Review Article | Published:

Look away: the anti-saccade task and the voluntary control of eye movement


The anti-saccade task has emerged as an important task for investigating the flexible control that we have over behaviour. In this task, participants must suppress the reflexive urge to look at a visual target that appears suddenly in the peripheral visual field and must instead look away from the target in the opposite direction. A crucial step involved in performing this task is the top-down inhibition of a reflexive, automatic saccade. Here, we describe recent neurophysiological evidence demonstrating the presence of this inhibitory function in single-cell activity in the frontal eye fields and superior colliculus. Patients diagnosed with various neurological and/or psychiatric disorders that affect the frontal lobes or basal ganglia find it difficult to suppress the automatic pro-saccade, revealing a deficit in top-down inhibition.

Key Points

  • The anti-saccade task, in which subjects are required to make a saccadic eye movement away from a target, rather than towards it, is a useful task for investigating the voluntary and flexible control of movement. Anti-saccades have a longer latency than pro-saccades and subjects are more likely to make errors on anti-saccade trials. These errors usually consist of a rapid saccade to the target, which is often corrected within a short latency by a second saccade away from the target. Two processes are needed for the anti-saccade task: suppression of the automatic pro-saccade, and inversion of the stimulus vector into the correct saccade vector.

  • Monkeys and humans perform similarly on this task. In electrophysiological studies of monkeys doing the anti-saccade task, saccade neurons in the superior colliculus (SC) and frontal eye fields (FEF) seem to be inhibited before the target appears, to suppress the automatic pro-saccade. This is proposed to prevent activity in these neurons from crossing a threshold that would allow a saccade to be initiated. The suppression could arise from several sources, including other neurons in the FEF and SC, the supplementary eye fields, the dorsolateral prefrontal cortex (DLPFC) and the substantia nigra pars reticulata.

  • The generation of the anti-saccade requires vector inversion and a build-up of activity in a different set of saccade neurons. Monkey electrophysiology studies indicate that vector inversion involves the lateral intraparietal area and/or the FEF.

  • In humans, functional imaging and event-related potential (ERP) studies have been used to study the anti-saccade task. These studies have identified differences in brain activity between pro-saccades and anti-saccades that are consistent with data from electrophysiological studies in monkeys.

  • Young children struggle to perform the anti-saccade task, apparently because they have difficulty in suppressing the automatic pro-saccade. This might relate to the protracted maturation of the frontal lobes, which have been proposed to mediate top-down inhibition of saccade neurons. Patients with lesions of the DLPFC have a similar deficit in performance. By contrast, lesions of the FEF impair the ability of patients to generate the anti-saccade.

  • A number of clinical conditions affect performance on the anti-saccade task. Patients with schizophrenia show increased error rates and prolonged reaction times. Patients with attention-deficit hyperactivity disorder struggle to suppress the automatic pro-saccade but do not show delays in reaction times, whereas those with Parkinson's disease have significantly increased reaction times and also an increased error rate. Tourette's syndrome causes an increase in reaction time with no increase in error rate, possibly because these patients generate increased top-down inhibition as a consequence of adapting to the disorder. All of these findings can be interpreted in the context of an 'accumulator model' of saccade generation.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Ethics declarations

Competing interests

The authors declare no competing financial interests.


  1. 1

    Hallett, P. E. Primary and secondary saccades to goals defined by instructions. Vision Res. 18, 1279–1296 (1978). This study introduced the anti-saccade task.

  2. 2

    Amador, N., Schlag-Rey, M. & Schlag, J. Primate antisaccades. I. Behavioral characteristics. J. Neurophysiol. 80, 1775–1786 (1998).

  3. 3

    Bell, A. H., Everling, S. & Munoz, D. P. Influence of stimulus eccentricity and direction on characteristics of pro- and antisaccades in non-human primates. J. Neurophysiol. 84, 2595–2604 (2000).

  4. 4

    Fischer, B. & Weber, H. Effects of stimulus conditions on the performance of antisaccades in man. Exp. Brain Res. 116, 191–200 (1997).

  5. 5

    Munoz, D. P., Broughton, J. R., Goldring, J. E. & Armstrong, I. T. Age-related performance of human subjects on saccadic eye movement tasks. Exp. Brain Res. 121, 391–400 (1998).

  6. 6

    Hallett, P. E. & Adams, B. D. The predictability of saccadic latency in a novel voluntary oculomotor task. Vision Res. 20, 329–339 (1980).

  7. 7

    Dorris, M. C. & Munoz, D. P. A neural correlate for the gap effect on saccadic reaction times in monkey. J. Neurophysiol. 73, 2558–2562 (1995).

  8. 8

    Forbes, K. & Klein, R. M. The magnitude of the fixation offset effect with endogenously and exogenously controlled saccades. J. Cogn. Neurosci. 8, 344–352 (1996).

  9. 9

    Fischer, B. & Weber, H. Express saccades and visual attention. Behav. Brain Sci. 16, 553–610 (1993).

  10. 10

    Fischer, B. & Boch, R. Saccadic eye movements after extremely short reaction times in the monkey. Brain Res. 260, 21–26 (1983).

  11. 11

    Pare, M. & Munoz, D. P. Saccadic reaction time in the monkey: advanced preparation of oculomotor programs is primarily responsible for express saccade occurrence. J. Neurophysiol. 76, 3666–3681 (1996).

  12. 12

    Hess, W. R., Burgi, S. & Bucher, V. Motor function of tectal and tegmental area. Monatsschr. Psychiatr. Neurol. 112, 1–52 (1946).

  13. 13

    Carpenter, R. H. S. in Eye Movements: Cognition and Visual Perception (eds Fischer, D. F. & Monty, R. A.) 237–246 (Erlbaum, Hillsdale, New Jersey, 1981).

  14. 14

    Edelman, J. A. & Keller, E. L. Activity of visuomotor burst neurons in the superior colliculus accompanying express saccades. J. Neurophysiol. 76, 908–926 (1996).

  15. 15

    Dorris, M. C., Pare, M. & Munoz, D. P. Neuronal activity in monkey superior colliculus related to the initiation of saccadic eye movements. J. Neurosci. 17, 8566–8579 (1997). This paper shows that the level of pretarget activation of saccade neurons in the superior colliculus is negatively correlated with saccadic reaction times.

  16. 16

    Sparks, D., Rohrer, W. H. & Zhang, Y. The role of the superior colliculus in saccade initiation: a study of express saccades and the gap effect. Vision Res. 40, 2763–2777 (2000).

  17. 17

    Fischer, B., Gezeck, S. & Hartnegg, K. On the production and correction of involuntary prosaccades in a gap antisaccade task. Vision Res. 40, 2211–2217 (2000).

  18. 18

    Everling, S., Dorris, M. C. & Munoz, D. P. Reflex suppression in the anti-saccade task is dependent on prestimulus neural processes. J. Neurophysiol. 80, 1584–1589 (1998). This study demonstrates that errors in the anti-saccade task are associated with a high level of pretarget excitation of saccade neurons in the primate superior colliculus.

  19. 19

    Luce, R. D. Response Times: Their Role in Inferring Elementary Mental Organization (Oxford Univ. Press, Oxford, 1986).

  20. 20

    Carpenter, R. H. & Williams, M. L. Neural computation of log likelihood in control of saccadic eye movements. Nature 377, 59–62 (1995). An experimental study that supports the accumulator model of saccade initiation.

  21. 21

    Ratcliff, R. A diffusion model account of response time and accuracy in a brightness discrimination task: fitting real data and failing to fit fake but plausible data. Psychon. Bull. Rev. 9, 278–291 (2002).

  22. 22

    Trappenberg, T. P., Dorris, M. C., Munoz, D. P. & Klein, R. M. A model of saccade initiation based on the competitive integration of exogenous and endogenous signals in the superior colliculus. J. Cogn. Neurosci. 13, 256–271 (2001).

  23. 23

    Hanes, D. P. & Schall, J. D. Neural control of voluntary movement initiation. Science 274, 427–430 (1996).

  24. 24

    Gold, J. I. & Shadlen, M. N. Representation of a perceptual decision in developing oculomotor commands. Nature 404, 390–394 (2000).

  25. 25

    Ratcliff, R., Cherian, A. & Segraves, M. A comparison of macaque behavior and superior colliculus neuronal activity to predictions from models of two-choice decisions. J. Neurophysiol. 90, 1392–1407 (2003).

  26. 26

    Pare, M. & Hanes, D. P. Controlled movement processing: superior colliculus activity associated with countermanded saccades. J. Neurosci. 23, 6480–6489 (2003).

  27. 27

    Everling, S., Dorris, M. C., Klein, R. M. & Munoz, D. P. Role of primate superior colliculus in preparation and execution of anti-saccades and pro-saccades. J. Neurosci. 19, 2740–2754 (1999).

  28. 28

    Everling, S. & Munoz, D. P. Neuronal correlates for preparatory set associated with pro-saccades and anti-saccades in the primate frontal eye field. J. Neurosci. 20, 387–400 (2000). References 27 and 28 show differences in the activity of neurons in the superior colliculus and FEF between pro-saccades and anti-saccades.

  29. 29

    Funahashi, S., Chafee, M. V. & Goldman-Rakic, P. S. Prefrontal neuronal activity in rhesus monkeys performing a delayed anti-saccade task. Nature 365, 753–756 (1993).

  30. 30

    Desouza, J. F., Iversen, S. D. & Everling, S. Preparatory set activity associated with pro-saccades and anti-saccades within the primate prefrontal cortex. Soc. Neurosci. Abstr. 33, 661.10 (2003).

  31. 31

    Gottlieb, J. & Goldberg, M. E. Activity of neurons in the lateral intraparietal area of the monkey during an antisaccade task. Nature Neurosci. 2, 906–912 (1999).

  32. 32

    Zhang, M. & Barash, S. Neuronal switching of sensorimotor transformations for antisaccades. Nature 408, 971–975 (2000).

  33. 33

    Zhang, M. & Barash, S. Persistent LIP activity in memory-antisaccades: working memory for a sensorimotor transformation. J. Neurophysiol. 91, 1424–1441 (2004). References 32 and 33 describe paradoxical visual responses in LIP neurons in an anti-saccade task.

  34. 34

    Toth, L. J. & Assad, J. A. Dynamic coding of behaviourally relevant stimuli in parietal cortex. Nature 415, 165–168 (2002).

  35. 35

    Olson, C. R. & Gettner, S. N. Neuronal activity related to rule and conflict in macaque supplementary eye field. Physiol. Behav. 77, 663–670 (2002).

  36. 36

    Schlag-Rey, M., Amador, N., Sanchez, H. & Schlag, J. Antisaccade performance predicted by neuronal activity in the supplementary eye field. Nature 390, 398–401 (1997). The first study to contrast the activity of SEF neurons between pro-saccade and anti-saccade trials.

  37. 37

    Amador, N., Schlag-Rey, M. & Schlag, J. Primate antisaccade II. Supplementary eye field neuronal activity predicts correct performance. J. Neurophysiol. 26 Nov 2003 [epub ahead of print].

  38. 38

    Sato, T. R. & Schall, J. D. Effects of stimulus-response compatibility on neural selection in frontal eye field. Neuron 38, 637–648 (2003). This study demonstrates that visual selection and saccade selection are different processes in the FEF.

  39. 39

    Schiller, P. H., True, S. D. & Conway, J. L. Deficits in eye movements following frontal eye-field and superior colliculus ablations. J. Neurophysiol. 44, 1175–1189 (1980).

  40. 40

    Munoz, D. P. & Schall, J. D. in The Superior Colliculus: New Approaches for Studying Sensorimotor Integration (eds Hall, W. C. & Moschovakis, A.) 55–82 (CRC, Boca Raton, Florida, 2003).

  41. 41

    Munoz, D. P. & Istvan, P. J. Lateral inhibitory interactions in the intermediate layers of the monkey superior colliculus. J. Neurophysiol. 79, 1193–1209 (1998).

  42. 42

    Munoz, D. P. & Wurtz, R. H. Saccade-related activity in monkey superior colliculus. I. Characteristics of burst and buildup cells. J. Neurophysiol. 73, 2313–2333 (1995).

  43. 43

    Dias, E. C. & Bruce, C. J. Physiological correlate of fixation disengagement in the primate's frontal eye field. J. Neurophysiol. 72, 2532–2537 (1994).

  44. 44

    Saslow, M. G. Effects of components of displacement-step stimuli upon latency of saccadic eye movements. J. Opt. Soc. Am. 57, 1024–1029 (1967).

  45. 45

    Mayfrank, L., Mobashery, M., Kimmig, H. & Fischer, B. The role of fixation and visual attention in the occurrence of express saccades in man. Eur. Arch. Psychiatry Neurol. Sci. 235, 269–275 (1986).

  46. 46

    Munoz, D. P. & Corneil, B. D. Evidence for interactions between target selection and visual fixation for saccade generation in humans. Exp. Brain Res. 103, 168–173 (1995).

  47. 47

    Weber, H. & Fischer, B. Gap duration and location of attention focus modulate the occurrence of left/right asymmetries in the saccadic reaction times of human subjects. Vision Res. 35, 987–998 (1995).

  48. 48

    Scudder, C. A., Kaneko, C. S. & Fuchs, A. F. The brainstem burst generator for saccadic eye movements: a modern synthesis. Exp. Brain Res. 142, 439–462 (2002).

  49. 49

    Moschovakis, A. K., Scudder, C. A. & Highstein, S. M. The microscopic anatomy and physiology of the mammalian saccadic system. Prog. Neurobiol. 50, 133–254 (1996). An authorative review of the neurophysiology and anatomy of the saccadic eye movement system.

  50. 50

    Everling, S., Pare, M., Dorris, M. C. & Munoz, D. P. Comparison of the discharge characteristics of brain stem omnipause neurons and superior colliculus fixation neurons in monkey: implications for control of fixation and saccade behavior. J. Neurophysiol. 79, 511–528 (1998).

  51. 51

    Evinger, C., Kaneko, C. R. & Fuchs, A. F. Activity of omnipause neurons in alert cats during saccadic eye movements and visual stimuli. J. Neurophysiol. 47, 827–844 (1982).

  52. 52

    King, W. M., Precht, W. & Dieringer, N. Afferent and efferent connections of cat omnipause neurons. Exp. Brain Res. 38, 395–403 (1980).

  53. 53

    Schlag, J. & Schlag-Rey, M. Unit activity related to spontaneous saccades in frontal dorsomedial cortex of monkey. Exp. Brain Res. 58, 208–211 (1985).

  54. 54

    Schlag, J. & Schlag-Rey, M. Evidence for a supplementary eye field. J. Neurophysiol. 57, 179–200 (1987).

  55. 55

    Shook, B. L., Schlag-Rey, M. & Schlag, J. Direct projection from the supplementary eye field to the nucleus raphe interpositus. Exp. Brain Res. 73, 215–218 (1988).

  56. 56

    Munoz, D. P. & Fecteau, J. H. Vying for dominance: dynamic interactions control visual fixation and saccadic initiation in the superior colliculus. Prog. Brain Res. 140, 3–19 (2002).

  57. 57

    Meredith, M. A. & Ramoa, A. S. Intrinsic circuitry of the superior colliculus: pharmacophysiological identification of horizontally oriented inhibitory interneurons. J. Neurophysiol. 79, 1597–1602 (1998).

  58. 58

    Huerta, M. F., Krubitzer, L. A. & Kaas, J. H. Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys. II. Cortical connections. J. Comp. Neurol. 265, 332–361 (1987).

  59. 59

    Shook, B. L., Schlag-Rey, M. & Schlag, J. Primate supplementary eye field: I. Comparative aspects of mesencephalic and pontine connections. J. Comp. Neurol. 301, 618–642 (1990).

  60. 60

    Goldman, P. S. & Nauta, W. J. Autoradiographic demonstration of a projection from prefrontal association cortex to the superior colliculus in the rhesus monkey. Brain Res. 116, 145–149 (1976).

  61. 61

    Leichnetz, G. R., Spencer, R. F., Hardy, S. G. & Astruc, J. The prefrontal corticotectal projection in the monkey; an anterograde and retrograde horseradish peroxidase study. Neuroscience 6, 1023–1041 (1981).

  62. 62

    Selemon, L. D. & Goldman-Rakic, P. S. Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: evidence for a distributed neural network subserving spatially guided behavior. J. Neurosci. 8, 4049–4068 (1988).

  63. 63

    Asaad, W. F., Rainer, G. & Miller, E. K. Neural activity in the primate prefrontal cortex during associative learning. Neuron 21, 1399–1407 (1998).

  64. 64

    White, I. M. & Wise, S. P. Rule-dependent neuronal activity in the prefrontal cortex. Exp. Brain Res. 126, 315–335 (1999).

  65. 65

    Asaad, W. F., Rainer, G. & Miller, E. K. Task-specific neural activity in the primate prefrontal cortex. J. Neurophysiol. 84, 451–459 (2000).

  66. 66

    Hikosaka, O., Takikawa, Y. & Kawagoe, R. Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol. Rev. 80, 953–978 (2000).

  67. 67

    Hikosaka, O. & Wurtz, R. H. Visual and oculomotor functions of monkey substantia nigra pars reticulata. II. Visual responses related to fixation of gaze. J. Neurophysiol. 49, 1254–1267 (1983).

  68. 68

    Handel, A. & Glimcher, P. W. Quantitative analysis of substantia nigra pars reticulata activity during a visually guided saccade task. J. Neurophysiol. 82, 3458–3475 (1999).

  69. 69

    Hikosaka, O. & Wurtz, R. H. Visual and oculomotor functions of monkey substantia nigra pars reticulata. IV. Relation of substantia nigra to superior colliculus. J. Neurophysiol. 49, 1285–1301 (1983).

  70. 70

    Lynch, J. C., Graybiel, A. M. & Lobeck, L. J. The differential projection of two cytoarchitectonic subregions of the inferior parietal lobule of macaque upon the deep layers of the superior colliculus. J. Comp. Neurol. 235, 241–254 (1985).

  71. 71

    Colby, C. L., Duhamel, J. R. & Goldberg, M. E. Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. J. Neurophysiol. 76, 2841–2852 (1996).

  72. 72

    Gnadt, J. W. & Andersen, R. A. Memory related motor planning activity in posterior parietal cortex of macaque. Exp. Brain Res. 70, 216–220 (1988).

  73. 73

    Everling, S., Krappmann, P. & Flohr, H. Cortical potentials preceding pro- and antisaccades in man. Electroencephalogr. Clin. Neurophysiol. 102, 356–362 (1997).

  74. 74

    Evdokimidis, I., Liakopoulos, D., Constantinidis, T. S. & Papageorgiou, C. Cortical potentials with antisaccades. Electroencephalogr. Clin. Neurophysiol. 98, 377–384 (1996).

  75. 75

    Klein, C., Heinks, T., Andresen, B., Berg, P. & Moritz, S. Impaired modulation of the saccadic contingent negative variation preceding antisaccades in schizophrenia. Biol. Psychiatry 47, 978–990 (2000).

  76. 76

    Everling, S., Spantekow, A., Krappmann, P. & Flohr, H. Event-related potentials associated with correct and incorrect responses in a cued antisaccade task. Exp. Brain Res. 118, 27–34 (1998).

  77. 77

    O'Driscoll, G. A. et al. Functional neuroanatomy of antisaccade eye movements investigated with positron emission tomography. Proc. Natl Acad. Sci. USA 92, 925–929 (1995).

  78. 78

    Paus, T., Petrides, M., Evans, A. C. & Meyer, E. Role of the human anterior cingulate cortex in the control of oculomotor, manual, and speech responses: a positron emission tomography study. J. Neurophysiol. 70, 453–469 (1993).

  79. 79

    Sweeney, J. A. et al. Positron emission tomography study of voluntary saccadic eye movements and spatial working memory. J. Neurophysiol. 75, 454–468 (1996).

  80. 80

    Doricchi, F. et al. Neural control of fast-regular saccades and antisaccades: an investigation using positron emission tomography. Exp. Brain Res. 116, 50–62 (1997).

  81. 81

    Connolly, J. D., Goodale, M. A., Desouza, J. F., Menon, R. S. & Vilis, T. A comparison of frontoparietal fMRI activation during anti-saccades and anti-pointing. J. Neurophysiol. 84, 1645–1655 (2000).

  82. 82

    Connolly, J. D., Goodale, M. A., Menon, R. S. & Munoz, D. P. Human fMRI evidence for the neural correlates of preparatory set. Nature Neurosci. 5, 1345–1352 (2002). An important demonstration that frontal areas and not parietal areas carry preparatory signals for anti-saccades.

  83. 83

    Desouza, J. F., Menon, R. S. & Everling, S. Preparatory set associated with pro-saccades and anti-saccades in humans investigated with event-related FMRI. J. Neurophysiol. 89, 1016–1023 (2003). Strong fMRI evidence that differences between pro-saccades and anti-saccades originate from differences in preparatory activity and not motor activity.

  84. 84

    Curtis, C. E. & D'Esposito, M. Success and failure suppressing reflexive behavior. J. Cogn. Neurosci. 15, 409–418 (2003).

  85. 85

    Leigh, R. J. & Kennard, C. Using saccades as a research tool in the clinical neurosciences. Brain 7 Nov 2003 (doi 10.1093/brain/awh035). A recent review covering the usefulness of saccadic motor tasks in clinical studies.

  86. 86

    Everling, S. & Fischer, B. The antisaccade: a review of basic research and clinical studies. Neuropsychologia 36, 885–899 (1998).

  87. 87

    Fischer, B., Biscaldi, M. & Gezeck, S. On the development of voluntary and reflexive components in human saccade generation. Brain Res. 754, 285–297 (1997).

  88. 88

    Luna, B. et al. Maturation of widely distributed brain function subserves cognitive development. Neuroimage 13, 786–793 (2001).

  89. 89

    Klein, C. & Foerster, F. Development of prosaccade and antisaccade task performance in participants aged 6 to 26 years. Psychophysiology 38, 179–189 (2001).

  90. 90

    Fukushima, J., Hatta, T. & Fukushima, K. Development of voluntary control of saccadic eye movements. I. Age-related changes in normal children. Brain Dev. 22, 173–180 (2000).

  91. 91

    Fuster, J. M. The Prefrontal Cortex: Anatomy, Physiology, and Neuropsychology of the Frontal Lobe (Raven, New York, 1997).

  92. 92

    Guitton, D., Buchtel, H. A. & Douglas, R. M. Frontal lobe lesions in man cause difficulties in suppressing reflexive glances and in generating goal-directed saccades. Exp. Brain Res. 58, 455–472 (1985). A seminal study showing that patients with frontal lobe lesions have high error rates in an anti-saccade task.

  93. 93

    Pierrot-Deseilligny, C., Rivaud, S., Gaymard, B. & Agid, Y. Cortical control of reflexive visually-guided saccades. Brain 114, 1473–1485 (1991).

  94. 94

    Pierrot-Deseilligny, C. et al. Decisional role of the dorsolateral prefrontal cortex in ocular motor behaviour. Brain 126, 1460–1473 (2003).

  95. 95

    Walker, R., Husain, M., Hodgson, T. L., Harrison, J. & Kennard, C. Saccadic eye movement and working memory deficits following damage to human prefrontal cortex. Neuropsychologia 36, 1141–1159 (1998).

  96. 96

    Pierrot-Deseilligny, C., Ploner, C. J., Muri, R. M., Gaymard, B. & Rivaud-Pechoux, S. Effects of cortical lesions on saccadic eye movements in humans. Ann. NY Acad. Sci. 956, 216–229 (2002).

  97. 97

    Gaymard, B., Ploner, C. J., Rivaud, S., Vermersch, A. I. & Pierrot-Deseilligny, C. Cortical control of saccades. Exp. Brain Res. 123, 159–163 (1998).

  98. 98

    Gaymard, B., Ploner, C. J., Rivaud-Pechoux, S. & Pierrot-Deseilligny, C. The frontal eye field is involved in spatial short-term memory but not in reflexive saccade inhibition. Exp. Brain Res. 129, 288–301 (1999).

  99. 99

    Davidson, M. C., Everling, S. L. A. & Munoz, D. P. Comparison of pro- and anti-saccades in primates. III. Reversible activation/inactivation of frontal eye field and superior colliculus. Soc. Neurosci. Abstr. 25, 147.9 (1999).

  100. 100

    Broerse, A., Crawford, T. J. & den Boer, J. A. Parsing cognition in schizophrenia using saccadic eye movements: a selective overview. Neuropsychologia 39, 742–756 (2001).

  101. 101

    Crawford, T. J., Haeger, B., Kennard, C., Reveley, M. A. & Henderson, L. Saccadic abnormalities in psychotic patients. I. Neuroleptic-free psychotic patients. Psychol. Med. 25, 461–471 (1995).

  102. 102

    Crawford, T. J. et al. Abnormal saccadic distractibility in patients with schizophrenia: a 99mTc-HMPAO SPET study. Psychol. Med. 26, 265–277 (1996).

  103. 103

    Rosse, R. B., Schwartz, B. L., Kim, S. Y. & Deutsch, S. I. Correlation between antisaccade and Wisconsin Card Sorting Test performance in schizophrenia. Am. J. Psychiatry 150, 333–335 (1993).

  104. 104

    McDowell, J. E. et al. Neural correlates of refixation saccades and antisaccades in normal and schizophrenia subjects. Biol. Psychiatry 51, 216–223 (2002).

  105. 105

    Barkley, R. A. Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol. Bull. 121, 65–94 (1997).

  106. 106

    Munoz, D. P., Armstrong, I. T., Hampton, K. A. & Moore, K. D. Altered control of visual fixation and saccadic eye movements in attention-deficit hyperactivity disorder. J. Neurophysiol. 90, 503–514 (2003).

  107. 107

    Lezak, M. D. Neuropsychological Assessment (Oxford Univ. Press, Oxford, 1995).

  108. 108

    Chan, F., Armstrong, I. T., Pari, G., Riopelle, R. J. & Munoz, D. P. Saccadic eye movement tasks reveal deficits in automatic response inhibition in Parkinson's disease. Neuropsychologia (in the press).

  109. 109

    Chen, Y. F., Chen, T. & Tsai, T. T. Analysis of volition latency on antisaccadic eye movements. Med. Eng. Phys. 21, 555–562 (1999).

  110. 110

    Briand, K. A., Strallow, D., Hening, W., Poizner, H. & Sereno, A. B. Control of voluntary and reflexive saccades in Parkinson's disease. Exp. Brain Res. 129, 38–48 (1999).

  111. 111

    Fukushima, J., Fukushima, K., Miyasaka, K. & Yamashita, I. Voluntary control of saccadic eye movement in patients with frontal cortical lesions and parkinsonian patients in comparison with that in schizophrenics. Biol. Psychiatry 36, 21–30 (1994).

  112. 112

    Vidailhet, M. et al. Eye movements in parkinsonian syndromes. Ann. Neurol. 35, 420–426 (1994).

  113. 113

    LeVasseur, A. L., Flanagan, J. R., Riopelle, R. J. & Munoz, D. P. Control of volitional and reflexive saccades in Tourette's syndrome. Brain 124, 2045–2058 (2001).

  114. 114

    Leigh, R. & Zee, D. The Neurology of Eye Movements (Oxford Univ. Press, Oxford, 1999).

  115. 115

    Sparks, D. L. The brainstem control of saccadic eye movements. Nature Rev. Neurosci. 3, 952–964 (2002).

  116. 116

    Wurtz, R. H. & Goldberg, M. E. The Neurobiology of Saccadic Eye Movements (Elsevier, Amsterdam, 1989).

  117. 117

    Maunsell, J. H. & Newsome, W. T. Visual processing in monkey extrastriate cortex. Annu. Rev. Neurosci. 10, 363–401 (1987).

  118. 118

    Andersen, R. A. Multimodal integration for the representation of space in the posterior parietal cortex. Philos. Trans. R. Soc. Lond. B 352, 1421–1428 (1997).

  119. 119

    Colby, C. L. & Goldberg, M. E. Space and attention in parietal cortex. Annu. Rev. Neurosci. 22, 319–349 (1999).

  120. 120

    Pare, M. & Wurtz, R. H. Progression in neuronal processing for saccadic eye movements from parietal cortex area LIP to superior colliculus. J. Neurophysiol. 85, 2545–2562 (2001).

  121. 121

    Ferraina, S., Pare, M. & Wurtz, R. H. Comparison of cortico-cortical and cortico-collicular signals for the generation of saccadic eye movements. J. Neurophysiol. 87, 845–858 (2002).

  122. 122

    Schall, J. D. Visuomotor areas of the frontal lobe. Cereb. Cortex 12, 527–638 (1997). A comprehensive review of the possible roles of different areas in the frontal lobe in visually guided movements.

  123. 123

    Dias, E. C. & Segraves, M. A. Muscimol-induced inactivation of monkey frontal eye field: effects on visually and memory-guided saccades. J. Neurophysiol. 81, 2191–2214 (1999).

  124. 124

    Rivaud, S., Muri, R. M., Gaymard, B., Vermersch, A. I. & Pierrot-Deseilligny, C. Eye movement disorders after frontal eye field lesions in humans. Exp. Brain Res. 102, 110–120 (1994).

  125. 125

    Sommer, M. A. & Tehovnik, E. J. Reversible inactivation of macaque frontal eye field. Exp. Brain Res. 116, 229–249 (1997).

  126. 126

    Coe, B., Tomihara, K., Matsuzawa, M. & Hikosaka, O. Visual and anticipatory bias in three cortical eye fields of the monkey during an adaptive decision-making task. J. Neurosci. 22, 5081–5090 (2002).

  127. 127

    Stuphorn, V., Taylor, T. L. & Schall, J. D. Performance monitoring by the supplementary eye field. Nature 408, 857–860 (2000).

  128. 128

    Segraves, M. A. & Goldberg, M. E. Functional properties of corticotectal neurons in the monkey's frontal eye field. J. Neurophysiol. 58, 1387–1419 (1987).

  129. 129

    Sommer, M. A. & Wurtz, R. H. Composition and topographic organization of signals sent from the frontal eye field to the superior colliculus. J. Neurophysiol. 83, 1979–2001 (2000).

  130. 130

    Stanton, G. B., Goldberg, M. E. & Bruce, C. J. Frontal eye field efferents in the macaque monkey: II. Topography of terminal fields in midbrain and pons. J. Comp Neurol. 271, 493–506 (1988).

  131. 131

    Munoz, D. P., Dorris, M. C., Pare, M. & Everling, S. On your mark, get set: brainstem circuitry underlying saccadic initiation. Can. J. Physiol. Pharmacol. 78, 934–944 (2000).

  132. 132

    Gandhi, N. J. & Keller, E. L. Spatial distribution and discharge characteristics of superior colliculus neurons antidromically activated from the omnipause region in monkey. J. Neurophysiol. 78, 2221–2225 (1997).

  133. 133

    Segraves, M. A. Activity of monkey frontal eye field neurons projecting to oculomotor regions of the pons. J. Neurophysiol. 68, 1967–1985 (1992).

  134. 134

    Alexander, G. E., DeLong, M. R. & Strick, P. L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357–381 (1986).

  135. 135

    Nakahara, H., Doya, K. & Hikosaka, O. Parallel cortico-basal ganglia mechanisms for acquisition and execution of visuomotor sequences — a computational approach. J. Cogn. Neurosci. 13, 626–647 (2001).

  136. 136

    Hallett, M. Physiology of basal ganglia disorders: an overview. Can. J. Neurol. Sci. 20, 177–183 (1993).

  137. 137

    Kornblum, S., Hasbroucq, T. & Osman, A. Dimensional overlap: cognitive basis for stimulus-response compatibility — a model and taxonomy. Psychol. Rev. 97, 253–270 (1990).

  138. 138

    Wise, S. P. & Murray, E. A. Arbitrary associations between antecedents and actions. Trends Neurosci. 23, 271–276 (2000).

  139. 139

    Duncan, J. in Attention and Performance VI (ed. Dornic, S.) 49–61 (Erlbaum, Hillsdale, New Jersey, 1977).

  140. 140

    Hommel, B. & Prinz, W. Theoretical Issues in Stimulus-Response Compatibility (Elsevier, Amsterdam, Holland, 1997).

  141. 141

    Proctor, R. W. & Reeve, T. G. Stimulus-Response Compatibility: An Integrated Perspective (Elsevier, Amsterdam, Holland, 1990).

  142. 142

    Simon, J. R. Reactions toward the source of stimulation. J. Exp. Psychol. 81, 174–176 (1969).

  143. 143

    Simon, J. R. & Berbaum, K. Effect of conflicting cues on information processing: the 'Stroop effect' vs. the 'Simon effect'. Acta Psychol. (Amst.) 73, 159–170 (1990).

  144. 144

    Riehle, A., Kornblum, S. & Requin, J. Neuronal coding of stimulus-response association rules in the motor cortex. Neuroreport 5, 2462–2464 (1994).

  145. 145

    Zhang, J., Riehle, A., Requin, J. & Kornblum, S. Dynamics of single neuron activity in monkey primary motor cortex related to sensorimotor transformation. J. Neurosci. 17, 2227–2246 (1997).

  146. 146

    Crammond, D. J. & Kalaska, J. F. Modulation of preparatory neuronal activity in dorsal premotor cortex due to stimulus-response compatibility. J. Neurophysiol. 71, 1281–1284 (1994).

  147. 147

    Stroop, J. R. Studies of interference in serial verbal reactions. J. Exp. Psychol. 18, 643–662 (1935).

  148. 148

    Glaser, M. O. & Glaser, W. R. Time course analysis of the Stroop phenomenon. J. Exp. Psychol. Hum. Percept. Perform. 8, 875–894 (1982).

  149. 149

    MacLeod, C. M. Half a century of research on the Stroop effect: an integrative review. Psychol. Bull. 109, 163–203 (1991).

  150. 150

    Eriksen, B. A. & Eriksen, C. W. Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept. Psychophys. 16, 143–149 (1974).

Download references


D.P.M. is supported by the Canadian Institutes of Health Research and the Canada Research Chair Program. S.E. is supported by the National Alliance for Research on Schizophrenia and Depression, CIHR and the EJLB Foundation. J. Fecteau and J. Connolly commented on an earlier version of the manuscript.

Author information

Competing interests

The authors declare no competing financial interests.

Correspondence to Douglas P. Munoz.

Related links



A rapid eye movement (with speeds of up to 800 degrees per second) that brings the point of maximal visual acuity — the fovea — to the image of interest.


Flexive orienting response towards a novel visual stimulus.


An area in the frontal lobe that receives visual inputs and produces movements of the eye.

Rights and permissions

Reprints and Permissions

About this article

Further reading

Figure 1: The anti-saccade task.
Figure 2: Discharges recorded from a fixation neuron (FN) and a saccade neuron (SN) in frontal eye field and superior colliculus when a monkey performs the pro-saccade and anti-saccade tasks in the gap condition.
Figure 3: Activity of individual saccade neurons in the frontal eye field and superior colliculus.
Figure 4: An accumulator model can be used to represent the accumulation of saccade activity in the brain on anti-saccade trials.