The rhythm of rest and excess

Abstract

There is a stark contrast between our attitudes to sleep and those of the pre-industrial age. In Shakespeare's Julius Cæsar we are told to “Enjoy the honey-heavy dew of slumber”. There seems little chance of this today, as we crave more, work more and expect more, and, in the process, abandon sleep. Our occupation of the night is having unanticipated costs for both our physical and mental health, which, if continued, might condemn whole sectors of our society to a dismal future.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Interactions that modulate sleep, health and performance.
Figure 2: Shift-work schedules that have been used in Europe.
Figure 3: Health problems associated with shift work.

References

  1. 1

    Carskadon, M. A. Sleep deprivation: health consequences and societal impact. Med. Clin. North Am. 88, 767–776 (2004).

  2. 2

    Kryger, M. H., Roth, T. & Dement, W. C. (eds) Principles and Practice of Sleep Medicine (W. B. Saunders, Philadelphia, Pennsylvania, 2000).

  3. 3

    Achermann, P., Borbely, A. & Low, A. Low frequency (<1 Hz) oscillations in the human sleep electroencephalogram. Neuroscience 81, 213–222 (1997).

  4. 4

    Foster, R. G. & Kreitzman, L. Rhythms of Life: the Biological Clocks that Control the Daily Lives of Every Living Thing (Profile Books, London, 2004).

  5. 5

    McGinty, D. & Szymusiak, R. Hypothalamic regulation of sleep and arousal. Front. Biosci. 8, s1074–s1083 (2003).

  6. 6

    Merica, H. & Fortune, R. D. State transitions between wake and sleep, and within the ultradian cycle, with focus on the link to neuronal activity. Sleep Med. Rev. 8, 473–485 (2004).

  7. 7

    Borbely, A. A. A two process model of sleep regulation. Hum. Neurobiol. 1, 195–204 (1982).

  8. 8

    Borbely, A. A. & Achermann, P. Sleep homeostasis and models of sleep regulation. J. Biol. Rhythms 14, 557–568 (1999).

  9. 9

    Cohen, R. A. & Albers, H. E. Disruption of human circadian and cognitive regulation following a discrete hypothalamic lesion: a case study. Neurology 41, 726–729 (1991).

  10. 10

    Arendt, A. & Skene, D. J. Melatonin as a chronobiotic. Sleep Med. Rev. 9, 25–39 (2005).

  11. 11

    Claustrat, B., Brun, J. & Chazot, G. The basic physiology and pathophysiology of melatonin. Sleep Med. Rev. 9, 11–24 (2005).

  12. 12

    Dijk, D. J., Duffy, J. F., Riel, E., Shanahan, T. L. & Czeisler, C. A. Ageing and the circadian and homeostatic regulation of human sleep during forced desynchrony of rest, melatonin and temperature rhythms. J. Physiol. (Lond.) 516, 611–627 (1999).

  13. 13

    Arendt, J., Skene, D. J., Middleton, B., Lockley, S. W. & Deacon, S. Efficacy of melatonin treatment in jet lag, shift work, and blindness. J. Biol. Rhythms 12, 604–617 (1997).

  14. 14

    Stehle, J., Vanecek, J. & Vollrath, L. Effects of melatonin on spontaneous electrical activity of neurons in rat suprachiasmatic nuclei: an in vitro iontophoretic study. J. Neural Transm. 78, 173–177 (1989).

  15. 15

    Harmar, A. J. An essential role for peptidergic signalling in the control of circadian rhythms in the suprachiasmatic nuclei. J. Neuroendocrinol. 15, 335–338 (2003).

  16. 16

    Siegel, J. M., Manger, P. R., Nienhuis, R., Fahringer, H. M. & Pettigrew, J. D. Monotremes and the evolution of rapid eye movement sleep. Philos. Trans. R. Soc. Lond. B 353, 1147–1157 (1998).

  17. 17

    Nicol, S. C., Andersen, N. A., Phillips, N. H. & Berger, R. J. The echidna manifests typical characteristics of rapid eye movement sleep. Neurosci. Lett. 283, 49–52 (2000).

  18. 18

    Kevanau, J. L. REM and NREM sleep as natural accompaniments of the evolution of warm-bloodedness. Neurosci. Biobehav. Rev. 26, 889–906 (2002).

  19. 19

    Martin, P. Counting Sheep (HarperCollins, London, 2002).

  20. 20

    Born, J. & Wagner, U. Awareness in memory: being explicit about the role of sleep. Trends Cogn. Sci. 8, 242–244 (2004).

  21. 21

    Wagner, U., Gais, S., Haider, H., Verleger, R. & Born, J. Sleep inspires insight. Nature 427, 352–355 (2004).

  22. 22

    Karni, A., Tanne, D., Rubenstein, B. S., Askenasy, J. J. & Sagi, D. Dependence on REM sleep of overnight improvement of a perceptual skill. Science 265, 679–682 (1994).

  23. 23

    Gais, S., Plihal, W., Wagner, U. & Born, J. Early sleep triggers memory for early visual discrimination skills. Nature Neurosci. 3, 1335–1339 (2000).

  24. 24

    Vertes, R. P. Memory consolidation in sleep: dream or reality. Neuron 44, 135–148 (2004).

  25. 25

    Walker, M. P. & Stickgold, R. Sleep-dependent learning and memory consolidation. Neuron 44, 121–133 (2004).

  26. 26

    Weitzman, E. D., Czeisler, C. A., Zimmerman, J. C. & Ronda, J. M. Timing of REM and stages 3 + 4 sleep during temporal isolation in man. Sleep 2, 391–407 (1980).

  27. 27

    Dijk, D. J., Duffy, J. F. & Czeisler, C. A. Age-related increase in awakenings: impaired consolidation of nonREM sleep at all circadian phases. Sleep 24, 565–577 (2001).

  28. 28

    Kripke, D. F., Garfinkel, L., Wingard, D. L., Klauber, M. R. & Marler, M. R. Mortality associated with sleep duration and insomnia. Arch. Gen. Psychiatry 59, 131–136 (2002).

  29. 29

    Belenky, G. et al. Patterns of performance degradation and restoration during sleep restriction and subsequent recovery: a sleep dose-response study. J. Sleep Res. 12, 1–12 (2003).

  30. 30

    Jewett, M. E., Dijk, D. J., Kronauer, R. E. & Dinges, D. F. Dose-response relationship between sleep duration and human psychomotor vigilance and subjective alertness. Sleep 22, 171–179 (1999).

  31. 31

    Tietzel, A. J. & Lack, L. C. The short-term benefits of brief and long naps following nocturnal sleep restriction. Sleep 24, 293–300 (2001).

  32. 32

    Tietzel, A. J. & Lack, L. C. The recuperative value of brief and ultra-brief naps on alertness and cognitive performance. J. Sleep Res. 11, 213–218 (2002).

  33. 33

    Mednick, S., Nakayama, K. & Stickgold, R. Sleep-dependent learning: a nap is as good as a night. Nature Neurosci. 6, 697–698 (2003).

  34. 34

    Van Dongen, H. P., Maislin, G., Mullington, J. M. & Dinges, D. F. The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep 26, 117–126 (2003).

  35. 35

    Van Dongen, H. P., Baynard, M. D., Maislin, G. & Dinges, D. F. Systematic interindividual differences in neurobehavioral impairment from sleep loss: evidence of trait-like differential vulnerability. Sleep 27, 423–433 (2004).

  36. 36

    Evarson, C. A. Sustained sleep deprivation impairs host defense. Am. J. Physiol. 265, R1148–R1154 (1993).

  37. 37

    Irwin, M. et al. Partial night sleep deprivation reduces natural killer and cellular immune responses in humans. FASEB J. 10, 643–653 (1996).

  38. 38

    Mullington, J. M., Hinze-Selch, D. & Pollmacher, T. Mediators of inflammation and their interaction with sleep: relevance for chronic fatigue syndrome and related conditions. Ann. NY Acad. Sci. 933, 201–210 (2001).

  39. 39

    Majde, J. A. & Krueger, J. M. in Biological Psychiatry (eds D'haenen, H., den Boer, J. A. & Willner, P.) 1–11 (Wiley, New York, 2002).

  40. 40

    Marshall, L. & Born, J. Brain-immune interactions in sleep. Int. Rev. Neurobiol. 52, 93–131 (2002).

  41. 41

    Leproult, R., Copinschi, G., Buxton, O. & Van Cauter, E. Sleep loss results in an elevation of cortisol levels the next evening. Sleep 20, 865–870 (1997).

  42. 42

    Davis, S., Mirick, D. K. & Stevens, R. G. Night shift work, light at night, and risk of breast cancer. J. Natl Cancer Inst. 93, 1557–1562 (2001).

  43. 43

    Schernhammer, E. S. et al. Night-shift work and risk of colorectal cancer in the nurses' health study. J. Natl Cancer Inst. 95, 825–828 (2003).

  44. 44

    Sephton, S. & Spiegel, D. Circadian disruption in cancer: a neuroendocrine-immune pathway from stress to disease? Brain Behav. Immun. 5, 321–328 (2003).

  45. 45

    Pasch, S. K. in Pathophysiology: Concepts of Altered Health States (ed. Porth, C. M.) 1265–1287 (Lippincott Williams & Wilkins, 2004).

  46. 46

    Fava, M. Daytime sleepiness and insomnia as correlates of depression. J. Clin. Psychiatry 65 (Suppl. 16), 27–32 (2004).

  47. 47

    Nierenberg, A. A., Petersen, T. J. & Alpert, J. E. Prevention of relapse and recurrence in depression: the role of long-term pharmacotherapy and psychotherapy. J. Clin. Psychiatry 64 (Suppl. 15), 13–17 (2003).

  48. 48

    Paykel, E. S. et al. Residual symptoms after partial remission: an important outcome in depression. Psychol. Med. 25, 1171–1180 (1995).

  49. 49

    Ohayon, M. M. & Roth, T. Place of chronic insomnia in the course of depressive and anxiety disorders. J. Psychiatr. Res. 37, 9–15 (2003).

  50. 50

    Steiger, A. & Holsboer, F. Neuropeptides and human sleep. Sleep 20, 1038–1052 (1997).

  51. 51

    Holmes, A., Heilig, M., Rupniak, N. M., Steckler, T. & Griebel, G. Neuropeptide systems as novel therapeutic targets for depression and anxiety disorders. Trends Pharmacol. Sci. 24, 580–588 (2003).

  52. 52

    Xu, Y. L. et al. Neuropeptide S: a neuropeptide promoting arousal and anxiolytic-like effects. Neuron 43, 487–497 (2004).

  53. 53

    Newhouse, P. A., Potter, A. & Singh, A. Effects of nicotinic stimulation on cognitive performance. Curr. Opin. Pharmacol. 4, 36–46 (2004).

  54. 54

    Dinges, D. F. & Kribbs, N. B. in Sleep, Sleepiness, and Performance (ed. Monk, T. H.) (Wiley, New York, 1991).

  55. 55

    Hublin, C., Kaprio, J., Partinen, M. & Koskenvuo, M. Insufficient sleep — a population-based study in adults. Sleep 24, 392–400 (2001).

  56. 56

    Lamond, N. & Dawson, D. Quantifying the performance impairment associated with fatigue. J. Sleep Res. 8, 255–262 (1999).

  57. 57

    Spiegel, K. et al. Leptin levels are dependent on sleep duration: relationships with sympathovagal balance, carbohydrate regulation, cortisol, and thyrotropin. J. Clin. Endocrinol. Metab. 89, 5762–5771 (2004).

  58. 58

    Scheen, A. J. & Van Cauter, E. The roles of time of day and sleep quality in modulating glucose regulation: clinical implications. Horm. Res. 49, 191–201 (1998).

  59. 59

    Mullington, J. M. et al. Sleep loss reduces diurnal rhythm amplitude of leptin in healthy men. J. Neuroendocrinol. 15, 851–854 (2003).

  60. 60

    Spiegel, K., Leproult, R. & Van Cauter, E. Impact of sleep debt on metabolic and endocrine function. Lancet 354, 1435–1439 (1999).

  61. 61

    Van Cauter, E. & Spiegel, A. M. Sleep as a mediator of the relationship between socioeconomic status and health: a hypothesis. Ann. NY Acad. Sci. 896, 254–261 (1999).

  62. 62

    Parkes, K. R. Shift work and age as interactive predictors of body mass index among offshore workers. Scand. J. Work Environ. Health 28, 64–71 (2002).

  63. 63

    Altman, J. Weight in the balance. Neuroendocrinology 76, 131–136 (2002).

  64. 64

    Wolk, R., Shamsuzzaman, A. S. M. & Somers, V. K. Obesity, sleep apnea, and hypertension. Hypertension 42, 1067–1074 (2003).

  65. 65

    Roenneberg, T. et al. A marker for the end of adolescence. Curr. Biol. 14, R1038–R1039 (2004).

  66. 66

    Carskadon, M. A. Patterns of sleep and sleepiness in adolescents. Pediatrician 17, 5–12 (1990).

  67. 67

    Carskadon, M. A. Adolescent Sleep Pattern: Biological, Social, and Psychological Influences (Cambridge Univ. Press, Cambridge, UK, 2002).

  68. 68

    Carskadon, M. A., Acebo, C. & Jenni, O. G. Regulation of adolescent sleep: implications for behavior. Ann. NY Acad. Sci. 1021, 276–291 (2004).

  69. 69

    Kreitzman, L. The 24 Hour Society (Profile Books Ltd., London, 1999).

  70. 70

    Wedderburn, A. Compressed working time. Bull. Eur. Studies Time 10 (1996).

  71. 71

    Costa, G. Guidelines for the medical surveillance of shift workers. Scand. J. Work Environ. Health 24 (Suppl. 3), 151–155 (1998).

  72. 72

    Rajaratnam, S. M. & Arendt, J. Health in a 24-h society. Lancet 358, 999–1005 (2001).

  73. 73

    Harrington, J. M. Health effects of shift work and extended hours of work. Occup. Environ. Med. 58, 68–72 (2001).

  74. 74

    Hansen, J. Increased breast cancer risk among women who work predominantly at night. Epidemiology 12, 74–77 (2001).

  75. 75

    Tynes, T., Hannevik, M., Andersen, A., Vistnes, A. I. & Haldorsen, T. Incidence of breast cancer in Norwegian female radio and telegraph operators. Cancer Causes Control 7, 197–204 (1996).

  76. 76

    Horne, J. & Reyner, L. Vehicle accidents related to sleep: a review. Occup. Environ. Med. 56, 289–294 (1999).

  77. 77

    Whitehead, D. C., Thomas, H. Jr & Slapper, D. R. A rational approach to shift work in emergency medicine. Ann. Emerg. Med. 21, 1250–1258 (1992).

  78. 78

    Barnes, R. G., Forbes, M. J. & Arendt, J. Shift type and season affect adaptation of the 6-sulphatoxymelatonin rhythm in offshore oil rig workers. Neurosci. Lett. 252, 179–182 (1998).

  79. 79

    Deacon, S. & Arendt, J. Adapting to phase shifts, I. An experimental model for jet lag and shift work. Physiol. Behav. 59, 665–673 (1996).

  80. 80

    Stewart, K. T., Hayes, B. C. & Eastman, C. I. Light treatment for NASA shiftworkers. Chronobiol. Int. 12, 141–151 (1995).

  81. 81

    Crowley, S. J., Lee, C., Tseng, C. Y., Fogg, L. F. & Eastman, C. I. Complete or partial circadian re-entrainment improves performance, alertness, and mood during night-shift work. Sleep 27, 1077–1087 (2004).

  82. 82

    Roenneberg, T., Wirz-Justice, A. & Merrow, M. Life between clocks: daily temporal patterns of human chronotypes. J. Biol. Rhythms 18, 80–90 (2003).

  83. 83

    Landrigan, C. P. et al. Effect of reducing interns' work hours on serious medical errors in intensive care units. N. Engl. J. Med. 351, 1838–1848 (2004).

  84. 84

    Lockley, S. W. et al. Effect of reducing interns' weekly work hours on sleep and attentional failures. N. Engl. J. Med. 351, 1829–1837 (2004).

  85. 85

    Barger, L. K. et al. Extended work shifts and the risk of motor vehicle crashes among interns. N. Engl. J. Med. 352, 125–134 (2005).

  86. 86

    Association of American Medical Colleges policy guidance on graduate medical education. Ann. Meet. Assoc. Am. Med. Coll. 7 (Washington, D.C., 2001).

  87. 87

    Russo, M. et al. Oculomotor impairment during chronic partial sleep deprivation. Clin. Neurophysiol. 114, 723–736 (2003).

  88. 88

    Leger, D., Guilleminault, C., Dreyfus, J. P., Delahaye, C. & Paillard, M. Prevalence of insomnia in a survey of 12,778 adults in France. J. Sleep Res. 9, 35–42 (2000).

  89. 89

    Ohayon, M. M. Epidemiology of insomnia: what we know and what we still need to learn. Sleep Med. Rev. 6, 97–111 (2002).

  90. 90

    Salin-Pascual, R. J., Roehrs, T. A., Merlotti, L. A., Zorick, F. & Roth, T. Long-term study of the sleep of insomnia patients with sleep state misperception and other insomnia patients. Am. J. Psychiatry 149, 904–908 (1992).

  91. 91

    Nofzinger, E. A. et al. Functional neuroimaging evidence for hyperarousal in insomnia. Am. J. Psychiatry 161, 2126–2128 (2004).

  92. 92

    Roth, T. W. & Walsh, J. K. TAK in transient insomnia. Sleep (Abstr. Suppl.) 26, A294 (2003).

  93. 93

    Drummond, S. P. & Brown, G. G. The effects of total sleep deprivation on cerebral responses to cognitive performance. Neuropsychopharmacology 25, S68–S73 (2001).

  94. 94

    Drummond, S. P., Smith, M. T., Orff, H. J., Chengazi, V. & Perlis, M. L. Functional imaging of the sleeping brain: review of findings and implications for the study of insomnia. Sleep Med. Rev. 8, 227–242 (2004).

  95. 95

    Drummond, S. P., Brown, G. G., Salamat, J. S. & Gillin, J. C. Increasing task difficulty facilitates the cerebral compensatory response to total sleep deprivation. Sleep 27, 445–451 (2004).

  96. 96

    Thomas, M. et al. Neural basis of alertness and cognitive performance impairments during sleepiness. I. Effects of 24 h of sleep deprivation on waking human regional brain activity. J. Sleep Res. 9, 335–352 (2000).

  97. 97

    Smith, M. T. et al. Neuroimaging of NREM sleep in primary insomnia: a Tc-99-HMPAO single photon emission computed tomography study. Sleep 25, 325–335 (2002).

  98. 98

    Riedel, W. J. & Jolles, J. Cognition enhancers in age-related cognitive decline. Drugs Aging 8, 245–274 (1996).

  99. 99

    Strecker, R. E. et al. Adenosinergic modulation of basal forebrain and preoptic/anterior hypothalamic neuronal activity in the control of behavioral state. Behav. Brain Res. 115, 183–204 (2000).

  100. 100

    Boutrel, B. & Koob, G. F. What keeps us awake: the neuropharmacology of stimulants and wakefulness-promoting medications. Sleep 27, 1181–1194 (2004).

  101. 101

    Levin, E. D. & Simon, B. B. Nicotinic acetylcholine involvement in cognitive function in animals. Psychopharmacology 138, 217–230 (1998).

  102. 102

    Trinkoff, A. M. & Storr, C. L. Work schedule characteristics and substance use in nurses. Am. J. Ind. Med. 34, 266–271 (1998).

  103. 103

    Parkin, C., Fairweather, D. B., Shamsi, Z., Stanley, N. & Hindmarch, I. The effects of cigarette smoking on overnight performance. Psychopharmacology (Berl.) 136, 172–178 (1998).

  104. 104

    Fujii, S., Ji, Z., Morita, N. & Sumikawa, K. Acute and chronic nicotine exposure differentially facilitate the induction of LTP. Brain Res. 846, 137–143 (1999).

  105. 105

    Palmer, C. D., Harrison, G. A. & Hiorns, R. W. Association between smoking and drinking and sleep duration. Ann. Hum. Biol. 7, 103–107 (1980).

  106. 106

    Phillips, B. A. & Danner, F. J. Cigarette smoking and sleep disturbance. Arch. Intern. Med. 155, 734–737 (1995).

  107. 107

    Siegel, J. M. The neurotransmitters of sleep. J. Clin. Psychiatry 65 (Suppl. 16), 4–7 (2004).

  108. 108

    Johnson, E. O., Roehrs, T., Roth, T. & Breslau, N. Epidemiology of alcohol and medication as aids to sleep in early adulthood. Sleep 21, 178–186 (1998).

  109. 109

    Brower, K. J. Insomnia, alcoholism and relapse. Sleep Med. Rev. 7, 523–539 (2003).

  110. 110

    Roehrs, T. & Roth, T. Sleep, sleepiness, sleep disorders and alcohol use and abuse. Sleep Med. Rev. 4, 287–297 (2001).

  111. 111

    Lyons, T. J. & French, J. Modafinil: the unique properties of a new stimulant. Aviat. Space Environ. Med. 62, 432–435 (1991).

  112. 112

    Schwartz, J. R. Pharmacologic management of daytime sleepiness. J. Clin. Psychiatry 65 (Suppl. 16), 46–49 (2004).

  113. 113

    Caldwell, J. A., Caldwell, J. L., Smith, J. K. & Brown, D. L. Modafinil's effects on simulator performance and mood in pilots during 37 h without sleep. Aviat. Space Environ. Med. 75, 777–784 (2004).

  114. 114

    Gallopin, T., Luppi, P. H., Rambert, F. A., Frydman, A. & Fort, P. Effect of the wake-promoting agent modafinil on sleep-promoting neurons from the ventrolateral preoptic nucleus: an in vitro pharmacologic study. Sleep 27, 19–25 (2004).

  115. 115

    Saper, C. B. & Scammell, T. E. Modafinil: a drug in search of a mechanism. Sleep 27, 11–12 (2004).

  116. 116

    Pataki, C. S., Feinberg, D. T. & McGough, J. J. New drugs for the treatment of attention-deficit/hyperactivity disorder. Expert Opin. Emerg. Drugs 9, 293–302 (2004).

  117. 117

    Turner, D. C., Clark, L., Dowson, J., Robbins, T. W. & Sahakian, B. J. Modafinil improves cognition and response inhibition in adult attention-deficit/hyperactivity disorder. Biol. Psychiatry 55, 1031–1040 (2004).

  118. 118

    Kopnisky, K. L., Stoff, D. M. & Rausch, D. M. Workshop report: the effects of psychological variables on the progression of HIV-1 disease. Brain Behav. Immun. 18, 246–261 (2004).

  119. 119

    Dijk, D. J. & Lockley, S. W. Integration of human sleep-wake regulation and circadian rhythmicity. J. Appl. Physiol. 92, 852–862 (2002).

  120. 120

    Yasukouchi, H., Wada, S., Urasaki, E. & Yokota, A. Effects of night work on the cognitive function in young and elderly subjects with specific reference to the auditory P300. J. UOEH 17, 229–246 (1995).

  121. 121

    Parthasarathy, S. & Tobin, M. J. Sleep in the intensive care unit. Intensive Care Med. 2, 197–206 (2004).

  122. 122

    Honkus, V. L. Sleep deprivation in critical care units. Crit. Care Nurs. Q. 3, 179–189 (2003).

  123. 123

    Cruz, C., Detwiler, C., Nesthus, T. & Boquet, A. Clockwise and counterclockwise rotating shifts: effects on sleep duration, timing, and quality. Aviat. Space Environ. Med. 74, 597–605 (2003).

  124. 124

    Harma, M., Sallinen, M., Ranta, R., Mutanen, P. & Muller, K. The effect of an irregular shift system on sleepiness at work in train drivers and railway traffic controllers. J. Sleep Res. 11, 141–151 (2002).

  125. 125

    Pilcher, J. J., Lambert, B. J. & Huffcutt, A. I. Differential effects of permanent and rotating shifts on self-report sleep length: a meta-analytic review. Sleep 23, 155–163 (2000).

  126. 126

    Nurminen, T. Shift work and reproductive health. Scand. J. Work Environ. Health 24 (Suppl. 3), 28–34 (1998).

  127. 127

    Zhu, J. L., Hjollund, N. H. & Olsen, J. Shift work, duration of pregnancy, and birth weight: the National Birth Cohort in Denmark. Am. J. Obstet. Gynecol. 191, 285–291 (2004).

Download references

Acknowledgements

Research in the laboratory of R.G.F. is supported by the Biotechnology and Biological Sciences Research Council (BBSRC), the Wellcome Trust and the National Space Biomedical Institute (NSBRI). K.W. is currently supported by a Marie Curie Individual Fellowship by the EU.

Author information

Correspondence to Russell G. Foster.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

NPY

VIP

VPAC2

FURTHER INFORMATION

Foster's homepage

Wulff's homepage

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Foster, R., Wulff, K. The rhythm of rest and excess. Nat Rev Neurosci 6, 407–414 (2005). https://doi.org/10.1038/nrn1670

Download citation

Further reading