Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Storage solutions: treating lysosomal disorders of the brain

Key Points

  • Neurodegenerative diseases fall into two general categories: the idiopathic diseases that are associated with ageing (for example, Alzheimer's disease and Parkinson's disease) and the less common disorders that typically present in infancy or childhood, which result from monogenic defects (for example, Tay–Sachs disease). It is highly likely that unravelling the underlying pathological processes in both classes of disorder will have broad implications for the understanding and clinical management of neurodegenerative diseases as a whole.

  • This review focuses on a family of monogenic neurodegenerative diseases, the lysosomal storage disorders. These typically result from the autosomal recessive inheritance of defects in one of the genes that encode a catabolic lysosomal enzyme. The substrate for the defective enzyme accumulates, and complex downstream pathogenic pathways are activated, leading to cellular dysfunction and, ultimately, cell death.

  • These diseases have a high degree of clinical heterogeneity, and neuropathological symptoms include developmental delay, abnormal ocular movements, ataxia, seizures, movement disorders, spasticity, visual loss and psychiatric disease.

  • Much recent progress has been made in understanding the pathogenic cascades that are triggered by lysosomal storage, and many storage disorders have been shown to share pathological features with the common neurodegenerative diseases — for example, atypical inflammation in the CNS, altered calcium homeostasis and altered endosomal/lysosomal function.

  • The availability of spontaneous and engineered animal models of storage diseases has led to considerable advances in therapy, many of which are in clinical use or in clinical trials. One example of a new therapeutic approach is substrate reduction therapy (miglustat; Zavesca; Celltech/Actelion), which has been approved for use in the most common glycosphingolipid storage disease, type 1 Gaucher disease. Substrate reduction therapy is in clinical trials for neuronopathic storage diseases such as type 3 Gaucher disease, late-onset Tay–Sachs disease and Niemann–Pick disease type C. Experimental approaches such as gene therapy and neural stem cell therapy are currently being evaluated in animal disease models.

  • The storage of molecules, either in the lysosome or at extra-lysosomal sites, is a common hallmark of many neurodegenerative conditions. The challenge now is to determine whether the failure to degrade molecules leads to a common response in the brain. This offers the prospect of developing therapies that, in the future, could be used to treat several neurodegenerative disorders.

Abstract

Many neurodegenerative diseases are characterized by the accumulation of undegradable molecules in cells or at extracellular sites in the brain. One such family of diseases is the lysosomal storage disorders, which result from defects in various aspects of lysosomal function. Until recently, there was little prospect of treating storage diseases involving the CNS. However, recent progress has been made in understanding these conditions and in translating the findings into experimental therapies. We review the developments in this field and discuss the similarities in pathological features between these diseases and some more common neurodegenerative disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Glycosphingolipid storage in mice with Sandhoff disease.
Figure 2: Neuroinflammation — the point of convergence for distinct neurodegenerative disorders.

Similar content being viewed by others

References

  1. Hamburger, V. Cell death in the development of the lateral motor column of the chick embryo. J. Comp. Neurol. 160, 535–546 (1975).

    Article  CAS  PubMed  Google Scholar 

  2. Prunell, G. F. & Troy, C. M. Balancing neuronal death. J. Neurosci. Res. 78, 1–6 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Przedborski, S., Vila, M. & Jackson-Lewis, V. Neurodegeneration: what is it and where are we? J. Clin. Invest. 111, 3–10 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schulte, P. A., Burnett, C. A., Boeniger, M. F. & Johnson, J. Neurodegenerative diseases: occupational occurrence and potential risk factors, 1982 through 1991. Am. J. Public Health 86, 1281–1288 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Platt, F. M. & Walkley, S. U. in Lysosomal Disorders of the Brain (eds Platt, F. M. & Walkley, S. U.) 32–49 (Oxford Univ. Press, Oxford, 2004).

    Book  Google Scholar 

  6. Wraith, J. E. Lysosomal disorders. Semin. Neonatol. 7, 75–83 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Hopwood, J. J., Crawley, A. C. & Taylor, R. M. in Lysosomal Disorders of the Brain (eds Platt, F. M. & Walkley, S. U.) 257–289 (Oxford Univ. Press, Oxford, 2004).

    Book  Google Scholar 

  8. Rapola, J. Lysosomal storage diseases in adults. Pathol. Res. Pract. 190, 759–766 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Meikle, P. J., Hopwood, J. J., Clague, A. E. & Carey, W. F. Prevalence of lysosomal storage disorders. JAMA 281, 249–254 (1999). Currently the most comprehensive study of storage disease prevalence.

    Article  CAS  PubMed  Google Scholar 

  10. Dahl, N., Lagerstrom, M., Erikson, A. & Pettersson, U. Gaucher disease type III (Norrbottnian type) is caused by a single mutation in exon 10 of the glucocerebrosidase gene. Am. J. Hum. Genet. 47, 275–278 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ozkara, H. A. & Topcu, M. Sphingolipidoses in Turkey. Brain Dev. 26, 363–366 (2004).

    Article  PubMed  Google Scholar 

  12. Winchester, B. in Lysosomal Disorders of the Brain (eds Platt, F. M. & Walkley, S. U.) 81–130 (Oxford Univ. Press, Oxford, 2004).

    Book  Google Scholar 

  13. Beutler, E. Gaucher disease as a paradigm of current issues regarding single gene mutations of humans. Proc. Natl Acad. Sci. USA 90, 5384–5390 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Diamond, J. M. Jewish lysosomes. Nature 368, 291–292 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Beutler, E. et al. Gaucher disease: gene frequencies in the Ashkenazi Jewish population. Am. J. Hum. Genet. 52, 85–88 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hers, H. G. α-Glucosidase deficiency in generalised glycogen storage disease (Pompe's disease). Biochem. J. 86, 11–16 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Futerman, A. H. & van Meer, G. The cell biology of lysosomal storage disorders. Nature Rev. Mol. Cell Biol. 5, 554–565 (2004).

    Article  CAS  Google Scholar 

  18. Desnick, R. J., Thorpe, S. R. & Fiddler, M. B. Toward enzyme therapy for lysosomal storage diseases. Physiol. Rev. 56, 57–99 (1976).

    Article  CAS  PubMed  Google Scholar 

  19. Norflus, F. et al. Bone marrow transplantation prolongs life span and ameliorates neurologic manifestations in Sandhoff disease mice. J. Clin. Invest. 101, 1881–1888 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Andersson, U. et al. Improved outcome of N-butyldeoxygalactonojirimycin-mediated substrate reduction therapy in a mouse model of Sandhoff disease. Neurobiol. Dis. 16, 506–515 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Huang, J. Q. et al. Apoptotic cell death in mouse models of GM2 gangliosidosis and observations on human Tay–Sachs and Sandhoff diseases. Hum. Mol. Genet. 6, 1879–1885 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Walkley, S. U. Secondary accumulation of gangliosides in lysosomal storage disorders. Semin. Cell Dev. Biol. 15, 433–444 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Selkoe, D. J. Cell biology of protein misfolding: the examples of Alzheimer's and Parkinson's diseases. Nature Cell Biol. 6, 1054–1061 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Klein, A. et al. Identification of urinary oligosaccharides by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin. Chem. 44, 2422–2428 (1998).

    CAS  PubMed  Google Scholar 

  25. Beutler, E. & Grabowski, G. in The Metabolic and Molecular Bases of Inherited Diseases (ed. Sly, W. S.) 3636–3668 (McGraw Hill, New York, 2001).

    Google Scholar 

  26. Suzuki, K. The pattern of mammalian brain gangliosides — regional and developmental differences. J. Neurochem. 12, 969–979 (1965).

    Article  CAS  Google Scholar 

  27. Overly, C. C. & Hollenbeck, P. J. Dynamic organization of endocytic pathways in axons of cultured sympathetic neurons. J. Neurosci. 16, 6056–6064 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Walkley, S. U. in Lysosomal Disorders of the Brain (eds Platt, F. M. & Walkley, S. U.) 290–324 (Oxford Univ. Press, Oxford, 2004).

    Book  Google Scholar 

  29. Walkley, S. U., Zervas, M. & Wiseman, S. Gangliosides as modulators of dendritogenesis in normal and storage disease — affected pyramidal neurons. Cereb. Cortex 10, 1028–1037 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Walkley, S. U., Siegel, D. A. & Dobrenis, K. GM2 ganglioside and pyramidal neuron dendritogenesis. Neurochem. Res. 20, 1287–1299 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Chiesa, R. et al. Bax deletion prevents neuronal loss but not neurological symptoms in a transgenic model of inherited prion disease. Proc. Natl Acad. Sci. USA 102, 238–243 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Purpura, D. P., Highstein, S. M., Karabelas, A. B. & Walkley, S. U. Intracellular recording and HRP-staining of cortical neurons in feline ganglioside storage disease. Brain Res. 181, 446–449 (1980).

    Article  CAS  PubMed  Google Scholar 

  33. Karabelas, A. B. & Walkley, S. U. Altered patterns of evoked synaptic activity in cortical pyramidal neurons in feline ganglioside storage disease. Brain Res. 339, 329–336 (1985).

    Article  CAS  PubMed  Google Scholar 

  34. Chen, C. S., Patterson, M. C., Wheatley, C. L., O'Brien, J. F. & Pagano, R. E. Broad screening test for sphingolipid-storage diseases. Lancet 354, 901–905 (1999). The identification of a global trafficking defect in sphingolipid storage diseases.

    Article  CAS  PubMed  Google Scholar 

  35. Puri, V. et al. Cholesterol modulates membrane traffic along the endocytic pathway in sphingolipid-storage diseases. Nature Cell Biol. 1, 386–388 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Sillence, D. J. et al. Glucosylceramide modulates membrane traffic along the endocytic pathway. J. Lipid Res. 43, 1837–1845 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Golub, T., Wacha, S. & Caroni, P. Spatial and temporal control of signaling through lipid rafts. Curr. Opin. Neurobiol. 14, 542–550 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Sharma, D. K. et al. Glycosphingolipids internalized via caveolar-related endocytosis rapidly merge with the clathrin pathway in early endosomes and form microdomains for recycling. J. Biol. Chem. 278, 7564–7572 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Gruenberg, J. The endocytic pathway: a mosaic of domains. Nature Rev. Mol. Cell Biol. 2, 721–730 (2001).

    Article  CAS  Google Scholar 

  40. Sharma, P., Sabharanjak, S. & Mayor, S. Endocytosis of lipid rafts: an identity crisis. Semin. Cell Dev. Biol. 13, 205–214 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Dermine, J. F. et al. Flotillin-1-enriched lipid raft domains accumulate on maturing phagosomes. J. Biol. Chem. 276, 18507–18512 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Bagshaw, R. D., Mahuran, D. J. & Callahan, J. W. A proteomic analysis of lysosomal integral membrane proteins reveals the diverse composition of the organelle. Mol. Cell. Proteomics 4, 133–143 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Pagano, R. E., Puri, V., Dominguez, M. & Marks, D. L. Membrane traffic in sphingolipid storage diseases. Traffic 1, 807–815 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Simons, K. & Gruenberg, J. Jamming the endosomal system: lipid rafts and lysosomal storage diseases. Trends Cell Biol. 10, 459–462 (2000). A review that proposes the raft hypothesis of lysosomal storage diseases.

    Article  CAS  PubMed  Google Scholar 

  45. Zervas, M., Somers, K. L., Thrall, M. A. & Walkley, S. U. Critical role for glycosphingolipids in Niemann–Pick disease type C. Curr. Biol. 11, 1283–1287 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Berridge, M. J., Bootman, M. D. & Roderick, H. L. Calcium signalling: dynamics, homeostasis and remodelling. Nature Rev. Mol. Cell Biol. 4, 517–529 (2003).

    Article  CAS  Google Scholar 

  47. Korkotian, E. et al. Elevation of intracellular glucosylceramide levels results in an increase in endoplasmic reticulum density and in functional calcium stores in cultured neurons. J. Biol. Chem. 274, 21673–21678 (1999). The first study to implicate defects in calcium homeostasis in a lysosomal storage disease.

    Article  CAS  PubMed  Google Scholar 

  48. Lloyd-Evans, E. et al. Glucosylceramide and glucosylsphingosine modulate calcium mobilization from brain microsomes via different mechanisms. J. Biol. Chem. 278, 23594–23599 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Pelled, D. et al. Enhanced calcium release in the acute neuronopathic form of Gaucher disease. Neurobiol. Dis. 18, 83–88 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Pelled, D. et al. Inhibition of calcium uptake via the sarco/endoplasmic reticulum Ca2+-ATPase in a mouse model of Sandhoff disease and prevention by treatment with N-butyldeoxynojirimycin. J. Biol. Chem. 278, 29496–29501 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Ginzburg, L., Kacher, Y. & Futerman, A. H. The pathogenesis of glycosphingolipid storage disorders. Semin. Cell Dev. Biol. 15, 417–431 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Bezprozvanny, I. & Hayden, M. R. Deranged neuronal calcium signaling and Huntington disease. Biochem. Biophys. Res. Commun. 322, 1310–1317 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Mandel, S. et al. Neuroprotective strategies in Parkinson's disease: an update on progress. CNS Drugs 17, 729–762 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Albin, R. L. Dominant ataxias and Friedreich ataxia: an update. Curr. Opin. Neurol. 16, 507–514 (2003).

    PubMed  Google Scholar 

  55. Ho, R., Ortiz, D. & Shea, T. B. Amyloid-β promotes calcium influx and neurodegeneration via stimulation of L voltage-sensitive calcium channels rather than NMDA channels in cultured neurons. J. Alzheimers Dis. 3, 479–483 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Kawahara, M. & Kuroda, Y. Molecular mechanism of neurodegeneration induced by Alzheimer's β-amyloid protein: channel formation and disruption of calcium homeostasis. Brain Res. Bull. 53, 389–397 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Tessitore, A. et al. G(M1)-ganglioside-mediated activation of the unfolded protein response causes neuronal death in a neurodegenerative gangliosidosis. Mol. Cell 15, 753–766 (2004). The first study to show an unfolded protein response in a storage disease.

    Article  CAS  PubMed  Google Scholar 

  58. Forman, M. S., Lee, V. M. & Trojanowski, J. Q. 'Unfolding' pathways in neurodegenerative disease. Trends Neurosci. 26, 407–410 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Ryu, E. J. et al. Endoplasmic reticulum stress and the unfolded protein response in cellular models of Parkinson's disease. J. Neurosci. 22, 10690–10698 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Imaizumi, K. et al. The unfolded protein response and Alzheimer's disease. Biochim. Biophys. Acta 1536, 85–96 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Kudo, T. et al. The unfolded protein response is involved in the pathology of Alzheimer's disease. Ann. NY Acad. Sci. 977, 349–355 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Ron, D. & Oyadomari, S. Lipid phase perturbations and the unfolded protein response. Dev. Cell 7, 287–288 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. McGeer, E. G. & McGeer, P. L. Inflammatory processes in Alzheimer's disease. Prog. Neuropsychopharmacol. Biol. Psychiatry 27, 741–749 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Streit, W. J. Microglia and Alzheimer's disease pathogenesis. J. Neurosci. Res. 77, 1–8 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Tuppo, E. E. & Arias, H. R. The role of inflammation in Alzheimer's disease. Int. J. Biochem. Cell Biol. 37, 289–305 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. McGeer, P. L. & McGeer, E. G. Inflammatory processes in amyotrophic lateral sclerosis. Muscle Nerve 26, 459–470 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. McGeer, P. L. & McGeer, E. G. Inflammation and neurodegeneration in Parkinson's disease. Parkinsonism Relat. Disord. 10 (Suppl. 1), S3–S7 (2004).

    Article  PubMed  Google Scholar 

  68. Perry, V. H., Cunningham, C. & Boche, D. Atypical inflammation in the central nervous system in prion disease. Curr. Opin. Neurol. 15, 349–354 (2002).

    Article  PubMed  Google Scholar 

  69. Perry, V. H. The influence of systemic inflammation on inflammation in the brain: implications for chronic neurodegenerative disease. Brain Behav. Immun. 18, 407–413 (2004). A comprehensive review of how stimulation of the peripheral immune system can exacerbate inflammation in the CNS in neurodegenerative diseases.

    Article  CAS  PubMed  Google Scholar 

  70. Jeyakumar, M. et al. Central nervous system inflammation is a hallmark of pathogenesis in mouse models of GM1 and GM2 gangliosidosis. Brain 126, 974–987 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Myerowitz, R. et al. Molecular pathophysiology in Tay–Sachs and Sandhoff diseases as revealed by gene expression profiling. Hum. Mol. Genet. 11, 1343–1350 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Wada, R., Tifft, C. J. & Proia, R. L. Microglial activation precedes acute neurodegeneration in Sandhoff disease and is supressed by bone marrow transplantation. Proc. Natl Acad. Sci. USA 97, 10954–10959 (2000). The first demonstration of a potentially causative role of microglia in the disease pathogenesis of a ganglioside storage disorder.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Baudry, M., Yao, Y., Simmons, D., Liu, J. & Bi, X. Postnatal development of inflammation in a murine model of Niemann-Pick type C disease: immunohistochemical observations of microglia and astroglia. Exp. Neurol. 184, 887–903 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. LeVine, S. M. & Brown, D. C. IL-6 and TNFα expression in brains of twitcher, quaking and normal mice. J. Neuroimmunol. 73, 47–56 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. Pedchenko, T. V. & LeVine, S. M. IL-6 deficiency causes enhanced pathology in twitcher (globoid cell leukodystrophy) mice. Exp. Neurol. 158, 459–468 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Fadok, V. A. et al. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-β, PGE2, and PAF. J. Clin. Invest. 101, 890–898 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Neufeld, E. F. in Lysosomal Disorders of the Brain (eds Platt, F. M. & Walkley, S. U.) 327–338 (Oxford Univ. Press, Oxford, 2004).

    Book  Google Scholar 

  78. Brady, R. O. Enzyme replacement therapy: conception, chaos and culmination. Phil. Trans. R. Soc. Lond. B 358, 915–919 (2003). A review of the history of the challenges involved in and the ultimate success of developing effective ERT for type 1 Gaucher disease.

    Article  CAS  Google Scholar 

  79. Campbell, P. E., Harris, C. M. & Vellodi, A. Deterioration of the auditory brainstem response in children with type 3 Gaucher disease. Neurology 63, 385–387 (2004).

    Article  PubMed  Google Scholar 

  80. Erikson, A., Bembi, B. & Schiffmann, R. Neuronopathic forms of Gaucher's disease. Baillieres Clin. Haematol. 10, 711–723 (1997).

    Article  CAS  PubMed  Google Scholar 

  81. Wraith, J. E. in Lysosomal Disorders of the Brain (eds Platt, F. M. & Walkley, S. U.) 50–77 (Oxford Univ. Press, Oxford, 2004).

    Book  Google Scholar 

  82. Dobrenis, K. in Lysosomal Disorders of the Brain (eds Platt, F. M. & Walkley, S. U.) 339–380 (Oxford Univ. Press, Oxford, 2004).

    Book  Google Scholar 

  83. Sands, M. S. in Lysosomal Disorders of the Brain (eds. Platt, F. M. & Walkley, S. U.) 409–430 (Oxford Univ. Press, Oxford, 2004).

    Book  Google Scholar 

  84. Conzelmann, E. & Sandhoff, K. Biochemical basis of late-onset neurolipidoses. Dev. Neurosci. 13, 197–204 (1991). A seminal theoretical paper defining the threshold hypothesis of storage that explains the differential rate of the clinical onset of symptoms.

    Article  CAS  PubMed  Google Scholar 

  85. Snyder, E. Y., Daley, G. Q. & Goodell, M. Taking stock and planning for the next decade: realistic prospects for stem cell therapies for the nervous system. J. Neurosci. Res. 76, 157–168 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Vunnam, R. R. & Radin, N. S. Analogs of ceramide that inhibit glucocerebroside synthetase in mouse brain. Chem. Phys. Lipids 26, 265–278 (1980).

    Article  CAS  PubMed  Google Scholar 

  87. Radin, N. S. Treatment of Gaucher disease with an enzyme inhibitor. Glycoconj. J. 13, 153–157 (1996).

    Article  CAS  PubMed  Google Scholar 

  88. Platt, F. M. & Butters, T. D. in Lysosomal Disorders of the Brain (eds Platt, F. M. & Walkley, S. U.) 381–408 (Oxford Univ. Press, Oxford, 2004).

    Book  Google Scholar 

  89. Liu, Y. et al. A genetic model of substrate deprivation therapy for a glycosphingolipid storage disorder. J. Clin. Invest. 103, 497–505 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Winchester, B. & Fleet, G. W. Amino-sugar glycosidase inhibitors: versatile tools for glycobiologists. Glycobiology 2, 199–210 (1992).

    Article  CAS  PubMed  Google Scholar 

  91. Fischer, P. B. et al. The α-glucosidase inhibitor N-butyldeoxynojirimycin inhibits human immunodeficiency virus entry at the level of post-CD4 binding. J. Virol. 69, 5791–5797 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Fischl, M. A. et al. The safety and efficacy of combination N-butyl-deoxynojirimycin (SC-48334) and zidovudine in patients with HIV-1 infection and 200–500 CD4 cells/mm3. J. Acquir. Immune Defic. Syndr. 7, 139–147 (1994).

    CAS  PubMed  Google Scholar 

  93. Platt, F. M., Neises, G. R., Dwek, R. A. & Butters, T. D. N-butyldeoxynojirimycin is a novel inhibitor of glycolipid biosynthesis. J. Biol. Chem. 269, 8362–8365 (1994).

    CAS  PubMed  Google Scholar 

  94. Cox, T. et al. Novel oral treatment of Gaucher's disease with N-butyldeoxynojirimycin (OGT 918) to decrease substrate biosynthesis. Lancet 355, 1481–1485 (2000). The first demonstration of clinical efficacy of SRT in patients with type 1 Gaucher disease.

    Article  CAS  PubMed  Google Scholar 

  95. Lachmann, R. H. Miglustat. Oxford GlycoSciences/Actelion. Curr. Opin. Investig. Drugs 4, 472–479 (2003).

    CAS  PubMed  Google Scholar 

  96. Sango, K. et al. Mouse models of Tay–Sachs and Sandhoff diseases differ in neurologic phenotype and ganglioside metabolism. Nature Genet. 11, 170–176 (1995).

    Article  CAS  PubMed  Google Scholar 

  97. Jeyakumar, M. et al. Delayed symptom onset and increased life expectancy in Sandhoff disease mice treated with N-butyldeoxynojirimycin. Proc. Natl Acad. Sci. USA 96, 6388–6393 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Platt, F. M. et al. Prevention of lysosomal storage in Tay–Sachs mice treated with N-butyldeoxynojirimycin. Science 276, 428–431 (1997).

    Article  CAS  PubMed  Google Scholar 

  99. Platt, F. M., Reinkensmeier, G., Dwek, R. A. & Butters, T. D. Extensive glycosphingolipid depletion in the liver and lymphoid organs of mice treated with N-butyldeoxynojirimycin. J. Biol. Chem. 272, 19365–19372 (1997).

    Article  CAS  PubMed  Google Scholar 

  100. Fan, J. Q., Ishii, S., Asano, N. & Suzuki, Y. Accelerated transport and maturation of lysosomal α-galactosidase A in Fabry lymphoblasts by an enzyme inhibitor. Nature Med. 5, 112–115 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Frustaci, A. et al. Improvement in cardiac function in the cardiac variant of Fabry's disease with galactose-infusion therapy. N. Engl. J. Med. 345, 25–32 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Ikonen, E. & Holtta-Vuori, M. Cellular pathology of Niemann–Pick type C disease. Semin. Cell Dev. Biol. 15, 445–454 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Lachmann, R. H. et al. Treatment with miglustat reverses the lipid-trafficking defect in Niemann–Pick disease type C. Neurobiol. Dis. 16, 654–658 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. te Vruchte, D. et al. Accumulation of glycosphingolipids in Niemann–Pick C disease disrupts endosomal transport. J. Biol. Chem. 279, 26167–26175 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Griffin, L. D., Gong, W., Verot, L. & Mellon, S. H. Niemann–Pick type C disease involves disrupted neurosteroidogenesis and responds to allopregnanolone. Nature Med. 10, 704–711 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Wu, Y. P. & Proia, R. L. Deletion of macrophage-inflammatory protein 1 α retards neurodegeneration in Sandhoff disease mice. Proc. Natl Acad. Sci. USA 101, 8425–8430 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yamaguchi, A. et al. Possible role of autoantibodies in the pathophysiology of GM2 gangliosidoses. J. Clin. Invest. 113, 200–208 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Jeyakumar, M. et al. NSAIDs increase survival in the Sandhoff disease mouse: synergy with N-butyldeoxynojirimycin. Ann. Neurol. 56, 642–649 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Etminan, M., Gill, S. & Samii, A. Effect of non-steroidal anti-inflammatory drugs on risk of Alzheimer's disease: systematic review and meta-analysis of observational studies. BMJ 327, 128 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Dietz, G. P. & Bahr, M. Delivery of bioactive molecules into the cell: the Trojan horse approach. Mol. Cell. Neurosci. 27, 85–131 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Maxfield, F. R. & McGraw, T. E. Endocytic recycling. Nature Rev. Mol. Cell Biol. 5, 121–132 (2004).

    Article  CAS  Google Scholar 

  112. Tettamanti, G., Bassi, R., Viani, P. & Riboni, L. Salvage pathways in glycosphingolipid metabolism. Biochimie 85, 423–437 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Jaiswal, J. K., Andrews, N. W. & Simon, S. M. Membrane proximal lysosomes are the major vesicles responsible for calcium-dependent exocytosis in nonsecretory cells. J. Cell Biol. 159, 625–635 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Stinchcombe, J. C. & Griffiths, G. M. Regulated secretion from hemopoietic cells. J. Cell Biol. 147, 1–6 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lachmann, R. H., Grant, I. R., Halsall, D. & Cox, T. M. Twin pairs showing discordance of phenotype in adult Gaucher's disease. QJM 97, 199–204 (2004). Clinical case reports that implicate both genetic and environmental factors in the clinical presentation of type 1 Gaucher disease.

    Article  CAS  PubMed  Google Scholar 

  116. Maire, I. Is genotype determination useful in predicting the clinical phenotype in lysosomal storage diseases? J. Inherit. Metab. Dis. 24 (Suppl. 2), 57–61; discussion 45–46 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Hauser, A. C., Lorenz, M. & Sunder-Plassmann, G. The expanding clinical spectrum of Anderson-Fabry disease: a challenge to diagnosis in the novel era of enzyme replacement therapy. J. Intern. Med. 255, 629–636 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Nixon, R. A. Endosome function and dysfunction in Alzheimer's disease and other neurodegenerative diseases. Neurobiol. Aging 26, 373–382 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Sly, W. S. Enzyme replacement therapy for lysosomal storage disorders: successful transition from concept to clinical practice. Mo. Med. 101, 100–104 (2004).

    PubMed  Google Scholar 

  120. Brady, R. O. & Schiffmann, R. Enzyme-replacement therapy for metabolic storage disorders. Lancet Neurol. 3, 752–756 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Eng, C. M. et al. A phase 1/2 clinical trial of enzyme replacement in Fabry disease: pharmacokinetic, substrate clearance, and safety studies. Am. J. Hum. Genet. 68, 711–722 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Schiffmann, R. et al. Infusion of α-galactosidase A reduces tissue globotriaosylceramide storage in patients with Fabry disease. Proc. Natl Acad. Sci. USA 97, 365–370 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Charrow, J. et al. Enzyme replacement therapy and monitoring for children with type 1 Gaucher disease: consensus recommendations. J. Pediatr. 144, 112–120 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Barbey, F., Hayoz, D., Widmer, U. & Burnier, M. Efficacy of enzyme replacement therapy in Fabry disease. Curr. Med. Chem. Cardiovasc. Hematol. Agents 2, 277–286 (2004).

    Article  CAS  PubMed  Google Scholar 

  125. Ringden, O. et al. Ten years' experience of bone marrow transplantation for Gaucher disease. Transplantation 59, 864–870 (1995).

    Article  CAS  PubMed  Google Scholar 

  126. Wraith, J. E. Advances in the treatment of lysosomal storage disease. Dev. Med. Child Neurol. 43, 639–646 (2001).

    Article  CAS  PubMed  Google Scholar 

  127. Krivit, W., Sung, J. H., Shapiro, E. G. & Lockman, L. A. Microglia: the effector cell for reconstitution of the central nervous system following bone marrow transplantation for lysosomal and peroxisomal storage diseases. Cell Transplant. 4, 385–392 (1995).

    Article  CAS  PubMed  Google Scholar 

  128. Hoogerbrugge, P. M. & Valerio, D. Bone marrow transplantation and gene therapy for lysosomal storage diseases. Bone Marrow Transplant. 21 (Suppl. 2), S34–S36 (1998).

    PubMed  Google Scholar 

  129. Shapiro, E. G., Lockman, L. A., Balthazor, M. & Krivit, W. Neuropsychological outcomes of several storage diseases with and without bone marrow transplantation. J. Inherit. Metab. Dis. 18, 413–429 (1995).

    Article  CAS  PubMed  Google Scholar 

  130. O'Brien, J. S. et al. Bone marrow transplantation in canine GM1 gangliosidosis. Clin. Genet. 38, 274–280 (1990).

    Article  CAS  PubMed  Google Scholar 

  131. Lacorazza, H. D., Flax, J. D., Snyder, E. Y. & Jendoubi, M. Expression of human β-hexosaminidase α-subunit gene (the gene defect of Tay-Sachs disease) in mouse brains upon engraftment of transduced progenitor cells. Nature Med. 2, 424–429 (1996).

    Article  CAS  PubMed  Google Scholar 

  132. Cheng, S. H. & Smith, A. E. Gene therapy progress and prospects: gene therapy of lysosomal storage disorders. Gene Ther. 10, 1275–1281 (2003).

    Article  CAS  PubMed  Google Scholar 

  133. Bourgoin, C. et al. Widespread distribution of β-hexosaminidase activity in the brain of a Sandhoff mouse model after coinjection of adenoviral vector and mannitol. Gene Ther. 10, 1841–1849 (2003).

    Article  CAS  PubMed  Google Scholar 

  134. Yamaguchi, A. et al. Plasmid-based gene transfer ameliorates visceral storage in a mouse model of Sandhoff disease. J. Mol. Med. 81, 185–193 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Guidotti, J. E. et al. Adenoviral gene therapy of the Tay–Sachs disease in hexosaminidase A-deficient knock-out mice. Hum. Mol. Genet. 8, 831–838 (1999).

    Article  CAS  PubMed  Google Scholar 

  136. Eto, Y., Shen, J. S., Meng, X. L. & Ohashi, T. Treatment of lysosomal storage disorders: cell therapy and gene therapy. J. Inherit. Metab. Dis. 27, 411–415 (2004).

    Article  CAS  PubMed  Google Scholar 

  137. Shen, J. S. et al. Widespread and highly persistent gene transfer to the CNS by retrovirus vector in utero: implication for gene therapy to Krabbe disease. J. Gene Med. (2005).

  138. Matzner, U. et al. Bone marrow stem cell-based gene transfer in a mouse model for metachromatic leukodystrophy: effects on visceral and nervous system disease manifestations. Gene Ther. 9, 53–63 (2002).

    Article  CAS  PubMed  Google Scholar 

  139. Matsuda, J. et al. Chemical chaperone therapy for brain pathology in GM1-gangliosidosis. Proc. Natl Acad. Sci. USA 100, 15912–15917 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Sawkar, A. R. et al. Chemical chaperones increase the cellular activity of N370S β-glucosidase: a therapeutic strategy for Gaucher disease. Proc. Natl Acad. Sci. USA 99, 15428–15433 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Tropak, M. B., Reid, S. P., Guiral, M., Withers, S. G. & Mahuran, D. Pharmacological enhancement of β-hexosaminidase activity in fibroblasts from adult Tay–Sachs and Sandhoff Patients. J. Biol. Chem. 279, 13478–13487 (2004).

    Article  CAS  PubMed  Google Scholar 

  142. Yam, G. H., Zuber, C. & Roth, J. A synthetic chaperone corrects the trafficking defect and disease phenotype in a protein misfolding disorder. FASEB J. 19, 12–18 (2005).

    Article  CAS  PubMed  Google Scholar 

  143. Ishii, S., Yoshioka, H., Mannen, K., Kulkarni, A. B. & Fan, J. Q. Transgenic mouse expressing human mutant α-galactosidase A in an endogenous enzyme deficient background: a biochemical animal model for studying active-site specific chaperone therapy for Fabry disease. Biochim. Biophys. Acta 1690, 250–257 (2004).

    Article  CAS  PubMed  Google Scholar 

  144. Asano, N. et al. In vitro inhibition and intracellular enhancement of lysosomal α-galactosidase A activity in Fabry lymphoblasts by 1-deoxygalactonojirimycin and its derivatives. Eur. J. Biochem. 267, 4179–4186 (2000).

    Article  CAS  PubMed  Google Scholar 

  145. Dwek, R. A., Butters, T. D., Platt, F. M. & Zitzmann, N. Targeting glycosylation as a therapeutic approach. Nature Rev. Drug Discov. 1, 65–75 (2002).

    Article  CAS  Google Scholar 

  146. Kasperzyk, J. L., d'Azzo, A., Platt, F. M., Alroy, J. & Seyfried, T. N. Substrate reduction therapy reduces ganglioside content in postnatal cerebrum-brainstem and cerebellum in a mouse model of GM1 gangliosidosis. J. Lipid Res. 46, 744–751 (2005).

    Article  CAS  PubMed  Google Scholar 

  147. Kasperzyk, J. L. et al. N-butyldeoxygalactonojirimycin reduces neonatal brain ganglioside content in a mouse model of GM1 gangliosidosis. J. Neurochem. 89, 645–653 (2004).

    Article  CAS  PubMed  Google Scholar 

  148. Abe, A. et al. Reduction of globotriaosylceramide in Fabry disease mice by substrate deprivation. J. Clin. Invest. 105, 1563–1571 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zimran, A. & Elstein, D. Gaucher disease and the clinical experience with substrate reduction therapy. Phil. Trans. R. Soc. Lond. B 358, 961–966 (2003).

    Article  CAS  Google Scholar 

  150. Pastores, G. M. & Barnett, N. L. Substrate reduction therapy: miglustat as a remedy for symptomatic patients with Gaucher disease type 1. Expert Opin. Investig. Drugs 12, 273–281 (2003).

    Article  CAS  PubMed  Google Scholar 

  151. Jeyakumar, M. et al. Enhanced survival in Sandhoff disease mice receiving a combination of substrate deprivation therapy and bone marrow transplantation. Blood 97, 327–329 (2001).

    Article  CAS  PubMed  Google Scholar 

  152. Burns, M. P. & Duff, K. Brain on steroids resists neurodegeneration. Nature Med. 10, 675–676 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Perry, D. Sillence, E.-L. Evans and N. Platt for helpful comments on the manuscript. M.J. is supported by the Wellcome Trust and the Glycobiology Institute, University of Oxford, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frances M. Platt.

Ethics declarations

Competing interests

T.B., R.A.D. and F.P. have received a grant from Celltech.

Supplementary information

Supplementary information S1

Lysosomal storage disorders classified according to molecular defect. Reproduced, with permission, from REF. 1 © (2004) Oxford University Press. (PDF 125 kb)

1. Platt, F. M. & Walkley, S. U. in Lysosomal Disorders of the Brain: Recent Advances in Molecular and Cellular Pathogenesis and Treatment (eds Platt, F. M. & Walkley, S. U.) (Oxford Univ. Press, Oxford, 2004).

Related links

Related links

DATABASES

OMIM

Alzheimer's disease

amyotrophic lateral sclerosis

type 1 Gaucher disease

type 2 Gaucher disease

type 3 Gaucher disease

Huntington's disease

Krabbe disease

Niemann–Pick disease type C1

Parkinson's disease

Sandhoff disease

Tay–Sachs disease

FURTHER INFORMATION

Global Organisation for Lysosomal Diseases (GOLD)

Human Gene Mutation Database, gene lesions for human inherited disease

Inborn Errors in Metabolism web site

National Organisation for Rare Diseases

The European Study Group on Lysosomal Storage Diseases

Glossary

FOUNDER EFFECT

The introduction of a mutant gene into an isolated population by a founder individual, which leads to the spread of the mutant allele within the population. This causes disease in subsequent generations and an above average carrier frequency in that population.

HEPATOSPLENOMEGALY

Enlargement of the liver and spleen.

PULSE-CHASE LABELLING STUDIES

A label is used to tag the molecules of interest and the cells are then analysed over time to track their distribution and ultimate fate. The experiment also allows estimation of the half-life of the molecules of interest.

FRIEDREICH'S ATAXIA

An autosomal recessive disease that is characterized by CNS dysfunction leading to ataxia. Typically, the first symptoms occur in early childhood or adolescence.

ER CHAPERONE BiP

BiP is a homologue of heat shock protein 70. It is found in the endoplasmic reticulum of eukaryotic cells and facilitates protein folding.

IMMUNOLOGICALLY SILENT

Molecules that do not normally trigger an immune response — for example, 'self' components that must be 'ignored' by the immune system to avoid autoimmune disease.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeyakumar, M., Dwek, R., Butters, T. et al. Storage solutions: treating lysosomal disorders of the brain. Nat Rev Neurosci 6, 713–725 (2005). https://doi.org/10.1038/nrn1725

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1725

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing