexpected: how sex differences in stress responses may provide a new perspective on the manifestation of psychiatric disorders. Curr. Psychiatry Rep. 4, 441–448 (2002).

    PubMed  Google Scholar 

  69. 69

    Barnes, L. L. et al. Sex differences in the clinical manifestations of Alzheimer disease pathology. Arch. Gen. Psychiatry 62, 685–691 (2005).

    PubMed  Google Scholar 

  70. 70

    Swaab, D. F., Chung, W. C., Kruijver, F. P., Hofman, M. A. & Ishunina, T. A. Structural and functional sex differences in the human hypothalamus. Horm. Behav. 40, 93–98 (2001).

    CAS  PubMed  Google Scholar 

  71. 71

    Fleisher, A. et al. Alzheimer's Disease Cooperative Study. Sex, apolipoprotein E ε 4 status, and hippocampal volume in mild cognitive impairment. Arch. Neurol. 62, 953–957 (2005).

    PubMed  Google Scholar 

  72. 72

    Dal Forno, G. et al. Depressive symptoms, sex, and risk for Alzheimer's disease. Ann. Neurol. 57, 381–387 (2005).

    PubMed  Google Scholar 

  73. 73

    Nopoulos, P., Flaum, M. & Andreasen, N. Sex differences in brain morphology in schizophrenia. Am. J. Psychiatry 154, 1648–1654 (1997).

    CAS  PubMed  Google Scholar 

  74. 74

    Gur, R. E. et al. A sexually dimorphic ratio of orbitofrontal to amygdala volume is altered in schizophrenia. Biol. Psychiatry 55, 512–517 (2004).

    PubMed  Google Scholar 

  75. 75

    Crow, T. J. Cerebral asymmetry and the lateralization of language: core deficits in schizophrenia as pointers to the gene. Curr. Opin. Psychiatry 17, 96–106 (2004).

    Google Scholar 

  76. 76

    Hennessy, R. J. et al. 3D morphometrics of craniofacial dysmorphology reveals sex-specific asymmetries in schizophrenia. Schizophr. Res. 67, 261–268 (2004).

    PubMed  Google Scholar 

  77. 77

    Becker, J. B. Gender differences in dopaminergic function in striatum and nucleus accumbens. Pharmacol. Biochem. Behav. 64, 803–812 (1999).

    CAS  PubMed  Google Scholar 

  78. 78

    Lynch, W. J., Roth, M. E. & Carroll, M. E. Biological basis of sex differences in drug abuse: preclinical and clinical studies. Psychopharmacology 164, 121–137 (2002).

    CAS  PubMed  Google Scholar 

  79. 79

    Kilts, C. D., Gross, R. E., Ely, T. D. & Drexler, K. P. The neural correlates of cue-induced craving in cocaine-dependent women. Am. J. Psychiatry 161, 233–241 (2004).

    PubMed  Google Scholar 

  80. 80

    Waber, D. P. Sex differences in mental abilities, hemispheric lateralization, and rate of physical growth in adolescence. Dev. Psychol. 13, 29–38 (1977).

    Google Scholar 

  81. 81

    Becker, J. B. et al. Strategies and methods for research on sex differences in brain and behavior. Endocrinology 146, 1650–1673 (2005). An excellent, comprehensive review by field leaders of various approaches taken to studying the issue of sex influences on the brain, including description of the pitfalls to be avoided. Should be mandatory reading for anyone entering the field.

    CAS  PubMed  Google Scholar 

  82. 82

    Wizemann, T. M. Exploring the Biological Contributions to Human Health: Does Sex Matter? (ed. Pardue, M.L.) (National Academy, Washington, DC, 2001).

    Google Scholar 

  83. 83

    Dohanich, G. P. Gonadal steroids, learning and memory. Hormones, Brain, and Behavior Vol. 2 (ed. Pfaff, D.W.) 265–327 (Academic, San Diego, 2002).

    Google Scholar 

  84. 84

    Rubinow, M. J., Arseneau, L. M., Beverly, J. L. & Juraska, J. M. Effect of the estrous cycle on water maze acquisition depends on the temperature of the water. Behav. Neurosci. 118, 863–868 (2004).

    PubMed  Google Scholar 

  85. 85

    Halpern, D. F. & Tan, U. Stereotypes and steroids: using a psychobiosocial model to understand cognitive sex differences. Brain Cogn. 45, 392–414 (2001).

    CAS  PubMed  Google Scholar 

  86. 86

    Goldstein, J. M. et al. Hormonal cycle modulates arousal circuitry in women using functional magnetic resonance imaging. J. Neurosci. 25, 9309–9316 (2005).

    CAS  PubMed  Google Scholar 

  87. 87

    Hausmann, M. Hemispheric asymmetry in spatial attention across the menstrual cycle. Neuropsychologia 43, 1559–1567 (2005).

    PubMed  Google Scholar 

  88. 88

    Kaufman, M. J. et al. Cocaine-induced cerebral vasoconstriction differs as a function of sex and menstrual cycle phase. Biol. Psychiatry 49, 774–781 (2001).

    CAS  PubMed  Google Scholar 

  89. 89

    Justice, A. J. & de Wit, H. Acute effects of D-amphetamine during the follicular and luteal phases of the menstrual cycle in women. Psychopharmacology 145, 67–75 (1999).

    CAS  PubMed  Google Scholar 

  90. 90

    Lynch, W. J., Roth, M. E. & Carroll, M. E. Biological basis of sex differences in drug abuse: preclinical and clinical studies. Psychopharmacology 164, 121–137 (2002).

    CAS  PubMed  Google Scholar 

  91. 91

    Tomizawa, K. et al. Oxytocin improves long-lasting spatial memory during motherhood through MAP kinase cascade. Nature Neurosci. 6, 384–390 (2003).

    CAS  PubMed  Google Scholar 

  92. 92

    Geary, D. C. Male, Female: the Evolution of Human Sex Differences (American Psychological Association, Washington DC, 1998).

    Google Scholar 

  93. 93

    Seidlitz, L. & Diener, E. Sex differences in the recall of affective experiences. J. Pers. Soc. Psychol. 74, 262–271 (1998).

    CAS  PubMed  Google Scholar 

  94. 94

    Packard, M. G. & McGaugh, J. L. Inactivation of hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiol. Learn. Mem. 65, 65–72 (1996).

    CAS  PubMed  Google Scholar 

Download references

Author information



Ethics declarations

Competing interests

The author declares no competing financial interests.


Voxel-based morphometry

(VBM). A computational approach to neuroanatomy that measures differences in local concentrations of brain tissue through a voxel-wise comparison of multiple brain images. The value of VBM is that it allows for comprehensive measurement of differences, not just in specific structures, but throughout the entire brain.

Long-term potentiation

(LTP). An enduring increase in the amplitude of excitatory postsynaptic potentials as a result of high-frequency (tetanic) stimulation of afferent pathways. It is measured as an increase in the amplitude of excitatory postsynaptic potentials or in the magnitude of the postsynaptic cell population spike. LTP is most frequently studied in the hippocampus and is often considered to be part of the cellular basis of learning and memory in vertebrates.


A chronic, painful condition, primarily occurring in women, characterized by widespread musculoskeletal pain, fatigue and tender points at defined locations.


A chronic, painfull condition, Primarily occurring in women, characterized by widespread musculoskeletal pains, fatigue and tender points at defined locations.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cahill, L. Why sex matters for neuroscience. Nat Rev Neurosci 7, 477–484 (2006). https://doi.org/10.1038/nrn1909

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing