Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Merging functional studies with structures of inward-rectifier K+ channels

Key Points

  • Inward rectifier potassium (Kir) channels are an important class of potassium channels with the simplest structural architecture of the characterized eukaryotic channels. This review highlights the convergence of structural studies and functional analyses of this large and extensively analysed ion channel family.

  • Several high-resolution structures of bacterial K+ channels have been solved: KcsA, MthK, KvAP and KirBac1.1. The recent structure of KirBac1.1, which has high sequence homology with eukaryotic Kir channels, offers the opportunity to evaluate the results of functional assays in the context of the relevant channel structure.

  • The selectivity filter confers selectivity for K+ by coordinating the ions with the backbone carbonyl oxygens of the K+ channel signature sequence. In Kir channels, structural features other than the signature sequence are also important for K+ selectivity.

  • Inward rectification refers to the preferential flow of ions into the cell. In Kir channels, outward flow of K+ is impeded by a block of the pore by cytoplasmic polyamines and Mg2+. The long cytoplasmic pore that was revealed in the high-resolution structures of KirBac1.1 and the intracellular domain of Kir3.1 explain several of the characteristics of inward rectification that have been identified in functional studies.

  • Kir channels can change their conformation and thereby reduce ion flow through them, which is referred to as gating. Two locations for the gate have been proposed: the bundle crossing and the selectivity filter. Conformational changes at these two locations might correspond to the functionally observed slow and fast gating, respectively.

  • Gating of Kir channels is regulated by several cytoplasmic factors, including PtdIns(4,5)P2, arachidonic acid, Na+ and Mg2+ ions, pH, heterotrimeric G proteins, ATP, phosphorylation, oxidation/reduction and interactions with PDZ domains. Mapping the functionally identified sites of interaction between Kir channels and these modulators onto the cytoplasmic structures of Kir3.1 and KirBac1.1 provides insights into the complex and synergic mechanisms of Kir channel modulation.

  • A challenging area for future explorations concerns the structural rearrangements that are induced by the binding of intracellular modulators and how they translate into opening and closing of the channel.

Abstract

Inwardly rectifying K+ (Kir) channels have a wide range of functions including the control of neuronal signalling, heart rate, blood flow and insulin release. Because of the physiological importance of these channels, considerable effort has been invested in understanding the structural basis of their physiology. In this review, we use two recent, high-resolution structures as foundations for examining our current understanding of the fundamental functions that are shared by all K+ channels, such as K+ selectivity and channel gating, as well as characteristic features of Kir channel family members, such as inward rectification and their regulation by intracellular factors.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Overall architecture of inwardly rectifying K+ (Kir) channels.
Figure 2: Structures of the cytoplasmic domains of KirBac1.1 and Kir3.1.
Figure 3: Structure of the K+ selectivity filter supporting a multi-ion pore model.
Figure 4: Inward rectification.
Figure 5: Gating of inwardly rectifying K+ (Kir) channels.
Figure 6: Modulation of inwardly rectifying K+ (Kir) channel activity by intracellular regulators.

Accession codes

Accessions

Protein Data Bank

References

  1. Shieh, C. C., Coghlan, M., Sullivan, J. P. & Gopalakrishnan, M. Potassium channels: molecular defects, diseases, and therapeutic opportunities. Pharmacol. Rev. 52, 557–594 (2000).

    CAS  PubMed  Google Scholar 

  2. Yang, J., Jan, Y. N. & Jan, L. Y. Determination of the subunit stoichiometry of an inwardly rectifying potassium channel. Neuron 15, 1441–1447 (1995).

    CAS  PubMed  Google Scholar 

  3. Raab-Graham, K. F. & Vandenberg, C. A. Tetrameric subunit structure of the native brain inwardly rectifying potassium channel Kir2.2. J. Biol. Chem. 273, 19699–19707 (1998).

    CAS  PubMed  Google Scholar 

  4. Kuo, A. et al. Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300, 1922–1926 (2003). The first X-ray crystal structure of a Kir channel, showing both the transmembrane and cytoplasmic regions of the same K+ channel.

    CAS  PubMed  Google Scholar 

  5. Doyle, D. A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).

    CAS  Article  PubMed  Google Scholar 

  6. Morais-Cabral, J. H., Zhou, Y. & MacKinnon, R. Energetic optimization of ion conduction rate by the K+ selectivity filter. Nature 414, 37–42 (2001).

    CAS  Article  PubMed  Google Scholar 

  7. Zhou, Y., Morais-Cabral, J. H., Kaufman, A. & MacKinnon, R. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 Å resolution. Nature 414, 43–48 (2001).

    CAS  Article  PubMed  Google Scholar 

  8. Jiang, Y. et al. Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417, 515–522 (2002).

    CAS  PubMed  Google Scholar 

  9. Jiang, Y. et al. X-ray structure of a voltage-dependent K+ channel. Nature 423, 33–41 (2003).

    CAS  Article  PubMed  Google Scholar 

  10. Cohen, B. E., Grabe, M. & Jan, L. Y. Answers and questions from the KvAP structures. Neuron 39, 395–400 (2003).

    CAS  PubMed  Google Scholar 

  11. Nishida, M. & MacKinnon, R. Structural basis of inward rectification: cytoplasmic pore of the G protein-gated inward rectifier GIRK1 at 1.8 Å resolution. Cell 111, 957–965 (2002). This article reports the first view of the large cytoplasmic pore of a mammalian Kir channel.

    CAS  PubMed  Google Scholar 

  12. Minor, D. L. Jr, Masseling, S. J., Jan, Y. N. & Jan, L. Y. Transmembrane structure of an inwardly rectifying potassium channel. Cell 96, 879–891 (1999). This paper uses a yeast screen for functional K+ channels to probe the local environment of residues in the transmembrane helices of Kir2. 1.

    CAS  PubMed  Google Scholar 

  13. Lu, T., Nguyen, B., Zhang, X. & Yang, J. Architecture of a K+ channel inner pore revealed by stoichiometric covalent modification. Neuron 22, 571–580 (1999).

    CAS  PubMed  Google Scholar 

  14. Thompson, G. A., Leyland, M. L., Ashmole, I., Sutcliffe, M. J. & Stanfield, P. R. Residues beyond the selectivity filter of the K+ channel Kir2.1 regulate permeation and block by external Rb+ and Cs+. J. Physiol. (Lond.) 526, 231–240 (2000).

    CAS  Google Scholar 

  15. Durell, S. R. & Guy, H. R. A family of putative Kir potassium channels in prokaryotes. BMC Evol. Biol. 1, 14 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Heginbotham, L., Lu, Z., Abramson, T. & MacKinnon, R. Mutations in the K+ channel signature sequence. Biophys. J. 66, 1061–1067 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Patil, N. et al. A potassium channel mutation in weaver mice implicates membrane excitability in granule cell differentiation. Nature Genet. 11, 126–129 (1995).

    CAS  PubMed  Google Scholar 

  18. Slesinger, P. A. et al. Functional effects of the mouse weaver mutation on G protein-gated inwardly rectifying K+ channels. Neuron 16, 321–331 (1996).

    CAS  PubMed  Google Scholar 

  19. Navarro, B. et al. Nonselective and G βγ-insensitive weaver K+ channels. Science 272, 1950–1953 (1996).

    CAS  PubMed  Google Scholar 

  20. Kofuji, P. et al. Functional analysis of the weaver mutant GIRK2 K+ channel and rescue of weaver granule cells. Neuron 16, 941–952 (1996).

    CAS  PubMed  Google Scholar 

  21. Berneche, S. & Roux, B. Energetics of ion conduction through the K+ channel. Nature 414, 73–77 (2001).

    CAS  PubMed  Google Scholar 

  22. Berneche, S. & Roux, B. Molecular dynamics of the KcsA K+ channel in a bilayer membrane. Biophys. J. 78, 2900–2917 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Shrivastava, I. H., Tieleman, D. P., Biggin, P. C. & Sansom, M. S. K+ versus Na+ ions in a K+ channel selectivity filter: a simulation study. Biophys. J. 83, 633–645 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Aqvist, J. & Luzhkov, V. Ion permeation mechanism of the potassium channel. Nature 404, 881–884 (2000).

    CAS  PubMed  Google Scholar 

  25. Choe, S. Potassium channel structures. Nature Rev. Neurosci. 3, 115–121 (2002). An extensive review of the mechanisms of ion selectivity and permeation in K+ channels.

    CAS  Google Scholar 

  26. Lu, Z., Klem, A. M. & Ramu, Y. Ion conduction pore is conserved among potassium channels. Nature 413, 809–813 (2001).

    CAS  PubMed  Google Scholar 

  27. Slesinger, P. A. Ion selectivity filter regulates local anesthetic inhibition of G-protein-gated inwardly rectifying K+ channels. Biophys. J. 80, 707–718 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Yi, B. A., Lin, Y. F., Jan, Y. N. & Jan, L. Y. Yeast screen for constitutively active mutant G protein-activated potassium channels. Neuron 29, 657–667 (2001).

    CAS  PubMed  Google Scholar 

  29. Yang, J., Yu, M., Jan, Y. N. & Jan, L. Y. Stabilization of ion selectivity filter by pore loop ion pairs in an inwardly rectifying potassium channel. Proc. Natl Acad. Sci. USA 94, 1568–1572 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kubo, Y. Two aspects of the inward rectification mechanism. Effects of cytoplasmic blockers and extracellular K+ on the inward rectifier K+ channel. Jpn Heart J. 37, 631–641 (1996).

    CAS  PubMed  Google Scholar 

  31. Shieh, R. C., Chang, J. C. & Kuo, C. C. K+ binding sites and interactions between permeating K+ ions at the external pore mouth of an inward rectifier K+ channel (Kir2.1). J. Biol. Chem. 274, 17424–17430 (1999).

    CAS  PubMed  Google Scholar 

  32. Dibb, K. M. et al. Molecular basis of ion selectivity, block and rectification of the inward rectifier Kir3.1/Kir3.4 K+ channel. J. Biol. Chem. 22 September 2003 (doi: 10.1074/jbc.M307723200).

  33. Krapivinsky, G. et al. A novel inward rectifier K+ channel with unique pore properties. Neuron 20, 995–1005 (1998).

    CAS  PubMed  Google Scholar 

  34. Vandenberg, C. A. Inward rectification of a potassium channel in cardiac ventricular cells depends on internal magnesium ions. Proc. Natl Acad. Sci. USA 84, 2560–2564 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Matsuda, H., Saigusa, A. & Irisawa, H. Ohmic conductance through the inwardly rectifying K+ channel and blocking by internal Mg2+. Nature 325, 156–159 (1987).

    CAS  PubMed  Google Scholar 

  36. Lopatin, A. N., Makhina, E. N. & Nichols, C. G. Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 372, 366–369 (1994).

    CAS  PubMed  Google Scholar 

  37. Lu, Z. & MacKinnon, R. Electrostatic tuning of Mg2+ affinity in an inward-rectifier K+ channel. Nature 371, 243–246 (1994).

    CAS  PubMed  Google Scholar 

  38. Stanfield, P. R. et al. A single aspartate residue is involved in both intrinsic gating and blockage by Mg2+ of the inward rectifier, IRK1. J. Physiol. (Lond.) 478, 1–6 (1994).

    CAS  Google Scholar 

  39. Wible, B. A., Taglialatela, M., Ficker, E. & Brown, A. M. Gating of inwardly rectifying K+ channels localized to a single negatively charged residue. Nature 371, 246–249 (1994).

    CAS  PubMed  Google Scholar 

  40. Yang, J., Jan, Y. N. & Jan, L. Y. Control of rectification and permeation by residues in two distinct domains in an inward rectifier K+ channel. Neuron 14, 1047–1054 (1995).

    CAS  PubMed  Google Scholar 

  41. Fujiwara, Y. & Kubo, Y. Ser165 in the second transmembrane region of the Kir2.1 channel determines its susceptibility to blockade by intracellular Mg2+. J. Gen. Physiol. 120, 677–693 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Taglialatela, M., Wible, B. A., Caporaso, R. & Brown, A. M. Specification of pore properties by the carboxyl terminus of inwardly rectifying K+ channels. Science 264, 844–847 (1994).

    CAS  PubMed  Google Scholar 

  43. Taglialatela, M., Ficker, E., Wible, B. A. & Brown, A. M. C-terminus determinants for Mg2+ and polyamine block of the inward rectifier K+ channel IRK1. EMBO J. 14, 5532–5541 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Baukrowitz, T. et al. Inward rectification in KATP channels: a pH switch in the pore. EMBO J. 18, 847–853 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kubo, Y. & Murata, Y. Control of rectification and permeation by two distinct sites after the second transmembrane region in Kir2.1 K+ channel. J. Physiol. (Lond.) 531, 645–660 (2001).

    CAS  Google Scholar 

  46. Lopatin, A. N., Makhina, E. N. & Nichols, C. G. The mechanism of inward rectification of potassium channels: 'long-pore plugging' by cytoplasmic polyamines. J. Gen. Physiol. 106, 923–955 (1995).

    CAS  PubMed  Google Scholar 

  47. Lee, J. K., John, S. A. & Weiss, J. N. Novel gating mechanism of polyamine block in the strong inward rectifier K+ channel Kir2.1. J. Gen. Physiol. 113, 555–564 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Xie, L. H., John, S. A. & Weiss, J. N. Spermine block of the strong inward rectifier potassium channel Kir2.1: dual roles of surface charge screening and pore block. J. Gen. Physiol. 120, 53–66 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Xie, L. H., John, S. A. & Weiss, J. N. Inward rectification by polyamines in mouse Kir2.1 channels: synergy between blocking components. J. Physiol. (Lond.) 550, 67–82 (2003).

    CAS  Google Scholar 

  50. Pearson, W. L. & Nichols, C. G. Block of the Kir2.1 channel pore by alkylamine analogues of endogenous polyamines. J. Gen. Physiol. 112, 351–363 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Guo, D., Ramu, Y., Klem, A. M. & Lu, Z. Mechanism of rectification in inward-rectifier K+ channels. J. Gen. Physiol. 121, 261–276 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Spassova, M. & Lu, Z. Coupled ion movement underlies rectification in an inward-rectifier K+ channel. J. Gen. Physiol. 112, 211–221 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Perozo, E., Cortes, D. M. & Cuello, L. G. Structural rearrangements underlying K+-channel activation gating. Science 285, 73–78 (1999).

    CAS  PubMed  Google Scholar 

  54. Phillips, L. R., Enkvetchakul, D. & Nichols, C. G. Gating dependence of inner pore access in inward rectifier K+ channels. Neuron 37, 953–962 (2003). This SCAM study points out an important caveat of the SCAM technique, namely that the modifying agent can be trapped in the pore of the closed channel.

    PubMed  Google Scholar 

  55. Sadja, R., Smadja, K., Alagem, N. & Reuveny, E. Coupling Gβγ-dependent activation to channel opening via pore elements in inwardly rectifying potassium channels. Neuron 29, 669–680 (2001).

    CAS  PubMed  Google Scholar 

  56. Liu, Y. S., Sompornpisut, P. & Perozo, E. Structure of the KcsA channel intracellular gate in the open state. Nature Struct. Biol. 8, 883–887 (2001).

    CAS  PubMed  Google Scholar 

  57. Jiang, Y. et al. The open pore conformation of potassium channels. Nature 417, 523–526 (2002). This paper provided the first structural evidence for bending of the M2 helices at a glycine hinge as a possible gating mechanism for K+ channels.

    CAS  PubMed  Google Scholar 

  58. Jin, T. et al. The βγ subunits of G proteins gate a K+ channel by pivoted bending of a transmembrane segment. Mol. Cell 10, 469–481 (2002).

    CAS  PubMed  Google Scholar 

  59. Liu, Y., Holmgren, M., Jurman, M. E. & Yellen, G. Gated access to the pore of a voltage-dependent K+ channel. Neuron 19, 175–184 (1997).

    PubMed  Google Scholar 

  60. del Camino, D. & Yellen, G. Tight steric closure at the intracellular activation gate of a voltage-gated K+ channel. Neuron 32, 649–656 (2001).

    CAS  PubMed  Google Scholar 

  61. Rothberg, B. S., Shin, K. S., Phale, P. S. & Yellen, G. Voltage-controlled gating at the intracellular entrance to a hyperpolarization-activated cation channel. J. Gen. Physiol. 119, 83–91 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Flynn, G. E. & Zagotta, W. N. Conformational changes in S6 coupled to the opening of cyclic nucleotide-gated channels. Neuron 30, 689–698 (2001).

    CAS  PubMed  Google Scholar 

  63. Flynn, G. E., Johnson, J. P. Jr & Zagotta, W. N. Cyclic nucleotide-gated channels: shedding light on the opening of a channel pore. Nature Rev. Neurosci. 2, 643–651 (2001).

    CAS  Google Scholar 

  64. Loussouarn, G., Makhina, E. N., Rose, T. & Nichols, C. G. Structure and dynamics of the pore of inwardly rectifying KATP channels. J. Biol. Chem. 275, 1137–1144 (2000).

    CAS  PubMed  Google Scholar 

  65. Xiao, J., Zhen, X. G. & Yang, J. Localization of PIP2 activation gate in inward rectifier K+ channels. Nature Neurosci. 6, 811–818 (2003).

    CAS  PubMed  Google Scholar 

  66. Starkus, J. G., Kuschel, L., Rayner, M. D. & Heinemann, S. H. Ion conduction through C-type inactivated Shaker channels. J. Gen. Physiol. 110, 539–550 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Kiss, L., LoTurco, J. & Korn, S. J. Contribution of the selectivity filter to inactivation in potassium channels. Biophys. J. 76, 253–263 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Zheng, J. & Sigworth, F. J. Selectivity changes during activation of mutant Shaker potassium channels. J. Gen. Physiol. 110, 101–117 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Liu, Y., Jurman, M. E. & Yellen, G. Dynamic rearrangement of the outer mouth of a K+ channel during gating. Neuron 16, 859–867 (1996).

    CAS  PubMed  Google Scholar 

  70. Loots, E. & Isacoff, E. Y. Molecular coupling of S4 to a K+ channel's slow inactivation gate. J. Gen. Physiol. 116, 623–636 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Capener, C. E. et al. Homology modeling and molecular dynamics simulation studies of an inward rectifier potassium channel. Biophys. J. 78, 2929–2942 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Capener, C. E., Proks, P., Ashcroft, F. M. & Sansom, M. S. Filter flexibility in a mammalian K+ channel: models and simulations of Kir6.2 mutants. Biophys. J. 84, 2345–2356 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Capener, C. E., Kim, H. J., Arinaminpathy, Y. & Sansom, M. S. Ion channels: structural bioinformatics and modelling. Hum. Mol. Genet. 11, 2425–2433 (2002).

    CAS  PubMed  Google Scholar 

  74. Lu, T., Wu, L., Xiao, J. & Yang, J. Permeant ion-dependent changes in gating of Kir2.1 inward rectifier potassium channels. J. Gen. Physiol. 118, 509–522 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Choe, H., Sackin, H. & Palmer, L. G. Permeation and gating of an inwardly rectifying potassium channel. Evidence for a variable energy well. J. Gen. Physiol. 112, 433–446 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Guo, L. & Kubo, Y. Comparison of the open-close kinetics of the cloned inward rectifier K+ channel IRK1 and its point mutant (Q140E) in the pore region. Receptors Channels 5, 273–289 (1998).

    CAS  PubMed  Google Scholar 

  77. Proks, P., Capener, C. E., Jones, P. & Ashcroft, F. M. Mutations within the P-loop of Kir6.2 modulate the intraburst kinetics of the ATP-sensitive potassium channel. J. Gen. Physiol. 118, 341–353 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Chan, K. W., Sui, J. L., Vivaudou, M. & Logothetis, D. E. Control of channel activity through a unique amino acid residue of a G protein-gated inwardly rectifying K+ channel subunit. Proc. Natl Acad. Sci. USA 93, 14193–14198 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. So, I., Ashmole, I., Davies, N. W., Sutcliffe, M. J. & Stanfield, P. R. The K+ channel signature sequence of murine Kir2.1: mutations that affect microscopic gating but not ionic selectivity. J. Physiol. (Lond.) 531, 37–50 (2001).

    CAS  Google Scholar 

  80. Lu, T. et al. Probing ion permeation and gating in a K+ channel with backbone mutations in the selectivity filter. Nature Neurosci. 4, 239–246 (2001). Using hydroxy acids, this study introduced changes in the backbone of the K+ channel signature sequence and found that channel gating, but not selectivity, is altered.

    CAS  PubMed  Google Scholar 

  81. Enkvetchakul, D., Loussouarn, G., Makhina, E., Shyng, S. L. & Nichols, C. G. The kinetic and physical basis of KATP channel gating: toward a unified molecular understanding. Biophys. J. 78, 2334–2348 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Choe, H., Sackin, H. & Palmer, L. G. Permeation properties of inward-rectifier potassium channels and their molecular determinants. J. Gen. Physiol. 115, 391–404 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Choe, H., Sackin, H. & Palmer, L. G. Gating properties of inward-rectifier potassium channels: effects of permeant ions. J. Membr. Biol. 184, 81–89 (2001).

    CAS  PubMed  Google Scholar 

  84. Trapp, S., Proks, P., Tucker, S. J. & Ashcroft, F. M. Molecular analysis of ATP-sensitive K+ channel gating and implications for channel inhibition by ATP. J. Gen. Physiol. 112, 333–349 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Tucker, S. J. et al. Molecular determinants of KATP channel inhibition by ATP. EMBO J. 17, 3290–3296 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Huang, C. L., Feng, S. & Hilgemann, D. W. Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gβγ. Nature 391, 803–806 (1998).

    CAS  PubMed  Google Scholar 

  87. Sui, J. L., Petit-Jacques, J. & Logothetis, D. E. Activation of the atrial KACh channel by the βγ subunits of G proteins or intracellular Na+ ions depends on the presence of phosphatidylinositol phosphates. Proc. Natl Acad. Sci. USA 95, 1307–1312 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Petit-Jacques, J., Sui, J. L. & Logothetis, D. E. Synergistic activation of G protein-gated inwardly rectifying potassium channels by the βγ subunits of G proteins and Na+ and Mg2+ ions. J. Gen. Physiol. 114, 673–684 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Baukrowitz, T. et al. PIP2 and PIP as determinants for ATP inhibition of KATP channels. Science 282, 1141–1144 (1998).

    CAS  PubMed  Google Scholar 

  90. Shyng, S. L. & Nichols, C. G. Membrane phospholipid control of nucleotide sensitivity of KATP channels. Science 282, 1138–1141 (1998).

    CAS  PubMed  Google Scholar 

  91. Shyng, S. L., Cukras, C. A., Harwood, J. & Nichols, C. G. Structural determinants of PIP2 regulation of inward rectifier KATP channels. J. Gen. Physiol. 116, 599–608 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Soom, M. et al. Multiple PIP2 binding sites in Kir2.1 inwardly rectifying potassium channels. FEBS Lett. 490, 49–53 (2001).

    CAS  PubMed  Google Scholar 

  93. Lopes, C. M. et al. Alterations in conserved Kir channel-PIP2 interactions underlie channelopathies. Neuron 34, 933–944 (2002). An extensive mutagenesis study investigating the contribution of basic amino acids to PtdIns(4,5)P 2 affinity in Kir2.1 and 1.1. In addition, the authors test the effects of mutations in Kir2.1 and 1.1 underlying channelopathies on PtdIns(4,5)P 2 binding.

    CAS  PubMed  Google Scholar 

  94. Zhang, H., He, C., Yan, X., Mirshahi, T. & Logothetis, D. E. Activation of inwardly rectifying K+ channels by distinct PtdIns(4,5)P2 interactions. Nature Cell Biol. 1, 183–188 (1999).

    CAS  PubMed  Google Scholar 

  95. Prescott, E. D. & Julius, D. A modular PIP2 binding site as a determinant of capsaicin receptor sensitivity. Science 300, 1284–1288 (2003).

    CAS  PubMed  Google Scholar 

  96. Schulze, D., Krauter, T., Fritzenschaft, H., Soom, M. & Baukrowitz, T. Phosphatidylinositol 4,5-bisphosphate (PIP2) modulation of ATP and pH sensitivity in Kir channels. A tale of an active and a silent PIP2 site in the N terminus. J. Biol. Chem. 278, 10500–10505 (2003).

    CAS  PubMed  Google Scholar 

  97. Stanfield, P. R., Nakajima, S. & Nakajima, Y. Constitutively active and G-protein coupled inward rectifier K+ channels: Kir2.0 and Kir3.0. Rev. Physiol. Biochem. Pharmacol. 145, 47–179 (2002). An extensive review on Kir2 and Kir3 channels.

    CAS  PubMed  Google Scholar 

  98. Sadja, R., Alagem, N. & Reuveny, E. Gating of GIRK channels: details of an intricate, membrane-delimited signaling complex. Neuron 39, 9–12 (2003).

    CAS  PubMed  Google Scholar 

  99. Huang, C. L., Slesinger, P. A., Casey, P. J., Jan, Y. N. & Jan, L. Y. Evidence that direct binding of Gβγ to the GIRK1 G protein-gated inwardly rectifying K+ channel is important for channel activation. Neuron 15, 1133–1143 (1995).

    CAS  PubMed  Google Scholar 

  100. Kunkel, M. T. & Peralta, E. G. Identification of domains conferring G protein regulation on inward rectifier potassium channels. Cell 83, 443–449 (1995).

    CAS  PubMed  Google Scholar 

  101. Huang, C. L., Jan, Y. N. & Jan, L. Y. Binding of the G protein βγ subunit to multiple regions of G protein-gated inward-rectifying K+ channels. FEBS Lett. 405, 291–298 (1997).

    CAS  PubMed  Google Scholar 

  102. Krapivinsky, G. et al. Gβ binding to GIRK4 subunit is critical for G protein-gated K+ channel activation. J. Biol. Chem. 273, 16946–16952 (1998).

    CAS  PubMed  Google Scholar 

  103. He, C. et al. Identification of critical residues controlling G protein-gated inwardly rectifying K+ channel activity through interactions with the βγ subunits of G proteins. J. Biol. Chem. 277, 6088–6096 (2002).

    CAS  PubMed  Google Scholar 

  104. He, C., Zhang, H., Mirshahi, T. & Logothetis, D. E. Identification of a potassium channel site that interacts with G protein βγ subunits to mediate agonist-induced signaling. J. Biol. Chem. 274, 12517–12524 (1999).

    CAS  PubMed  Google Scholar 

  105. Ivanina, T. et al. Mapping the Gβγ-binding sites in GIRK1 and GIRK2 subunits of the G protein-activated K+ channel. J. Biol. Chem. 278, 29174–29183 (2003).

    CAS  PubMed  Google Scholar 

  106. Mirshahi, T., Mittal, V., Zhang, H., Linder, M. E. & Logothetis, D. E. Distinct sites on G protein βγ subunits regulate different effector functions. J. Biol. Chem. 277, 36345–36350 (2002).

    CAS  PubMed  Google Scholar 

  107. Jiang, C., Qu, Z. & Xu, H. Gating of inward rectifier K+ channels by proton-mediated interactions of intracellular protein domains. Trends Cardiovasc. Med. 12, 5–13 (2002). Reviews the effects of pH on Kir channels and proposes a model of how protonation of cytoplasmic residues might lead to gating movements of the transmembrane domain.

    CAS  PubMed  Google Scholar 

  108. Mao, J., Wu, J., Chen, F., Wang, X. & Jiang, C. Inhibition of G-protein-coupled inward rectifying K+ channels by intracellular acidosis. J. Biol. Chem. 278, 7091–7098 (2003).

    CAS  PubMed  Google Scholar 

  109. Chanchevalap, S. et al. Involvement of histidine residues in proton sensing of ROMK1 channel. J. Biol. Chem. 275, 7811–7817 (2000).

    CAS  PubMed  Google Scholar 

  110. Qu, Z. et al. Gating of inward rectifier K+ channels by proton-mediated interactions of N- and C-terminal domains. J. Biol. Chem. 275, 31573–31580 (2000).

    CAS  PubMed  Google Scholar 

  111. Schulte, U. et al. pH gating of ROMK (Kir1.1) channels: control by an Arg-Lys-Arg triad disrupted in antenatal Bartter syndrome. Proc. Natl Acad. Sci. USA 96, 15298–15303 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Tucker, S. J., Gribble, F. M., Zhao, C., Trapp, S. & Ashcroft, F. M. Truncation of Kir6.2 produces ATP-sensitive K+ channels in the absence of the sulphonylurea receptor. Nature 387, 179–183 (1997).

    CAS  PubMed  Google Scholar 

  113. Drain, P., Li, L. & Wang, J. KATP channel inhibition by ATP requires distinct functional domains of the cytoplasmic C terminus of the pore-forming subunit. Proc. Natl Acad. Sci. USA 95, 13953–13958 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Koster, J. C., Sha, Q., Shyng, S. & Nichols, C. G. ATP inhibition of KATP channels: control of nucleotide sensitivity by the N-terminal domain of the Kir6.2 subunit. J. Physiol. (Lond.) 515, 19–30 (1999).

    CAS  Google Scholar 

  115. Reimann, F., Ryder, T. J., Tucker, S. J. & Ashcroft, F. M. The role of lysine 185 in the Kir6.2 subunit of the ATP-sensitive channel in channel inhibition by ATP. J. Physiol. (Lond.) 520, 661–669 (1999).

    CAS  Google Scholar 

  116. Trapp, S., Haider, S., Jones, P., Sansom, M. S. & Ashcroft, F. M. Identification of residues contributing to the ATP binding site of Kir6.2. EMBO J. 22, 2903–2912 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Ho, I. H. & Murrell-Lagnado, R. D. Molecular mechanism for sodium-dependent activation of G protein-gated K+ channels. J. Physiol. (Lond.) 520, 645–651 (1999).

    CAS  Google Scholar 

  118. Ho, I. H. & Murrell-Lagnado, R. D. Molecular determinants for sodium-dependent activation of G protein-gated K+ channels. J. Biol. Chem. 274, 8639–8648 (1999).

    CAS  PubMed  Google Scholar 

  119. Xu, H. et al. Distinct histidine residues control the acid-induced activation and inhibition of the cloned KATP channel. J. Biol. Chem. 276, 38690–38696 (2001).

    CAS  PubMed  Google Scholar 

  120. Rogalski, S. L. & Chavkin, C. Eicosanoids inhibit the G-protein-gated inwardly rectifying potassium channel (Kir3) at the Na+/PIP2 gating site. J. Biol. Chem. 276, 14855–14860 (2001).

    CAS  PubMed  Google Scholar 

  121. Wang, C., Wang, K., Wang, W., Cui, Y. & Fan, Z. Compromised ATP binding as a mechanism of phosphoinositide modulation of ATP-sensitive K+ channels. FEBS Lett. 532, 177–182 (2002).

    CAS  PubMed  Google Scholar 

  122. MacGregor, G. G. et al. Nucleotides and phospholipids compete for binding to the C terminus of KATP channels. Proc. Natl Acad. Sci. USA 99, 2726–2731 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Kim, D. & Bang, H. Modulation of rat atrial G protein-coupled K+ channel function by phospholipids. J. Physiol. (Lond.) 517, 59–74 (1999).

    CAS  Google Scholar 

  124. Alagem, N., Yesylevskyy, S. & Reuveny, E. The pore helix is involved in stabilizing the open state of inwardly rectifying K+ channels. Biophys. J. 85, 300–312 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Proks, P., Antcliff, J. F. & Ashcroft, F. M. The ligand-sensitive gate of a potassium channel lies close to the selectivity filter. EMBO Rep. 4, 70–75 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Hommers, L. G., Lohse, M. J. & Bunemann, M. Regulation of the inward rectifying properties of G-protein-activated inwardly rectifying K+ (GIRK) channels by Gβγ subunits. J. Biol. Chem. 278, 1037–1043 (2003).

    CAS  PubMed  Google Scholar 

  127. Schulte, U., Hahn, H., Wiesinger, H., Ruppersberg, J. P. & Fakler, B. pH-dependent gating of ROMK (Kir1.1) channels involves conformational changes in both N and C termini. J. Biol. Chem. 273, 34575–34579 (1998).

    CAS  PubMed  Google Scholar 

  128. Riven, I., Kalmanzon, E., Segev, L. & Reuveny, E. Conformational rearrangements associated with the gating of the G protein-coupled potassium channel revealed by FRET microscopy. Neuron 38, 225–235 (2003). Using FRET and total internal reflection fluorescence microscopy, the authors observe that the distance between the cyan and yellow variants of the green fluorescent protein that are attached to the C and N termini of Kir3 channels changes after Gβγ-mediated activation of the channels.

    CAS  PubMed  Google Scholar 

  129. Anderson, J. A., Huprikar, S. S., Kochian, L. V., Lucas, W. J. & Gaber, R. F. Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 89, 3736–3740 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Sentenac, H. et al. Cloning and expression in yeast of a plant potassium ion transport system. Science 256, 663–665 (1992).

    CAS  PubMed  Google Scholar 

  131. Tang, W. et al. Functional expression of a vertebrate inwardly rectifying K+ channel in yeast. Mol. Biol. Cell 6, 1231–1240 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Lodowski, D. T., Pitcher, J. A., Capel, W. D., Lefkowitz, R. J. & Tesmer, J. J. Keeping G proteins at bay: a complex between G protein-coupled receptor kinase 2 and Gβγ. Science 300, 1256–1262 (2003).

    CAS  PubMed  Google Scholar 

  133. Palczewski, K. et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289, 739–745 (2000).

    CAS  PubMed  Google Scholar 

  134. Doyle, D. A. et al. Crystal structures of a complexed and peptide-free membrane protein-binding domain: molecular basis of peptide recognition by PDZ. Cell 85, 1067–1076 (1996).

    CAS  PubMed  Google Scholar 

  135. Clement, J. P. IV. et al. Association and stoichiometry of KATP channel subunits. Neuron 18, 827–838 (1997).

    CAS  PubMed  Google Scholar 

  136. Locher, K. P., Lee, A. T. & Rees, D. C. The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 296, 1091–1098 (2002).

    CAS  PubMed  Google Scholar 

  137. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38, 27–28 (1996).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank D. Doyle for the coordinates of KirBac and communication on the structure. We would also like the thank members of the Jan laboratory for stimulating discussions and valuable comments on the review. F.A.H. is a student in the Neuroscience graduate program at UCSF. L.Y.J. is a HHMI investigator. This work was supported by an NIMH grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lily Yeh Jan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

LocusLink

CNG

HCN

Kir1

Kir2.1

Kir3

Kir4

Kir5

Kir6

Kir7.1

TRPV1

weaver

OMIM

Andersen syndrome

Protein Data Bank

KirBac1.1

Kir3.1

KcsA

KvAP

MthK

FURTHER INFORMATION

Jan laboratory homepage

K+ channel database: a molecular specific information system for potassium channels

Visual molecular dynamics

WebLab ViewerPro 3.5

Glossary

POLYAMINES

Long-chain aliphatic compounds that contain more than one amine group. Putrescine, spermine and spermidine are prime examples. Because of the positive charges on these molecules, polyamines bind electrostatically to proteins, DNA and RNA.

RCK DOMAINS

(Regulator of K+ conductance domains). A ligand-binding domain found in many ligand-gated K+ channels; in MthK the ligand is thought to be nicotinamide adenine dinucleotide.

MUTAGENESIS

Technique in which an alteration is made either at a specific site or randomly in a DNA molecule. Mutated DNA is then reintroduced into a cell and analysed with various techniques to determine which parts of a protein or nucleotide sequence are crucial for its function.

SALT BRIDGE

Electrostatic interaction between oppositely charged amino-acid side chains in close proximity in a protein.

RESTING POTENTIAL

The separation of positive and negative charges across the cell membrane results in the membrane potential. The resting potential is the membrane potential at which there is no net current flow across the cell membrane.

TITRATABLE RESIDUE

An amino acid with a side chain that can bond and release protons within a physiological pH range. Seven of the twenty amino acids are titratable (pKa of the free amino acid is given in parenthesis; this can vary in the protein): aspartate (4.4), glutamate (4.4), histidine (6.5), cysteine (8.5), tyrosine (10), lysine (10) and arginine (12).

SUBSTITUTED CYSTEINE ACCESSIBILITY METHOD

(SCAM). An approach to the characterization of channel and binding site structures that probes the environment of any residue by mutating it to cysteine and characterizing the reaction of the cysteine with sulphydryl reacting and coordinating reagents.

SITE-DIRECTED SPIN LABELLING

(SDSL). In SDSL, a nitroxide side chain is introduced by cysteine substitution mutagenesis followed by modification of the unique sulphydryl group with a specific nitroxide reagent. Measurements of the spectral properties of the paramagnetic nitroxide probe with electron paramagnetic resonance (EPR) spectroscopy provide information on its environment in the protein.

ELECTRON PARAMAGNETIC RESONANCE

(EPR). When an atom with an unpaired electron is placed in a magnetic field, the spin of the unpaired electron can align, either in the same direction or in the opposite direction. EPR is used to measure the absorption of microwave radiation that accompanies the transition between those two states.

C-TYPE INACTIVATION

Two distinct molecular mechanisms for voltage-gated K+ channel inactivation have been described: N-type, which involves occlusion of the pore by an intracellular domain of the channel, and C-type, which involves a conformational change in the outer pore.

TEMPERATURE FACTOR

(B-factor, Debye-Waller factor). A measure of atomic vibration as described by the spread of the electron density. A low B-factor indicates low atomic mobility.

ENERGY WELLS

Discrete sites along the conduction pore of the channel, which are energetically favourable. These sites arise from a delicate balance between interactions with the channel atoms, water in the channel and other ions. Wells are separated by barriers, which hinder diffusion. When the energy wells are low in energy compared with the barriers, the residence time of ions at these positions is long.

PHOSPHATIDYLINOSITOL-4,5-BISPHOSPHATE

(PtdIns(4,5)P2). An anionic phospholipid found at low concentrations in biological membranes. It acts as a membrane-delimited second messenger, regulating the activity of a number of transporters and channels.

PDZ DOMAIN

A peptide-binding domain that is important for the organization of membrane proteins, particularly at cell–cell junctions, including synapses. They can bind to the carboxy termini of proteins, or can form dimers with other PDZ domains. PDZ domains are named after the proteins in which these sequence motifs were originally identified (PSD95, Discs-large, zona occludens-1).

RUNDOWN (OR WASHOUT)

Decrease in channel activity over time. Loss of phosphorylation and decrease of the levels of PtdIns(4,5)P2 and ATP have been suggested to cause rundown, but other processes that are not yet understood might occur.

PHOSDUCIN

A phosphoprotein that modulates the phototransduction cascade by interacting with the βγ-subunits of the retinal G-protein transducin.

FLUORESCENCE RESONANCE ENERGY TRANSFER

(FRET). A spectroscopic technique that is based on the transfer of energy from the excited state of a donor moiety to an acceptor. The transfer efficiency depends on the distance between the donor and the acceptor. FRET is often used to estimate distances between macromolecular sites in the 20–100-Å range or to study interactions between macromolecules in vivo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bichet, D., Haass, F. & Jan, L. Merging functional studies with structures of inward-rectifier K+ channels. Nat Rev Neurosci 4, 957–967 (2003). https://doi.org/10.1038/nrn1244

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1244

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing