The neural basis of human moral cognition


Moral cognitive neuroscience is an emerging field of research that focuses on the neural basis of uniquely human forms of social cognition and behaviour. Recent functional imaging and clinical evidence indicates that a remarkably consistent network of brain regions is involved in moral cognition. These findings are fostering new interpretations of social behavioural impairments in patients with brain dysfunction, and require new approaches to enable us to understand the complex links between individuals and society. Here, we propose a cognitive neuroscience view of how cultural and context-dependent knowledge, semantic social knowledge and motivational states can be integrated to explain complex aspects of human moral cognition.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Brain regions implicated in moral cognition and behaviour in functional imaging and patient studies.
Figure 2: Functional imaging studies of moral cognition.
Figure 3: The event–feature–emotion complex framework.


  1. 1

    Blakemore, S. -J., Winston, J. & Frith, U. Social cognitive neuroscience: where are we heading? Trends Cogn. Sci. 8, 216–222 (2004).

  2. 2

    Wood, J. N. Social cognition and the prefrontal cortex. Behav. Cogn. Neurosci. Rev. 2, 97–114 (2003).

  3. 3

    Adolphs, R. Cognitive neuroscience of human social behaviour. Nature Rev. Neurosci. 4, 165–178 (2003).

  4. 4

    MacIntyre, A. After Virtue (Duckworth, London, 1985).

  5. 5

    Tranel, D. 'Acquired sociopathy': the development of sociopathic behavior following focal brain damage. Prog. Exp. Pers. Psychopathol. Res. 285–311 (1994).

  6. 6

    Casebeer, W. D. Moral cognition and its neural constituents. Nature Rev. Neurosci. 4, 840–846 (2003).

  7. 7

    Greene, J. From neural 'is' to moral 'ought': what are the moral implications of neuroscientific moral psychology? Nature Rev. Neurosci. 4, 846–849 (2003).

  8. 8

    Casebeer, W. D. Natural Ethical Facts: Evolution, Connectionism, and Moral Cognition (MIT Press, Cambridge, Massachusetts, USA, 2003).

  9. 9

    Schulkin, J. Roots of Social Sensitivity and Neural Function (MIT Press, Cambridge, Massachusetts, USA, 2000).

  10. 10

    Hauser, M. D., Chen, M. K., Chen, F. & Chuang, E. Give unto others: genetically unrelated cotton-top tamarin monkeys preferentially give food to those who altruistically give food back. Proc. Biol. Sci. 270, 2363–2370 (2003).

  11. 11

    de Waal, F. B. M. Tree of Origin: What Primate Behavior Can Tell Us About Human Social Evolution (Harvard Univ. Press, Cambridge, Massachusetts, USA, 2001).

  12. 12

    Allman, J., Hakeem, A. & Watson, K. Two phylogenetic specializations in the human brain. Neuroscientist 8, 335–346 (2002).

  13. 13

    Moll, J., de Oliveira-Souza, R. & Eslinger, P. J. Morals and the human brain: a working model. Neuroreport 14, 299–305 (2003).

  14. 14

    Wood, J. N. & Grafman, J. Human prefrontal cortex: processing and representational perspectives. Nature Rev. Neurosci. 4, 139–147 (2003).

  15. 15

    Grafman, J. Similarities and distinctions among current models of prefrontal cortical functions. Ann. NY Acad. Sci. 769, 337–368 (1995).

  16. 16

    Mithen, S. The Prehistory of the Mind: The Cognitive Origins of Art, Religion and Science (Thames and Hudson, London, 1996).

  17. 17

    Altschuler, E. L., Haroun, A., Ho, B. & Weimer, A. Did Samson have antisocial personality disorder? Arch. Gen. Psychiatry 58, 202–203 (2001).

  18. 18

    Augstein, H. F. J C Prichard's concept of moral insanity — a medical theory of the corruption of human nature. Med. Hist. 40, 311–343 (1996).

  19. 19

    Prichard, J. C. in The Cyclopaedia of Practical Medicine (eds Forbes, J., Tweedie, A. & Conolly, J.) 10–32; 847–875 (Sherwood, Gilbert and Piper, London, 1833–1835).

  20. 20

    Welt, L. Ueber charackterveranderungen des menschen. Dtsch Arch. Klin. Med. 42, 339–390 (1888).

  21. 21

    Macmillan, M. An Odd Kind of Fame: Stories of Phineas Gage (MIT Press, Cambridge, Massachusetts, USA, 2000).

  22. 22

    Grafman, J. et al. Frontal lobe injuries, violence, and aggression: a report of the Vietnam Head Injury Study. Neurology 46, 1231–1238 (1996).

  23. 23

    Eslinger, P. J. & Damasio, A. R. Severe disturbance of higher cognition after bilateral frontal lobe ablation: patient EVR. Neurology 35, 1731–1741 (1985).

  24. 24

    Anderson, S. W., Bechara, A., Damasio, H., Tranel, D. & Damasio, A. R. Impairment of social and moral behavior related to early damage in human prefrontal cortex. Nature Neurosci. 2, 1032–1037 (1999).

  25. 25

    Eslinger, P. J., Grattan, L. M., Damasio, H. & Damasio, A. R. Developmental consequences of childhood frontal lobe damage. Arch. Neurol. 49, 764–769 (1992).

  26. 26

    Cleckley, H. The Mask of Sanity (CV Mosby, St Louis, Missouri, USA, 1964).

  27. 27

    Hare, R. D. Psychopathy: Theory and Research (John Wiley, New York, USA, 1970).

  28. 28

    Miller, B. L., Chang, L., Mena, I., Boone, K. & Lesser, I. M. Progressive right frontotemporal degeneration: clinical, neuropsychological and SPECT characteristics. Dementia 4, 204–213 (1993).

  29. 29

    Perry, R. J. et al. Hemispheric dominance for emotions, empathy and social behaviour: evidence from right and left handers with frontotemporal dementia. Neurocase 7, 145–160 (2001).

  30. 30

    Tranel, D., Bechara, A. & Denburg, N. L. Asymmetric functional roles of right and left ventromedial prefrontal cortices in social conduct, decision-making, and emotional processing. Cortex 38, 589–612 (2002).

  31. 31

    Eslinger, P. J. Adolescent neuropsychological development after early right prefrontal cortex damage. Dev. Neuropsychol. 18, 297–329 (2000).

  32. 32

    Kruesi, M. J., Casanova, M. F., Mannheim, G. & Johnson-Bilder, A. Reduced temporal lobe volume in early onset conduct disorder. Psychiatry Res. 132, 1–11 (2004).

  33. 33

    Allison, T., Puce, A. & McCarthy, G. Social perception from visual cues: role of the STS region. Trends Cogn. Sci. 4, 267–278 (2000).

  34. 34

    Frith, C. D. & Frith, U. Interacting minds — a biological basis. Science 286, 1692–1695 (1999).

  35. 35

    Burns, J. M. & Swerdlow, R. H. Right orbitofrontal tumor with pedophilia symptom and constructional apraxia sign. Arch. Neurol. 60, 437–440 (2003).

  36. 36

    Weissenberger, A. A. et al. Aggression and psychiatric comorbidity in children with hypothalamic hamartomas and their unaffected siblings. J. Am. Acad. Child Adolesc. Psychiatry 40, 696–703 (2001).

  37. 37

    Muller, J. L. et al. Abnormalities in emotion processing within cortical and subcortical regions in criminal psychopaths: evidence from a functional magnetic resonance imaging study using pictures with emotional content. Biol. Psychiatry 54, 152–162 (2003).

  38. 38

    Soderstrom, H. et al. Reduced frontotemporal perfusion in psychopathic personality. Psychiatry Res 114, 81–94 (2002).

  39. 39

    Kiehl, K. A. et al. Limbic abnormalities in affective processing by criminal psychopaths as revealed by functional magnetic resonance imaging. Biol. Psychiatry 50, 677–684 (2001).

  40. 40

    Raine, A., Lencz, T., Bihrle, S., LaCasse, L. & Colletti, P. Reduced prefrontal gray matter volume and reduced autonomic activity in antisocial personality disorder. Arch. Gen. Psychiatry 57, 119–127; discussion 128–129 (2000).

  41. 41

    Beer, J. S., Heerey, E. A., Keltner, D., Scabini, D. & Knight, R. T. The regulatory function of self-conscious emotion: insights from patients with orbitofrontal damage. J. Pers. Soc. Psychol. 85, 594–604 (2003).

  42. 42

    Camille, N. et al. The involvement of the orbitofrontal cortex in the experience of regret. Science 304, 1167–1170 (2004).

  43. 43

    Moll, J., Eslinger, P. J. & Oliveira-Souza, R. Frontopolar and anterior temporal cortex activation in a moral judgment task: preliminary functional MRI results in normal subjects. Arq. Neuropsiquiatr. 59, 657–664 (2001).

  44. 44

    Moll, J., de Oliveira-Souza, R., Bramati, I. E. & Grafman, J. Functional networks in emotional moral and nonmoral social judgments. Neuroimage 16, 696–703 (2002).

  45. 45

    Heekeren, H. R., Wartenburger, I., Schmidt, H., Schwintowski, H. P. & Villringer, A. An fMRI study of simple ethical decision-making. Neuroreport 14, 1215–1219 (2003).

  46. 46

    Greene, J. D., Sommerville, R. B., Nystrom, L. E., Darley, J. M. & Cohen, J. D. An fMRI investigation of emotional engagement in moral judgment. Science 293, 2105–2108 (2001).

  47. 47

    Greene, J. D., Nystrom, L. E., Engell, A. D., Darley, J. M. & Cohen, J. D. The neural bases of cognitive conflict and control in moral judgment. Neuron 44, 389–400 (2004).

  48. 48

    Moll, J. et al. The neural correlates of moral sensitivity: a functional magnetic resonance imaging investigation of basic and moral emotions. J. Neurosci. 22, 2730–2736 (2002).

  49. 49

    Shin, L. M. et al. Activation of anterior paralimbic structures during guilt-related script-driven imagery. Biol. Psychiatry 48, 43–50 (2000).

  50. 50

    Takahashi, H. et al. Brain activation associated with evaluative processes of guilt and embarrassment: an fMRI study. Neuroimage 23, 967–974 (2004).

  51. 51

    Berthoz, S., Armony, J. L., Blair, R. J. & Dolan, R. J. An fMRI study of intentional and unintentional (embarrassing) violations of social norms. Brain 125, 1696–1708 (2002).

  52. 52

    Dougherty, D. D. et al. Anger in healthy men: a PET study using script-driven imagery. Biol. Psychiatry 46, 466–472 (1999).

  53. 53

    Heekeren, H. R. et al. Influence of bodily harm on neural correlates of semantic and moral decision-making. Neuroimage 24, 887–897 (2005).

  54. 54

    Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001).

  55. 55

    Fellows, L. K. & Farah, M. J. Is anterior cingulate cortex necessary for cognitive control? Brain 128, 788–796 (2005).

  56. 56

    Damasio, A. R., Tranel, D. & Damasio, H. Individuals with sociopathic behavior caused by frontal damage fail to respond autonomically to social stimuli. Behav. Brain Res. 41, 81–94 (1990).

  57. 57

    Newman, J. P., Patterson, C. M. & Kosson, D. S. Response perseveration in psychopaths. J. Abnorm. Psychol. 96, 145–148 (1987).

  58. 58

    Bechara, A., Damasio, H., Tranel, D. & Damasio, A. R. Deciding advantageously before knowing the advantageous strategy. Science 275, 1293–1295 (1997).

  59. 59

    Bechara, A., Tranel, D. & Damasio, H. Characterization of the decision-making deficit of patients with ventromedial prefrontal cortex lesions. Brain 123, 2189–2202 (2000).

  60. 60

    Zahn, T. P., Grafman, J. & Tranel, D. Frontal lobe lesions and electrodermal activity: effects of significance. Neuropsychologia 37, 1227–1241 (1999).

  61. 61

    Maia, T. V. & McClelland, J. L. A reexamination of the evidence for the somatic marker hypothesis: what participants really know in the Iowa gambling task. Proc. Natl Acad. Sci. USA 101, 16075–16080 (2004).

  62. 62

    Blair, R. J. & Cipolotti, L. Impaired social response reversal. A case of 'acquired sociopathy'. Brain 123, 1122–1141 (2000).

  63. 63

    Fellows, L. K. & Farah, M. J. Different underlying impairments in decision-making following ventromedial and dorsolateral frontal lobe damage in humans. Cereb. Cortex 15, 58–63 (2005).

  64. 64

    Rolls, E. T., Hornak, J., Wade, D. & McGrath, J. Emotion-related learning in patients with social and emotional changes associated with frontal lobe damage. J. Neurol. Neurosurg. Psychiatry 57, 1518–1524 (1994).

  65. 65

    Rolls, E. T. The orbitofrontal cortex and reward. Cereb. Cortex 10, 284–294 (2000).

  66. 66

    Kringelbach, M. L. & Rolls, E. T. Neural correlates of rapid reversal learning in a simple model of human social interaction. Neuroimage 20, 1371–1383 (2003).

  67. 67

    O'Doherty, J., Kringelbach, M. L., Rolls, E. T., Hornak, J. & Andrews, C. Abstract reward and punishment representations in the human orbitofrontal cortex. Nature Neurosci. 4, 95–102 (2001).

  68. 68

    Hornak, J. et al. Reward-related reversal learning after surgical excisions in orbito-frontal or dorsolateral prefrontal cortex in humans. J. Cogn. Neurosci. 16, 463–478 (2004).

  69. 69

    Blair, R. J. Neurocognitive models of aggression, the antisocial personality disorders, and psychopathy. J. Neurol. Neurosurg. Psychiatry 71, 727–731 (2001).

  70. 70

    Blair, R. J. The roles of orbital frontal cortex in the modulation of antisocial behavior. Brain Cogn. 55, 198–208 (2004).

  71. 71

    Adolphs, R., Tranel, D. & Damasio, A. R. The human amygdala in social judgment. Nature 393, 470–474 (1998).

  72. 72

    Miller, B. L., Darby, A., Benson, D. F., Cummings, J. L. & Miller, M. H. Aggressive, socially disruptive and antisocial behaviour associated with fronto-temporal dementia. Br. J. Psychiatry 170, 150–154 (1997).

  73. 73

    Rankin, K. P. et al. Right and left medial orbitofrontal volumes show an opposite relationship to agreeableness in FTD. Dement. Geriatr. Cogn. Disord. 17, 328–332 (2004).

  74. 74

    Mendez, M. F., Chow, T., Ringman, J., Twitchell, G. & Hinkin, C. H. Pedophilia and temporal lobe disturbances. J. Neuropsychiatry Clin. Neurosci. 12, 71–76 (2000).

  75. 75

    Bozeat, S., Gregory, C. A., Ralph, M. A. & Hodges, J. R. Which neuropsychiatric and behavioural features distinguish frontal and temporal variants of frontotemporal dementia from Alzheimer's disease? J. Neurol. Neurosurg. Psychiatry 69, 178–186 (2000).

  76. 76

    Lough, S., Gregory, C. & Hodges, J. R. Dissociation of social cognition and executive function in frontal variant frontotemporal dementia. Neurocase 7, 123–130 (2001).

  77. 77

    Baron-Cohen, S. Out of sight or out of mind? Another look at deception in autism. J. Child Psychol. Psychiatry 33, 1141–1155 (1992).

  78. 78

    Richell, R. A. et al. Theory of mind and psychopathy: can psychopathic individuals read the 'language of the eyes'? Neuropsychologia 41, 523–526 (2003).

  79. 79

    Ruchkin, D. S., Grafman, J., Cameron, K. & Berndt, R. S. Working memory retention systems: a state of activated long-term memory. Behav. Brain Sci. 26, 709–728; discussion 728–777 (2003).

  80. 80

    Wood, J. N., Romero, S. G., Knutson, K. M. & Grafman, J. Representation of attitudinal knowledge: role of prefrontal cortex, amygdala and parahippocampal gyrus. Neuropsychologia 43, 249–259 (2005).

  81. 81

    Wood, J. N., Romero, S. G., Makale, M. & Grafman, J. Category-specific representations of social and nonsocial knowledge in the human prefrontal cortex. J. Cogn. Neurosci. 15, 236–248 (2003).

  82. 82

    Mah, L. W., Arnold, M. C. & Grafman, J. Deficits in social knowledge following damage to ventromedial prefrontal cortex. J. Neuropsychiatry Clin. Neurosci. 17, 66–74 (2005).

  83. 83

    Mah, L., Arnold, M. C. & Grafman, J. Impairment of social perception associated with lesions of the prefrontal cortex. Am. J. Psychiatry 161, 1247–1255 (2004).

  84. 84

    Koechlin, E., Basso, G., Pietrini, P., Panzer, S. & Grafman, J. The role of the anterior prefrontal cortex in human cognition. Nature 399, 148–151 (1999).

  85. 85

    Koechlin, E., Corrado, G., Pietrini, P. & Grafman, J. Dissociating the role of the medial and lateral anterior prefrontal cortex in human planning. Proc. Natl Acad. Sci. USA 97, 7651–7656 (2000).

  86. 86

    Knutson, K. M., Wood, J. N. & Grafman, J. Brain activation in processing temporal sequence: an fMRI study. Neuroimage 23, 1299–1307 (2004).

  87. 87

    Wood, J. N., Knutson, K. M. & Grafman, J. Psychological structure and neural correlates of event knowledge. Cereb. Cortex (2004).

  88. 88

    Tanaka, S. C. et al. Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops. Nature Neurosci. 7, 887–893 (2004).

  89. 89

    Thomson, J. J. Rights, Restitution, and Risk: Essays, in Moral Theory (Harvard Univ. Press, Cambridge, Massachusetts, USA, 1986).

  90. 90

    Fiddick, L., Cosmides, L. & Tooby, J. No interpretation without representation: the role of domain-specific representations and inferences in the Wason selection task. Cognition 77, 1–79 (2000).

  91. 91

    Cosmides, L. & Tooby, J. Dissecting the computational architecture of social inference mechanisms. Ciba Found. Symp. 208, 132–156; discussion 156–161 (1997).

  92. 92

    Goel, V. & Dolan, R. J. Explaining modulation of reasoning by belief. Cognition 87, B11–B22 (2003).

  93. 93

    Goel, V. & Dolan, R. J. Reciprocal neural response within lateral and ventral medial prefrontal cortex during hot and cold reasoning. Neuroimage 20, 2314–2321 (2003).

  94. 94

    Wason, P. C. Reasoning about a rule. Q. J. Exp. Psychol. 20, 273–281 (1968).

  95. 95

    Fuster, J. M. The Prefrontal Cortex: Anatomy, Physiology, and Neuropsychology of the Frontal Lobe (Raven, New York, USA, 1997).

  96. 96

    MacLean, P. A Triune Concept of the Brain and Behaviour: Hincks Memorial Lecture (Univ. Toronto Press, Toronto, Canada, 1973).

  97. 97

    Eslinger, P. J. & Geder, L. in Behavior and Mood Disorders in Focal Frontal Lobe Lesions (eds Bogousslavsky, J. & Cummings, J. L.) 217–260 (Cambridge Univ. Press, Cambridge, Massachusetts, USA, 2000).

  98. 98

    Fiddick, L. Domains of deontic reasoning: resolving the discrepancy between the cognitive and moral reasoning literatures. Q. J. Exp. Psychol. A 57, 447–474 (2004).

  99. 99

    Stone, V. E., Cosmides, L., Tooby, J., Kroll, N. & Knight, R. T. Selective impairment of reasoning about social exchange in a patient with bilateral limbic system damage. Proc. Natl Acad. Sci. USA 99, 11531–11536 (2002).

  100. 100

    Hornak, J. et al. Changes in emotion after circumscribed surgical lesions of the orbitofrontal and cingulate cortices. Brain 126, 1691–1712 (2003).

  101. 101

    Wilkinson, D. & Halligan, P. The relevance of behavioural measures for functional-imaging studies of cognition. Nature Rev. Neurosci. 5, 67–73 (2004).

  102. 102

    Nisbett, R. E. & Masuda, T. Culture and point of view. Proc. Natl Acad. Sci. USA 100, 11163–11170 (2003).

  103. 103

    Ehrlich, P. R. Human Natures: Genes, Cultures, and the Human Prospect (Island, Washington DC, USA, 2000).

  104. 104

    Nichols, S. Norms with feeling: towards a psychological account of moral judgment. Cognition 84, 221–236 (2002).

  105. 105

    Fehr, E. & Fischbacher, U. Social norms and human cooperation. Trends Cogn. Sci. 8, 185–190 (2004).

  106. 106

    Grattan, L. M. & Eslinger, P. J. Long-term psychological consequences of childhood frontal lobe lesion in patient DT. Brain Cogn. 20, 185–195 (1992).

  107. 107

    Eslinger, P. J., Flaherty-Craig, C. V. & Benton, A. L. Developmental outcomes after early prefrontal cortex damage. Brain Cogn. 55, 84–103 (2004).

  108. 108

    Weingartner, H., Grafman, J., Boutelle, W., Kaye, W. & Martin, P. R. Forms of memory failure. Science 221, 380–382 (1983).

  109. 109

    Singer, W. Consciousness and the binding problem. Ann. NY Acad. Sci. 929, 123–146 (2001).

  110. 110

    O'Reilly, R. C. & Rudy, J. W. Computational principles of learning in the neocortex and hippocampus. Hippocampus 10, 389–397 (2000).

  111. 111

    Okuda, J. et al. Thinking of the future and past: the roles of the frontal pole and the medial temporal lobes. Neuroimage 19, 1369–1380 (2003).

  112. 112

    Eslinger, P. J. & Grattan, L. M. Altered serial position learning after frontal lobe lesion. Neuropsychologia 32, 729–739 (1994).

  113. 113

    Goel, V., Grafman, J., Tajik, J., Gana, S. & Danto, D. A study of the performance of patients with frontal lobe lesions in a financial planning task. Brain 120, 1805–1822 (1997).

  114. 114

    Ramnani, N. & Owen, A. M. Anterior prefrontal cortex: insights into function from anatomy and neuroimaging. Nature Rev. Neurosci. 5, 184–194 (2004).

  115. 115

    Milne, E. & Grafman, J. Ventromedial prefrontal cortex lesions in humans eliminate implicit gender stereotyping. J. Neurosci. 21, RC150 (2001).

  116. 116

    Pietrini, P., Guazzelli, M., Basso, G., Jaffe, K. & Grafman, J. Neural correlates of imaginal aggressive behavior assessed by positron emission tomography in healthy subjects. Am. J. Psychiatry 157, 1772–1781 (2000).

  117. 117

    Cunningham, W. A., Raye, C. L. & Johnson, M. K. Implicit and explicit evaluation: fMRI correlates of valence, emotional intensity, and control in the processing of attitudes. J. Cogn. Neurosci. 16, 1717–1729 (2004).

  118. 118

    McClelland, J. L. & Rogers, T. T. The parallel distributed processing approach to semantic cognition. Nature Rev. Neurosci. 4, 310–322 (2003).

  119. 119

    Martin, A. & Chao, L. L. Semantic memory and the brain: structure and processes. Curr. Opin. Neurobiol. 11, 194–201 (2001).

  120. 120

    Caramazza, A. & Mahon, B. Z. The organization of conceptual knowledge: the evidence from category-specific semantic deficits. Trends Cogn. Sci. 7, 354–361 (2003).

  121. 121

    Frith, U. Mind blindness and the brain in autism. Neuron 32, 969–979 (2001).

  122. 122

    Boddaert, N. et al. Superior temporal sulcus anatomical abnormalities in childhood autism: a voxel-based morphometry MRI study. Neuroimage 23, 364–369 (2004).

  123. 123

    Hodges, J. R., Bozeat, S., Lambon Ralph, M. A., Patterson, K. & Spatt, J. The role of conceptual knowledge in object use evidence from semantic dementia. Brain 123, 1913–1925 (2000).

  124. 124

    Lu, L. H. et al. Category-specific naming deficits for objects and actions: semantic attribute and grammatical role hypotheses. Neuropsychologia 40, 1608–1621 (2002).

  125. 125

    Kiehl, K. A. et al. Temporal lobe abnormalities in semantic processing by criminal psychopaths as revealed by functional magnetic resonance imaging. Psychiatry Res. 130, 27–42 (2004).

  126. 126

    Saper, C. B. Hypothalamic connections with the cerebral cortex. Prog. Brain Res. 126, 39–48 (2000).

  127. 127

    Stellar, E. The physiology of motivation. 1954. Psychol. Rev. 101, 301–311 (1994).

  128. 128

    Haugh, R. M. & Markesbery, W. R. Hypothalamic astrocytoma. Syndrome of hyperphagia, obesity, and disturbances of behavior and endocrine and autonomic function. Arch. Neurol. 40, 560–563 (1983).

  129. 129

    Bejjani, B. P. et al. Aggressive behavior induced by intraoperative stimulation in the triangle of Sano. Neurology 59, 1425–1427 (2002).

  130. 130

    Brodal, P. The Central Nervous System: Structure and Function (Oxford Univ. Press, New York, USA, 2003).

  131. 131

    Haidt, J. in Handbook of Affective Sciences (eds Davidson, R. J., Scherer, K. R. & Goldsmith, H. H.) 852–870 (Oxford Univ. Press, Oxford, USA, 2003).

  132. 132

    Tangney, J. P. in Self and Motivation: Emerging Psychological Perspectives (eds Tesser, A., Stapel, D. A. & Wood, J. V.) 97–117 (American Psychological Association, Washington DC, USA, 2002).

  133. 133

    Fessler, D. in Beyond Nature or Nurture: Biocultural Approaches to the Emotions (ed. Hinton, A.) 75–116 (Cambridge Univ. Press, New York, USA, 1999).

  134. 134

    Haidt, J. The emotional dog and its rational tail: a social intuitionist approach to moral judgment. Psychol. Rev. 108, 814–834 (2001).

  135. 135

    Cunningham, W. A., Nezlek, J. B. & Banaji, M. R. Implicit and explicit ethnocentrism: revisiting the ideologies of prejudice. Pers. Soc. Psychol. Bull. 30, 1332–1346 (2004).

  136. 136

    Schultz, W. Getting formal with dopamine and reward. Neuron 36, 241–263 (2002).

  137. 137

    McClure, S. M., Daw, N. D. & Montague, P. R. A computational substrate for incentive salience. Trends Neurosci. 26, 423–428 (2003).

  138. 138

    Schultz, W. & Dickinson, A. Neuronal coding of prediction errors. Annu. Rev. Neurosci. 23, 473–500 (2000).

  139. 139

    Kahneman, D. & Tversky, A. Prospect theory: an analysis of decision under risk. Econometrica 47, 263–291 (1979).

  140. 140

    Fukatsu, R., Fujii, T., Yamadori, A., Nagasawa, H. & Sakurai, Y. Persisting childish behavior after bilateral thalamic infarcts. Eur. Neurol. 37, 230–235 (1997).

  141. 141

    Murphy, J. M. Psychiatric labeling in cross-cultural perspective. Science 191, 1019–1028 (1976).

  142. 142

    Henrich, J. et al. (eds) Foundations of Human Sociality (Oxford Univ. Press, London, UK, 2004).

  143. 143

    Rilling, J. K., Sanfey, A. G., Aronson, J. A., Nystrom, L. E. & Cohen, J. D. The neural correlates of theory of mind within interpersonal interactions. Neuroimage 22, 1694–1703 (2004).

  144. 144

    Sanfey, A. G., Rilling, J. K., Aronson, J. A., Nystrom, L. E. & Cohen, J. D. The neural basis of economic decision-making in the Ultimatum Game. Science 300, 1755–1758 (2003).

  145. 145

    de Quervain, D. J. et al. The neural basis of altruistic punishment. Science 305, 1254–1258 (2004).

  146. 146

    Paciotti, B., Hadley, C., Holmes, C. & Mulder, M. B. Grass-roots justice in Tanzania: cultural evolution and game theory help to explain how a history of cooperation influences the success of social organizations. Am. Scientist 93, 58–65 (2005).

  147. 147

    University of Iowa's Virtual Hospital [online] <> (2005).

  148. 148

    Martin, J. H. Neuroanatomy: Text and Atlas 2nd edn (Appleton & Lange, Stamford, Connecticut, 1996).

  149. 149

    Lang, P. J., Bradley, M. M. & Cuthbert, B. N. International affective picture system (IAPS): digitized photographs, instruction manual and affective ratings. Technical Report A-6. (Univ. Florida, Gainesville, Florida, USA, 2005).

  150. 150

    Phan, K. L., Wager, T., Taylor, S. F. & Liberzon, I. Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. Neuroimage 16, 331–348 (2002).

  151. 151

    Moll, J. et al. The moral affiliations of disgust: a functional MRI study. Cogn. Behav. Neurol. 18, 68–78 (2005).

Download references


This research was partially supported by the LABS-D'Or Hospital Network and by the Intramural Research Program of the National Institute of Neurological Disorders and Stroke, National Institutes of Health.

Author information

Correspondence to Jordan Grafman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links


Cognitive Neuroscience Section, NINDS, NIH

Cognitive and Behavioural Neuroscience Unit, LABS-D'Or Hospital Network



Context-dependent, emotionally laden social concepts and intuitions.


A collection of emotions that are shared by most mammals (for example, fear, sadness, disgust, anger, happiness and surprise) that can readily be recognized from facial expressions (mimicry), gaze direction, voice intonation, gestures and body postures.


Temporal synchronization of different neuronal assemblies, which correspond to stored neural representations, or codes.


The mechanism by which a previously learned automatic behavioural response is extinguished.


A card-sorting task designed to probe implicit mechanisms that govern individual choices in reward and punishment contexts.


Emotions that are linked to the interest or welfare of other people or society as a whole.


A type of evaluative judgement that is based on assessments of the adequacy of one's own and others' behaviours according to socially shaped ideas of right and wrong.


The thinking mechanism through which moral judgements are attained.


Culturally shaped concepts and attitudes that code for personal and societal preferences and standards.


An interdisciplinary field that aims to understand cognitive and neurobiological mechanisms that underlie choice behaviour and utility estimation.


Simultaneous perception of sensory stimuli in one or more sensory modalities, experienced as a unified, integrated pattern.


A severe form of antisocial personality disorder, characterized by callousness and lack of empathy.


A change in a learned behavioural response following a change in reinforcement contingencies.


Sophisticated mind-reading tasks that require the evaluation of what another person believes that a third person is thinking.


A specific cognitive ability that allows one to understand other people as intentional, perceptive and emotional agents, or to interpret their minds in terms of intentional, perceptual or feeling states.


A moral philosophical theory according to which the best decisions are those that lead to the higher overall degree of happiness or well-being for the greatest number of people.

Rights and permissions

Reprints and Permissions

About this article

Further reading