Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Proteinase-activated receptors in the nervous system

Key Points

  • Proteinase-activated receptors (PARs) are a class of G-protein-coupled receptors, the main peculiarity of which is that they are activated by proteolytic cleavage. Four PARs have been cloned so far, and all of them are expressed in the nervous system.

  • Several proteinases that are present in the nervous system — such as thrombin and trypsin — can activate PARs. Peptides that mimic the amino-terminal sequence that results from proteolytic cleavage can act as receptor agonists, and are a key asset for pharmacological studies.

  • Receptor cleavage leads to the activation of different kinds of G proteins, including G12/13, Go/i and Gq, and signalling through the phospholipase C, mitogen-activated protein kinase, and Src kinase pathways, among others.

  • PAR activation has several physiological effects on nerve cells and glia. PARs can affect the proliferation of cells, neuritic morphology and synaptic plasticity. In the periphery, PARs might also be involved in neurogenic inflammation, pain and nerve regeneration.

  • PARs seem to affect neuronal survival, but their effects are complex, as they can be neuroprotective or lead to cell death. Similarly, our understanding of the involvement of PARs in neurodegenerative disorders is still incomplete — these receptors have been implicated in Alzheimer's disease, HIV-associated dementia, multiple sclerosis and other disorders.

  • In addition to discovering which additional brain-expressed proteinases can activate PARs, it will be important to define their potential as drug targets in the different neurological conditions in which they might be involved.

Abstract

Recent data point to important roles for proteinases and their cognate proteinase-activated receptors (PARs) in the ontogeny and pathophysiology of the nervous system. PARs are a family of G-protein-coupled receptors that can affect neural cell proliferation, morphology and physiology. PARs also have important roles in neuroinflammatory and degenerative diseases such as human immunodeficiency virus-associated dementia, Alzheimer's disease and pain. These receptors might also influence the pathogenesis of stroke and multiple sclerosis, conditions in which the blood–brain barrier is disrupted. The diversity of effects of PARs on neural function and their widespread distribution in the nervous system make them attractive therapeutic targets for neurological disorders. Here, we review the roles of PARs in the central and peripheral nervous systems during health and disease, with a focus on neuroinflammatory and degenerative disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The structure and function of proteinase-activated receptors.
Figure 2: PAR1 signalling mechanisms.
Figure 3: Activation and expression of proteinase-activated receptors (PARs) in the central nervous system.

Similar content being viewed by others

References

  1. Smith, A. I. & Funder, J. W. Proopiomelanocortin processing in the pituitary, central nervous system, and peripheral tissues. Endocr. Rev. 9, 159–179 (1988).

    Article  CAS  PubMed  Google Scholar 

  2. Hollenberg, M. D. & Compton, S. J. International Union of Pharmacology. XXVIII. Proteinase-activated receptors. Pharmacol. Rev 54, 203–217 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Vu, T. K., Hung, D. T., Wheaton, V. I. & Coughlin, S. R. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64, 1057–1068 (1991). Cloning of the first member of the PAR family, showing its activation by thrombin and by a peptide resembling the N terminus generated by thrombin.

    Article  CAS  PubMed  Google Scholar 

  4. Riewald, M. & Ruf, W. Proteinase-activated receptor activation by coagulation proteinases. Drug Dev. Res. 59, 400–407 (2003).

    Article  CAS  Google Scholar 

  5. Ishihara, H. et al. Protease-activated receptor 3 is a second thrombin receptor in humans. Nature 386, 502–506 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Xu, W. F. et al. Cloning and characterization of human protease-activated receptor 4. Proc. Natl Acad. Sci. USA 95, 6642–6646 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nystedt, S., Emilsson, K., Wahlestedt, C. & Sundelin, J. Molecular cloning of a potential proteinase activated receptor. Proc. Natl Acad. Sci. USA 91, 9208–9212 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nystedt, S., Larsson, A. K., Aberg, H. & Sundelin, J. The mouse proteinase-activated receptor-2 cDNA and gene. Molecular cloning and functional expression. J. Biol. Chem. 270, 5950–5955 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Molino, M. et al. Interactions of mast cell tryptase with thrombin receptors and PAR-2. J. Biol. Chem. 272, 4043–4049 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Vu, T. K., Wheaton, V. I., Hung, D. T., Charo, I. & Coughlin, S. R. Domains specifying thrombin-receptor interaction. Nature 353, 674–677 (1991). Definition of PAR1 cleavage as the receptor-activating mechanism.

    Article  CAS  PubMed  Google Scholar 

  11. Seiler, S. M. et al. Inhibition of thrombin and SFLLR-peptide stimulation of platelet aggregation, phospholipase A2 and Na+/H+ exchange by a thrombin receptor antagonist. Biochem. Pharmacol. 49, 519–528 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Guyonnet Duperat, V., Jacquelin, B., Boisseau, P., Arveiler, B. & Nurden, A. T. Protease-activated receptor genes are clustered on 5q13. Blood 92, 25–31 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Dery, O., Corvera, C. U., Steinhoff, M. & Bunnett, N. W. Proteinase-activated receptors: novel mechanisms of signaling by serine proteases. Am. J. Physiol. 274, C1429–C1452 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Rohatgi, T., Sedehizade, F., Sabel, B. A. & Reiser, G. Protease-activated receptor subtype expression in developing eye and adult retina of the rat after optic nerve crush. J. Neurosci. Res. 73, 246–254 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Nystedt, S., Emilsson, K., Larsson, A. K., Strombeck, B. & Sundelin, J. Molecular cloning and functional expression of the gene encoding the human proteinase-activated receptor 2. Eur. J. Biochem. 232, 84–89 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Connolly, A. J., Ishihara, H., Kahn, M. L., Farese, R. V. Jr & Coughlin, S. R. Role of the thrombin receptor in development and evidence for a second receptor. Nature 381, 516–519 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Schmidt, V. A. et al. The human proteinase-activated receptor-3 (PAR-3) gene. Identification within a Par gene cluster and characterization in vascular endothelial cells and platelets. J. Biol. Chem. 273, 15061–15068 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Kahn, M. L. et al. A dual thrombin receptor system for platelet activation. Nature 394, 690–694 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Nakanishi-Matsui, M. et al. PAR3 is a co-factor for PAR4 activation by thrombin. Nature 404, 609–613 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Kahn, M. L., Nakanishi-Matsui, M., Shapiro, M. J., Ishihara, H. & Coughlin, S. R. Protease-activated receptors 1 and 4 mediate activation of human platelets by thrombin. J. Clin. Invest. 103, 879–887 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Riewald, M., Petrovan, R. J., Donner, A., Mueller, B. M. & Ruf, W. Activation of endothelial cell protease activated receptor 1 by the protein C pathway. Science 296, 1880–1882 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Bono, F. et al. Factor Xa activates endothelial cells by a receptor cascade between EPR-1 and PAR-2. Arterioscler. Thromb. Vasc. Biol. 20, E107–E112 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Takeuchi, T. et al. Cellular localization of membrane-type serine protease 1 and identification of protease-activated receptor-2 and single-chain urokinase-type plasminogen activator as substrates. J. Biol. Chem. 275, 26333–26342 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Macfarlane, S. R., Seatter, M. J., Kanke, T., Hunter, G. D. & Plevin, R. Proteinase-activated receptors. Pharmacol. Rev. 53, 245–282 (2001).

    CAS  PubMed  Google Scholar 

  25. Coughlin, S. R. Thrombin signalling and protease-activated receptors. Nature 407, 258–264 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Ubl, J. J., Vohringer, C. & Reiser, G. Co-existence of two types of [Ca2+]i-inducing protease-activated receptors (PAR-1 and PAR-2) in rat astrocytes and C6 glioma cells. Neuroscience 86, 597–609 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Smith-Swintosky, V. L. et al. Protease-activated receptor-2 (PAR-2) is present in the rat hippocampus and is associated with neurodegeneration. J. Neurochem. 69, 1890–1896 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Striggow, F. et al. Four different types of protease-activated receptors are widely expressed in the brain and are up-regulated in hippocampus by severe ischemia. Eur. J. Neurosci. 14, 595–608 (2001). Determination of the neuronal localization of the four PAR subtypes and their altered expression during ischaemia.

    Article  CAS  PubMed  Google Scholar 

  29. Wang, H., Ubl, J. J. & Reiser, G. Four subtypes of protease-activated receptors, co-expressed in rat astrocytes, evoke different physiological signaling. Glia 37, 53–63 (2002). Demonstration of the expression of all four PARs on rodent astrocytes, as well as of some downstream proliferative effects of PAR activation on astrocytes.

    Article  CAS  PubMed  Google Scholar 

  30. Gill, J. S., Pitts, K., Rusnak, F. M., Owen, W. G. & Windebank, A. J. Thrombin induced inhibition of neurite outgrowth from dorsal root ganglion neurons. Brain Res. 797, 321–327 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Steinhoff, M. et al. Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism. Nature Med. 6, 151–158 (2000). This study showed the production of proinflammatory neuropeptides, calcitonin gene-related peptide and substance P on PAR2-expressing primary spinal afferent neurons, and their release on PAR2 activation.

    Article  CAS  PubMed  Google Scholar 

  32. Corvera, C. U. et al. Thrombin and mast cell tryptase regulate guinea-pig myenteric neurons through proteinase-activated receptors-1 and -2. J. Physiol. (Lond.) 517, 741–756 (1999).

    Article  CAS  Google Scholar 

  33. Reed, D. E. et al. Mast cell tryptase and proteinase-activated receptor 2 induce hyperexcitability of guinea-pig submucosal neurons. J. Physiol. (Lond.) 547, 531–542 (2003). Demonstration that the activation of Par2 on submucosal neurons by mast-cell tryptase led to neuronal depolarization and hyperexcitability.

    Article  CAS  Google Scholar 

  34. Dihanich, M., Kaser, M., Reinhard, E., Cunningham, D. & Monard, D. Prothrombin mRNA is expressed by cells of the nervous system. Neuron 6, 575–581 (1991).

    Article  CAS  PubMed  Google Scholar 

  35. Deschepper, C. F., Bigornia, V., Berens, M. E. & Lapointe, M. C. Production of thrombin and antithrombin III by brain and astroglial cell cultures. Brain Res. Mol. Brain Res. 11, 355–358 (1991).

    Article  CAS  PubMed  Google Scholar 

  36. Weinstein, J. R., Gold, S. J., Cunningham, D. D. & Gall, C. M. Cellular localization of thrombin receptor mRNA in rat brain: expression by mesencephalic dopaminergic neurons and codistribution with prothrombin mRNA. J. Neurosci. 15, 2906–2919 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shikamoto, Y. & Morita, T. Expression of factor X in both the rat brain and cells of the central nervous system. FEBS Lett. 463, 387–389 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Stead, R. H. et al. Intestinal mucosal mast cells in normal and nematode-infected rat intestines are in intimate contact with peptidergic nerves. Proc. Natl Acad. Sci. USA 84, 2975–2979 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Theoharides, T. C. Mast cells: the immune gate to the brain. Life Sci. 46, 607–617 (1990).

    Article  CAS  PubMed  Google Scholar 

  40. Sawada, K., Nishibori, M., Nakaya, N., Wang, Z. & Saeki, K. Purification and characterization of a trypsin-like serine proteinase from rat brain slices that degrades laminin and type IV collagen and stimulates protease-activated receptor-2. J. Neurochem. 74, 1731–1738 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Wiegand, U., Corbach, S., Minn, A., Kang, J. & Muller-Hill, B. Cloning of the cDNA encoding human brain trypsinogen and characterization of its product. Gene 136, 167–175 (1993).

    Article  CAS  PubMed  Google Scholar 

  42. Cavanaugh, K. P., Gurwitz, D., Cunningham, D. D. & Bradshaw, R. A. Reciprocal modulation of astrocyte stellation by thrombin and protease nexin-1. J. Neurochem. 54, 1735–1743 (1990).

    Article  CAS  PubMed  Google Scholar 

  43. Beecher, K. L., Andersen, T. T., Fenton, J. W. & Festoff, B. W. Thrombin receptor peptides induce shape change in neonatal murine astrocytes in culture. J. Neurosci. Res. 37, 108–115 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Grabham, P. & Cunningham, D. D. Thrombin receptor activation stimulates astrocyte proliferation and reversal of stellation by distinct pathways: involvement of tyrosine phosphorylation. J. Neurochem. 64, 583–591 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Majumdar, M., Seasholtz, T. M., Buckmaster, C., Toksoz, D. & Brown, J. H. A rho exchange factor mediates thrombin and Gα12-induced cytoskeletal responses. J. Biol. Chem. 274, 26815–26821 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Wang, H., Ubl, J. J., Stricker, R. & Reiser, G. Thrombin (PAR-1)-induced proliferation in astrocytes via MAPK involves multiple signaling pathways. Am. J. Physiol. Cell. Physiol. 283, C1351–C1364 (2002). Demonstration of the involvement of the extracellular signal-regulated kinase and PLC pathways in thrombin-induced astrocytic proliferation.

    Article  CAS  PubMed  Google Scholar 

  47. Wang, H. & Reiser, G. The role of the Ca2+-sensitive tyrosine kinase Pyk2 and Src in thrombin signalling in rat astrocytes. J. Neurochem. 84, 1349–1357 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Ehrenreich, H. et al. Thrombin is a regulator of astrocytic endothelin-1. Brain Res. 600, 201–207 (1993).

    Article  CAS  PubMed  Google Scholar 

  49. Neveu, I., Jehan, F., Jandrot-Perrus, M., Wion, D. & Brachet, P. Enhancement of the synthesis and secretion of nerve growth factor in primary cultures of glial cells by proteases: a possible involvement of thrombin. J. Neurochem. 60, 858–867 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. Debeir, T., Gueugnon, J., Vige, X. & Benavides, J. Transduction mechanisms involved in thrombin receptor-induced nerve growth factor secretion and cell division in primary cultures of astrocytes. J. Neurochem. 66, 2320–2328 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Miller, S., Sehati, N., Romano, C. & Cotman, C. W. Exposure of astrocytes to thrombin reduces levels of the metabotropic glutamate receptor mGluR5. J. Neurochem. 67, 1435–1447 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Pechan, P. A., Chowdhury, K., Gerdes, W. & Seifert, W. Glutamate induces the growth factors NGF, bFGF, the receptor FGF-R1 and c-fos mRNA expression in rat astrocyte culture. Neurosci. Lett. 153, 111–114 (1993).

    Article  CAS  PubMed  Google Scholar 

  53. Nakahara, K., Okada, M. & Nakanishi, S. The metabotropic glutamate receptor mGluR5 induces calcium oscillations in cultured astrocytes via protein kinase C phosphorylation. J. Neurochem. 69, 1467–1475 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Ye, Z. C. & Sontheimer, H. Metabotropic glutamate receptor agonists reduce glutamate release from cultured astrocytes. Glia 25, 270–281 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Gurwitz, D. & Cunningham, D. D. Thrombin modulates and reverses neuroblastoma neurite outgrowth. Proc. Natl Acad. Sci. USA 85, 3440–3444 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gloor, S., Odink, K., Guenther, J., Nick, H. & Monard, D. A glia-derived neurite promoting factor with protease inhibitory activity belongs to the protease nexins. Cell 47, 687–693 (1986).

    Article  CAS  PubMed  Google Scholar 

  57. Debeir, T., Benavides, J. & Vige, X. Involvement of protease-activated receptor-1 in the in vitro development of mesencephalic dopaminergic neurons. Neuroscience 82, 739–752 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Turgeon, V. L., Lloyd, E. D., Wang, S., Festoff, B. W. & Houenou, L. J. Thrombin perturbs neurite outgrowth and induces apoptotic cell death in enriched chick spinal motoneuron cultures through caspase activation. J. Neurosci. 18, 6882–6891 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Monard, D. Cell-derived proteases and protease inhibitors as regulators of neurite outgrowth. Trends Neurosci. 11, 541–544 (1988).

    Article  CAS  PubMed  Google Scholar 

  60. Liu, Y., Fields, R. D., Festoff, B. W. & Nelson, P. G. Proteolytic action of thrombin is required for electrical activity-dependent synapse reduction. Proc. Natl Acad. Sci. USA 91, 10300–10304 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu, Y., Fields, R. D., Fitzgerald, S., Festoff, B. W. & Nelson, P. G. Proteolytic activity, synapse elimination, and the Hebb synapse. J. Neurobiol. 25, 325–335 (1994).

    Article  CAS  PubMed  Google Scholar 

  62. Gingrich, M. B., Junge, C. E., Lyuboslavsky, P. & Traynelis, S. F. Potentiation of NMDA receptor function by the serine protease thrombin. J. Neurosci. 20, 4582–4595 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. de Garavilla, L. et al. Agonists of proteinase-activated receptor 1 induce plasma extravasation by a neurogenic mechanism. Br. J. Pharmacol. 133, 975–987 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Linden, D. R., Manning, B. P., Bunnett, N. W. & Mawe, G. M. Agonists of proteinase-activated receptor 2 excite guinea pig ileal myenteric neurons. Eur. J. Pharmacol. 431, 311–314 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Kirkup, A. J., Jiang, W., Bunnett, N. W. & Grundy, D. Stimulation of the proteinase-activated receptor 2 excites jejunal afferent nerves in anaesthetised rats. J. Physiol. 552, 589–601 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gao, C. et al. Serine proteases excite myenteric neurons through protease-activated receptors in guinea pig small intestine. Gastroenterology 123, 1554–1564 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Asfaha, S., Brussee, V., Chapman, K., Zochodne, D. W. & Vergnolle, N. Proteinase-activated receptor-1 agonists attenuate nociception in response to noxious stimuli. Br. J. Pharmacol. 135, 1101–1106 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vergnolle, N. et al. Proteinase-activated receptor-2 and hyperalgesia: a novel pain pathway. Nature Med. 7, 821–826 (2001). Demonstration of neurokinin-1-receptor-dependent and PAR2-induced thermal and mechanical hyperalgesia.

    Article  CAS  PubMed  Google Scholar 

  69. Hoogerwerf, W. A. et al. The proteinase-activated receptor 2 is involved in nociception. J. Neurosci. 21, 9036–9042 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Steinhoff, M. et al. Proteinase-activated receptor-2 mediates itch: a novel pathway for pruritus in human skin. J. Neurosci. 23, 6176–6180 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Friedmann, I., Faber-Elman, A., Yoles, E. & Schwartz, M. Injury-induced gelatinase and thrombin-like activities in regenerating and nonregenerating nervous systems. FASEB J. 13, 533–543 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Niclou, S. P., Suidan, H. S., Pavlik, A., Vejsada, R. & Monard, D. Changes in the expression of protease-activated receptor 1 and protease nexin-1 mRNA during rat nervous system development and after nerve lesion. Eur. J. Neurosci. 10, 1590–1607 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Green, B. T., Bunnett, N. W., Kulkarni-Narla, A., Steinhoff, M. & Brown, D. R. Intestinal type 2 proteinase-activated receptors: expression in opioid-sensitive secretomotor neural circuits that mediate epithelial ion transport. J. Pharmacol. Exp. Ther. 295, 410–416 (2000).

    CAS  PubMed  Google Scholar 

  74. Kawabata, A. et al. The protease-activated receptor-2 agonist induces gastric mucus secretion and mucosal cytoprotection. J. Clin. Invest. 107, 1443–1450 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. McLean, P. G., Aston, D., Sarkar, D. & Ahluwalia, A. Protease-activated receptor-2 activation causes EDHF-like coronary vasodilation: selective preservation in ischemia/reperfusion injury: involvement of lipoxygenase products, VR1 receptors, and C-fibers. Circ. Res. 90, 465–472 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Smith-Swintosky, V. L., Zimmer, S., Fenton, J. W. & Mattson, M. P. Protease nexin-1 and thrombin modulate neuronal Ca2+ homeostasis and sensitivity to glucose deprivation-induced injury. J. Neurosci. 15, 5840–5850 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Festoff, B. W., Smirnova, I. V., Ma, J. & Citron, B. A. Thrombin, its receptor and protease nexin I, its potent serpin, in the nervous system. Semin. Thromb. Hemost. 22, 267–271 (1996).

    Article  CAS  PubMed  Google Scholar 

  78. Donovan, F. M., Pike, C. J., Cotman, C. W. & Cunningham, D. D. Thrombin induces apoptosis in cultured neurons and astrocytes via a pathway requiring tyrosine kinase and RhoA activities. J. Neurosci. 17, 5316–5326 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Vaughan, P. J., Pike, C. J., Cotman, C. W. & Cunningham, D. D. Thrombin receptor activation protects neurons and astrocytes from cell death produced by environmental insults. J. Neurosci. 15, 5389–5401 (1995). This report showed that PAR1 activation could protect neurons and astrocytes from the deleterious effects of glucose/growth supplement deprivation or oxidative stress.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Stefanis, L., Burke, R. E. & Greene, L. A. Apoptosis in neurodegenerative disorders. Curr. Opin. Neurol. 10, 299–305 (1997).

    Article  CAS  PubMed  Google Scholar 

  81. Festoff, B. W. et al. Motor neuron cell death in wobbler mutant mice follows overexpression of the G-protein-coupled, protease-activated receptor for thrombin. Mol. Med. 6, 410–429 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Boven, L. A. et al. Up-regulation of proteinase-activated receptor 1 expression in astrocytes during HIV encephalitis. J. Immunol. 170, 2638–2646 (2003). Demonstration of the proinflammatory role of astrocytic PAR1 activation in HIV encephalitis.

    Article  CAS  PubMed  Google Scholar 

  83. Moller, T., Hanisch, U. K. & Ransom, B. R. Thrombin-induced activation of cultured rodent microglia. J. Neurochem. 75, 1539–1547 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Suo, Z. et al. Participation of protease-activated receptor-1 in thrombin-induced microglial activation. J. Neurochem. 80, 655–666 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Donovan, F. M. & Cunningham, D. D. Signaling pathways involved in thrombin-induced cell protection. J. Biol. Chem. 273, 12746–12752 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Striggow, F. et al. The protease thrombin is an endogenous mediator of hippocampal neuroprotection against ischemia at low concentrations but causes degeneration at high concentrations. Proc. Natl Acad. Sci. USA 97, 2264–2269 (2000). Report of the neuroprotective/degenerative roles of the thrombin/PAR1 axis in ischaemia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Xi, G., Keep, R. F., Hua, Y., Xiang, J. & Hoff, J. T. Attenuation of thrombin-induced brain edema by cerebral thrombin preconditioning. Stroke 30, 1247–1255 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Xi, G., Hua, Y., Keep, R. F., Duong, H. K. & Hoff, J. T. Activation of p44/42 mitogen activated protein kinases in thrombin-induced brain tolerance. Brain Res. 895, 153–159 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Nishino, A. et al. Thrombin may contribute to the pathophysiology of central nervous system injury. J. Neurotrauma 10, 167–179 (1993).

    Article  CAS  PubMed  Google Scholar 

  90. Turgeon, V. L. & Houenou, L. J. The role of thrombin-like (serine) proteases in the development, plasticity and pathology of the nervous system. Brain Res. Brain Res. Rev. 25, 85–95 (1997).

    Article  CAS  PubMed  Google Scholar 

  91. Vaughan, P. J., Su, J., Cotman, C. W. & Cunningham, D. D. Protease nexin-1, a potent thrombin inhibitor, is reduced around cerebral blood vessels in Alzheimer's disease. Brain Res. 668, 160–170 (1994).

    Article  CAS  PubMed  Google Scholar 

  92. Pike, C. J., Vaughan, P. J., Cunningham, D. D. & Cotman, C. W. Thrombin attenuates neuronal cell death and modulates astrocyte reactivity induced by β-amyloid in vitro. J. Neurochem. 66, 1374–1382 (1996).

    Article  CAS  PubMed  Google Scholar 

  93. Power, C. & Johnson, R. T. Neuroimmune and neurovirological aspects of human immunodeficiency virus infection. Adv. Virus Res. 56, 389–433 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Power, C., Gill, M. J. & Johnson, R. T. Progress in clinical neurosciences: the neuropathogenesis of HIV infection: host–virus interaction and the impact of therapy. Can. J. Neurol. Sci. 29, 19–32 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Clements, G. J. et al. The V3 loops of the HIV-1 and HIV-2 surface glycoproteins contain proteolytic cleavage sites: a possible function in viral fusion? AIDS Res. Hum. Retroviruses 7, 3–16 (1991).

    Article  CAS  PubMed  Google Scholar 

  96. Schulz, T. F. et al. Effect of mutations in the V3 loop of HIV-1 gp120 on infectivity and susceptibility to proteolytic cleavage. AIDS Res. Hum. Retroviruses 9, 159–166 (1993).

    Article  CAS  PubMed  Google Scholar 

  97. Johnson, M. E., Lin, Z., Padmanabhan, K., Tulinsky, A. & Kahn, M. Conformational rearrangements required of the V3 loop of HIV-1 gp120 for proteolytic cleavage and infection. FEBS Lett. 337, 4–8 (1994).

    Article  CAS  PubMed  Google Scholar 

  98. Rodriguez, D., Rodriguez, J. R. & Esteban, M. Enhanced proteolytic processing of the human immunodeficiency virus type 1 envelope protein in murine Ltk cells. AIDS Res. Hum. Retroviruses 11, 81–85 (1995).

    Article  CAS  PubMed  Google Scholar 

  99. Kido, H., Niwa, Y., Beppu, Y. & Towatari, T. Cellular proteases involved in the pathogenicity of enveloped animal viruses, human immunodeficiency virus, influenza virus A and Sendai virus. Adv. Enzyme Regul. 36, 325–347 (1996).

    Article  CAS  PubMed  Google Scholar 

  100. Kido, H., Towatari, T., Niwa, Y., Okumura, Y. & Beppu, Y. Cellular proteases involved in the pathogenicity of human immunodeficiency and influenza viruses. Adv. Exp. Med. Biol. 389, 233–240 (1996).

    Article  CAS  PubMed  Google Scholar 

  101. Niwa, Y., Yano, M., Futaki, S., Okumura, Y. & Kido, H. T-cell membrane-associated serine protease, tryptase TL2, binds human immunodeficiency virus type 1 gp120 and cleaves the third-variable-domain loop of gp120. Neutralizing antibodies of human immunodeficiency virus type 1 inhibit cleavage of gp120. Eur. J. Biochem. 237, 64–70 (1996).

    Article  CAS  PubMed  Google Scholar 

  102. Avril, L. E., Di Martino-Ferrer, M., Barin, F. & Gauthier, F. Interaction between a membrane-associated serine proteinase of U-937 monocytes and peptides from the V3 loop of the human immunodeficiency virus type 1 (HIV-1) gp120 envelope glycoprotein. FEBS Lett. 317, 167–172 (1993).

    Article  CAS  PubMed  Google Scholar 

  103. Avril, L. E., Di Martino-Ferrer, M., Pignede, G., Seman, M. & Gauthier, F. Identification of the U-937 membrane-associated proteinase interacting with the V3 loop of HIV-1 gp120 as cathepsin G. FEBS Lett. 345, 81–86 (1994).

    Article  CAS  PubMed  Google Scholar 

  104. Avril, L. E., di Martino-Ferrer, M., Brillard-Bourdet, M. & Gauthier, F. Inhibition of U-937 membrane-associated cathepsin G by GP120 (IIIB) and V3 loop-derived peptides from several strains of HIV-1. FEBS Lett. 367, 251–256 (1995).

    Article  CAS  PubMed  Google Scholar 

  105. Pal, R. et al. Characterization of a neutralizing monoclonal antibody to the external glycoprotein of HIV-1. Intervirology 34, 86–93 (1992).

    Article  CAS  PubMed  Google Scholar 

  106. Gu, R., Westervelt, P. & Ratner, L. Role of HIV-1 envelope V3 loop cleavage in cell tropism. AIDS Res. Hum. Retroviruses 9, 1007–1015 (1993).

    Article  CAS  PubMed  Google Scholar 

  107. Xi, G., Reiser, G. & Keep, R. F. The role of thrombin and thrombin receptors in ischemic, hemorrhagic and traumatic brain injury: deleterious or protective? J. Neurochem. 84, 3–9 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Raza, S. L., Nehring, L. C., Shapiro, S. D. & Cornelius, L. A. Proteinase-activated receptor-1 regulation of macrophage elastase (MMP-12) secretion by serine proteinases. J. Biol. Chem. 275, 41243–41250 (2000).

    Article  CAS  PubMed  Google Scholar 

  109. Power, C. et al. Intracerebral hemorrhage induces macrophage activation and matrix metalloproteinases. Ann. Neurol. 53, 731–742 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Toms, R., Weiner, H. L. & Johnson, D. Identification of IgE-positive cells and mast cells in frozen sections of multiple sclerosis brains. J. Neuroimmunol. 30, 169–177 (1990).

    Article  CAS  PubMed  Google Scholar 

  111. Ibrahim, M. Z., Reder, A. T., Lawand, R., Takash, W. & Sallouh-Khatib, S. The mast cells of the multiple sclerosis brain. J. Neuroimmunol. 70, 131–138 (1996).

    Article  CAS  PubMed  Google Scholar 

  112. Pedotti, R. et al. Multiple elements of the allergic arm of the immune response modulate autoimmune demyelination. Proc. Natl Acad. Sci. USA 100, 1867–1872 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lock, C. et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nature Med. 8, 500–508 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Rozniecki, J. J., Hauser, S. L., Stein, M., Lincoln, R. & Theoharides, T. C. Elevated mast cell tryptase in cerebrospinal fluid of multiple sclerosis patients. Ann. Neurol. 37, 63–66 (1995).

    Article  CAS  PubMed  Google Scholar 

  115. Hollenberg, M. D., Saifeddine, M. & Zwiers, H. Proteinase-activated receptors (PARs): activation of PAR1 and PAR2 by a proteolytic fragment of the neuronal growth associated protein B-50/GAP-43. Can. J. Physiol. Pharmacol. 78, 81–85 (2000).

    Article  CAS  PubMed  Google Scholar 

  116. Jalink, K. et al. Inhibition of lysophosphatidate- and thrombin-induced neurite retraction and neuronal cell rounding by ADP ribosylation of the small GTP-binding protein Rho. J. Cell. Biol. 126, 801–810 (1994).

    Article  CAS  PubMed  Google Scholar 

  117. Ellis, C. A. et al. Thrombin induces proteinase-activated receptor-1 gene expression in endothelial cells via activation of Gi-linked Ras/mitogen-activated protein kinase pathway. J. Biol. Chem. 274, 13718–13727 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

F.N. holds a scholarship from the Iranian Ministry of Health and Medical Education. N.V. is a Canadian Institutes of Health Research/NicOx Investigator. C.P. is an Alberta Heritage Foundation for Medical Research Scholar/Canadian Institutes of Health Research Investigator and holds the Strafford Foundation Chair in Alzheimer's Disease Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Power.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

LocusLink

CGRP

MMP12

Substance P

OMIM

Cathepsin G

GAP43

Mast-cell tryptase

MS

PAR1

PAR2

PAR3

PAR4

Thrombin

Trypsin

Glossary

EXPRESSION CLONING

A cloning strategy that is based on the transfection of complementary DNAs such that functional proteins are expressed, followed by screening of the functional activity of the gene of interest.

HYDROPATHY ANALYSIS

Analysis that allows the visualization of hydrophobicity patterns in a peptide sequence, and is particularly useful in determining the membrane-spanning regions of proteins. Obtaining a hydropathy plot requires the use of a hydropathy scale that is based on the hydrophobic and hydrophilic properties of the 20 amino acids. A moving window determines the summed hydropathy at each point in the sequence, and this value is then plotted against the amino-acid positions.

ANION-BINDING EXOSITE

The non-catalytic substrate-binding site of thrombin. Each thrombin molecule has two anion-binding exosites.

EXPRESSED SEQUENCE TAGS

Short (200–500 base pairs) DNA sequences that represent the sequences expressed in an organism under a given condition. They are generated from the 3′- and 5′-ends of randomly selected complementary DNA clones. The purpose of expressed sequence tag sequencing is to scan for all the protein-coding genes, and to provide a tag for each gene in the genome.

MITOGEN-ACTIVATED PROTEIN KINASE CASCADE

A signalling cascade that relays signals from the plasma membrane to the nucleus. Mitogen-activated protein (MAP) kinases, which catalyse the last step in the pathway, are activated by a wide range of proliferation- or differentiation-inducing signals. Extracellular signal-regulated kinases are among the best-characterized MAP kinases.

SRC

A cytoplasmic tyrosine kinase that was first identified as a transforming oncogene in an avian retrovirus. This kinase is the prototypical kinase from which Src-homology regions were first described.

RHO GTPASES

A family of proteins that are related to the product of the Ras oncogene and are involved in controlling the polymerization of actin.

LONG-TERM POTENTIATION

An enduring increase in the amplitude of excitatory postsynaptic potentials as a result of high-frequency (tetanic) stimulation of afferent pathways. It is measured both as the amplitude of excitatory postsynaptic potentials and as the magnitude of the postsynaptic-cell population spike. Long-term potentiation is most often studied in the hippocampus, and is often considered to be the cellular basis of learning and memory in vertebrates.

OEDEMA

The presence of abnormally large amounts of fluid in the intercellular spaces.

HYPERALGESIA

The perception of a stimulus as more painful than when previously experienced.

ALLODYNIA

The perception of a stimulus as painful when previously the same stimulus was reported to be non-painful.

ATOPIC DERMATITIS

A common form of eczema that is often accompanied by allergies and asthma.

VANILLOID RECEPTORS

A family of receptors that are involved in the perception of hot temperature. The first member of the family was identified owing to its sensitivity to capsaicin — the hot component of chili peppers.

WOBBLER MOUSE

A mutant mouse that shows motor neuron degeneration and astrocyte reactivity in the spinal cord, and defects in spermatogenesis. The mutant gene has not been identified.

CD40

A molecule that is present in B lymphocytes, which partly triggers their growth by binding to the CD40 ligand on the surface of activated helper T cells.

ISCHAEMIC PRECONDITIONING

An adaptive response of tissue that has been reversibly affected by an episode of ischaemia such that its resistance to subsequent ischaemic episodes is increased.

MYELIN PALLOR

Abnormal appearance of white matter in histological sections as a result of disrupted blood–brain barrier integrity.

EXTRAVASATION

Refers to the leakage of plasma and plasma proteins from post-capillary venules — recognized as oedema.

CD4

A receptor present in a subset of T lymphocytes that are essential for turning on antibody production, activating cytotoxic T cells and initiating other immune responses.

EXPERIMENTAL ALLERGIC ENCEPHALOMYELITIS

A rodent model of multiple sclerosis that is characterized by episodes of spasticity and tremor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noorbakhsh, F., Vergnolle, N., Hollenberg, M. et al. Proteinase-activated receptors in the nervous system. Nat Rev Neurosci 4, 981–990 (2003). https://doi.org/10.1038/nrn1255

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1255

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing