Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

ThermoTRP channels and beyond: mechanisms of temperature sensation

Key Points

  • The identification of a family of transient receptor potential (TRP) ion channels that are gated by specific temperatures has been an important advance in the elucidation of the molecular mechanisms of thermosensitivity.

  • Hot temperatures in the noxious range (≥ 42°C) activate the channels Trpv1 and Trpv2. Trpv1 is also activated by low pH and by capsaicin, whereas Trpv2, which has a higher activation threshold, is not.

  • Warm temperatures in the innocuous range (34–42°C) activate the channels Trpv3 and Trpv4. Although the activation properties of these channels parallel the behaviour of the relevant afferent sensory fibres, there is no evidence yet for a functional role of Trpv3 and Trpv4 in vivo.

  • Cool and cold temperatures activate the channels Trpv8 and Anktn1. Trpm8 is also activated by menthol, whereas the activation threshold of Anktm1 is set at temperatures that humans tend to regard as painfully cold.

  • According to the labelled-line hypothesis, distinct sets of sensory neurons are tuned to convey specific sensory information through dedicated pathways to the central nervous system. However, the exact connectivity between the primary thermoreceptors and their spinal interneuron targets is not clear. It will be important to establish whether the pattern of expression of the different thermoTRPs sheds light on the organization of those dedicated pathways.

  • Another enigma concerns the gating mechanism of thermoTRPs by hot or cold temperatures. Although their interaction with cytoplasmic elements has been proposed to be important, the evidence is still incomplete.

  • In addition to thermoTRPs, other mechanisms for thermosensation have been put forward, They include the inhibition of background potassium conductances (perhaps the TREK-1 channel) or of a Na+/K+ ATPase, or the activation of pH-sensitive channels such as ASIC and DRASIC.

  • In invertebrates, the neuroanatomy of thermosensation is partially understood, but the molecular mechanisms remain to be elucidated. Recent evidence indicates that TRP channels might also be involved in these organisms.

  • An important development in this field will be the generation of mice that lack the different thermoTRPs, as they will make it possible to establish their function in vivo.

Abstract

We possess an acute sense of temperature. Most of us seek shade on a hot summer day, prefer a warm shower to a cold one, and enjoy red wines served at a temperature of 15–18°C. Thermosensation not only affects our comfort, but is also essential for the survival of most organisms. We are now beginning to uncover the molecular identity of proteins that confer thermosensation. The thermoTRPs, a subset of transient receptor potential ion channels are activated by distinct physiological temperatures, and are involved in converting thermal information into chemical and electrical signals within the sensory nervous system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Anatomic and functional organization of touch.
Figure 2: Average discharge frequency of individual cold- and warm-sensitive fibres in response to changes in skin temperature.
Figure 3: Domain organization and temperature thresholds of temperature-activated transient receptor potential ion channels (thermoTRPs).
Figure 4: Expression and temperature sensitivity of temperature-activated transient receptor potential ion channels (thermoTRPs) label distinct populations of sensory neurons.

Similar content being viewed by others

References

  1. Scott, S. A. Sensory Neurons: Diversity, Development, and Plasticity (Oxford University Press, New York, 1992).

    Google Scholar 

  2. Rice, F. L., Fundin, B. T., Arvidsson, J., Aldskogius, H. & Johansson, O. Comprehensive immunofluorescence and lectin binding analysis of vibrissal follicle sinus complex innervation in the mystacial pad of the rat. J. Comp. Neurol. 385, 149–184 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Hilliges, M., Wang, L. & Johansson, O. Ultrastructural evidence for nerve fibers within all vital layers of the human epidermis. J. Invest. Dermatol. 104, 134–137 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Wang, L., Hilliges, M., Jernberg, T., Wiegleb-Edstrom, D. & Johansson, O. Protein gene product 9.5-immunoreactive nerve fibres and cells in human skin. Cell Tissue Res. 261, 25–33 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. Spray, D. C. Cutaneous temperature receptors. Annu. Rev. Physiol. 48, 625–638 (1986).

    Article  CAS  PubMed  Google Scholar 

  6. Hensel, H. Thermoreception and temperature regulation. Monogr. Physiol. Soc. 38, 1–321 (1981). An excellent discussion of early physiological studies of peripheral and central thermosensation.

    CAS  PubMed  Google Scholar 

  7. Pare, M., Elde, R., Mazurkiewicz, J. E., Smith, A. M. & Rice, F. L. The Meissner corpuscle revised: a multiafferented mechanoreceptor with nociceptor immunochemical properties. J. Neurosci. 21, 7236–7246 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Patapoutian, A., and Reichardt, L. F. Trk receptors: mediators of neurotrophin action. Curr. Opin. Neurobiol. 11, 272–280 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Snider, W. D. & McMahon, S. B. Tackling pain at the source: new ideas about nociceptors. Neuron 20, 629–632 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Campero, M., Serra, J. & Ochoa, J. L. C-polymodal nociceptors activated by noxious low temperature in human skin. J. Physiol. (Lond.) 497, 565–572 (1996).

    Article  CAS  Google Scholar 

  11. Cain, D. M., Khasabov, S. G. & Simone, D. A. Response properties of mechanoreceptors and nociceptors in mouse glabrous skin: an in vivo study. J. Neurophysiol. 85, 1561–1574 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Hensel, H. & Iggo, A. Analysis of cutaneous warm and cold fibres in primates. Pflugers Arch. 329, 1–8 (1971).

    Article  CAS  PubMed  Google Scholar 

  13. Hensel, H. & Kenshalo, D. R. Warm receptors in the nasal region of cats. J. Physiol. (Lond.) 204, 99–112 (1969).

    Article  CAS  Google Scholar 

  14. Kandel, E. R., Schwartz, J. H. & Jessell, T. M. (eds) Principles of Neural Science (McGraw Hill, New York, 2000).

    Google Scholar 

  15. Julius, D. & Basbaum, A. I. Molecular mechanisms of nociception. Nature 413, 203–210 (2001). This review details the anatomical and physiological basis of detection of noxious stimuli, along with the chemical transducers that modulate nociception. Response to noxious heat and various inflammatory modulators with respect to the two known Trp channels is discussed.

    Article  CAS  PubMed  Google Scholar 

  16. Treede, R. D., Meyer, R. A., Raja, S. N. & Campbell, J. N. Evidence for two different heat transduction mechanisms in nociceptive primary afferents innervating monkey skin. J. Physiol. (Lond.) 483, 747–758 (1995).

    Article  CAS  Google Scholar 

  17. Cesare, P. & McNaughton, P. A novel heat-activated current in nociceptive neurons and its sensitization by bradykinin. Proc. Natl Acad. Sci. USA 93, 15435–15439 (1996). Shows that the cell bodies of DRG neurons can be used to study some properties of nociception that had previously been reported in pain-sensitive nerve terminals, and that the response to noxious heat that was observed in these cells was due to an ion channel.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Szallasi, A. & Blumberg, P. M. Vanilloid (capsaicin) receptors and mechanisms. Pharmacol. Rev. 51, 159–212 (1999).

    CAS  PubMed  Google Scholar 

  19. Caterina, M. J. et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816–824 (1997). This paper describes the identification of the capsaicin receptor Trpv1 and the demonstration that the cloned receptor is a non-selective cation channel that responds to capsaicin when expressed in a heterologous system. This channel also responds to heat the noxious temperature range.

    Article  CAS  PubMed  Google Scholar 

  20. Clapham, D. E., Runnels, L. W. & Strubing, C. The TRP ion channel family. Nature Rev. Neurosci. 2, 387–396 (2001). A comprehensive review of the various Trp subfamilies, including their nomenclature and the known signal transduction pathways in which Trp channels participate.

    Article  CAS  Google Scholar 

  21. Montell, C., Jones, K., Hafen, E. & Rubin, G. Rescue of the Drosophila phototransduction mutation trp by germline transformation. Science 230, 1040–1043 (1985).

    Article  CAS  PubMed  Google Scholar 

  22. Voets, T. & Nilius, B. The pore of TRP channels: trivial or neglected? Cell Calcium 33, 299–302 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Montell, C. Physiology, phylogeny, and functions of the TRP superfamily of cation channels. Sci. STKE 2001, RE1 (2001).

    CAS  PubMed  Google Scholar 

  24. Welch, J. M., Simon, S. A. & Reinhart, P. H. The activation mechanism of rat vanilloid receptor 1 by capsaicin involves the pore domain and differs from the activation by either acid or heat. Proc. Natl Acad. Sci. USA 97, 13889–13894 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tominaga, M. et al. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21, 531–543. (1998). This paper shows that the cloned capsaicin receptor Trpv1 is activated by heat in isolated membrane patches and the heat responses are modulated by protons, implying a role for Trpv1 in pain pathways. It also details the expression pattern of Trpv1 in sensory neurons.

    Article  CAS  PubMed  Google Scholar 

  26. Nagy, I. & Rang, H. Noxious heat activates all capsaicin-sensitive and also a sub-population of capsaicin-insensitive dorsal root ganglion neurons. Neuroscience 88, 995–997 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Davis, J. B. et al. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 405, 183–187 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Caterina, M. J. et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288, 306–313 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Tillman, D. B., Treede, R. D., Meyer, R. A. & Campbell, J. N. Response of C fibre nociceptors in the anaesthetized monkey to heat stimuli: estimates of receptor depth and threshold. J. Physiol. (Lond.) 485, 753–765 (1995).

    Article  CAS  Google Scholar 

  30. Hu, H. J., Bhave, G. & Gereau, R. W. Prostaglandin and protein kinase A-dependent modulation of vanilloid receptor function by metabotropic glutamate receptor 5: potential mechanism for thermal hyperalgesia. J. Neurosci. 22, 7444–7452 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bhave, G. et al. cAMP-dependent protein kinase regulates desensitization of the capsaicin receptor (VR1) by direct phosphorylation. Neuron 35, 721–731 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Hwang, S. W. et al. Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances. Proc. Natl Acad. Sci. USA 97, 6155–6160 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tominaga, M., Wada, M. & Masu, M. Potentiation of capsaicin receptor activity by metabotropic ATP receptors as a possible mechanism for ATP-evoked pain and hyperalgesia. Proc. Natl Acad. Sci. USA 98, 6951–6956 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chuang, H. H. et al. Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 411, 957–962 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Zygmunt, P. M. et al. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400, 452–457 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Premkumar, L. S. & Ahern, G. P. Induction of vanilloid receptor channel activity by protein kinase C. Nature 408, 985–990 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Winston, J., Toma, H., Shenoy, M. & Pasricha, P. J. Nerve growth factor regulates VR-1 mRNA levels in cultures of adult dorsal root ganglion neurons. Pain 89, 181–186 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Ji, R. R., Samad, T. A., Jin, S. X., Schmoll, R. & Woolf, C. J. p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron 36, 57–68 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Gunthorpe, M. J., Benham, C. D., Randall, A. & Davis, J. B. The diversity in the vanilloid (TRPV) receptor family of ion channels. Trends Pharmacol. Sci. 23, 183–191 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Prescott, E. D. & Julius, D. A modular PIP2 binding site as a determinant of capsaicin receptor sensitivity. Science 300, 1284–1288 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Trevisani, M. et al. Ethanol elicits and potentiates nociceptor responses via the vanilloid receptor-1. Nature Neurosci. 5, 546–551 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Ahluwalia, J., Yaqoob, M., Urban, L., Bevan, S. & Nagy, I. Activation of capsaicin-sensitive primary sensory neurones induces anandamide production and release. J. Neurochem. 84, 585–591 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Birder, L. A. et al. Altered urinary bladder function in mice lacking the vanilloid receptor TRPV1. Nature Neurosci. 5, 856–860 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Mezey, E. et al. Distribution of mRNA for vanilloid receptor subtype 1 (VR1), and VR1-like immunoreactivity, in the central nervous system of the rat and human. Proc. Natl Acad. Sci. USA 97, 3655–3660 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chu, C. J. et al. N-oleoyldopamine, a novel endogenous capsaicin-like lipid that produces hyperalgesia. J. Biol. Chem. 278, 13633–13639 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Caterina, M. J., Rosen, T. A., Tominaga, M., Brake, A. J. & Julius, D. A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398, 436–441 (1999). The second TRP channel to be identified. It responds to temperatures higher than 50°C and is expressed in neuronal populations that are distinct from Trpv1.

    Article  CAS  PubMed  Google Scholar 

  47. Ahluwalia, J., Rang, H. & Nagy, I. The putative role of vanilloid receptor-like protein-1 in mediating high threshold noxious heat-sensitivity in rat cultured primary sensory neurons. Eur. J. Neurosci. 16, 1483–1489 (2002).

    Article  PubMed  Google Scholar 

  48. Kanzaki, M. et al. Translocation of a calcium-permeable cation channel induced by insulin- like growth factor-I. Nature Cell Biol. 1, 165–170 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Iggo, A. Cutaneous thermoreceptors in primates and sub-primates. J. Physiol. (Lond.) 200, 403–430 (1969).

    Article  CAS  Google Scholar 

  50. Andrew, D. & Craig, A. D. Spinothalamic lamina I neurones selectively responsive to cutaneous warming in cats. J. Physiol. (Lond.) 537, 489–495 (2001).

    Article  CAS  Google Scholar 

  51. Peier, A. M. et al. A heat-sensitive TRP channel expressed in keratinocytes. Science 296, 2046–2049 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Xu, H. et al. TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 418, 181–186 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Smith, G. D. et al. TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature 418, 186–190 (2002). References 51–53 showed the molecular identity of the first warm-temperature receptor Trvp3, which is also active at noxious temperatures, and reported the expression pattern of Trvp3 in skin and in the DRG of primates.

    Article  CAS  PubMed  Google Scholar 

  54. Delany, N. S. et al. Identification and characterization of a novel human vanilloid receptor- like protein, VRL-2. Physiol. Genomics 4, 165–174 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Strotmann, R., Harteneck, C., Nunnenmacher, K., Schultz, G. & Plant, T. D. OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nature Cell Biol. 2, 695–702 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Wissenbach, U., Bodding, M., Freichel, M. & Flockerzi, V. Trp12, a novel Trp related protein from kidney. FEBS Lett. 485, 127–134 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Liedtke, W. et al. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103, 525–535 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Guler, A. D. et al. Heat-evoked activation of the ion channel, TRPV4. J. Neurosci. 22, 6408–6814 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Watanabe, H. et al. Heat-evoked activation of TRPV4 channels in a HEK293 cell expression system and in native mouse aorta endothelial cells. J. Biol. Chem. 277, 47044–47051 (2002). References 58 and 59 characterize the ability of Trvp4, a channel responsive to hypo-osmolarity, to respond to warm temperatures. This ability seems to provide a molecular basis for earlier electrophysiological observations of warm receptors.

    Article  CAS  PubMed  Google Scholar 

  60. Jordt, S. E. & Julius, D. Molecular basis for species-specific sensitivity to 'hot' chili peppers. Cell 108, 421–430 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Hori, A., Minato, K. & Kobayashi, S. Warming-activated channels of warm-sensitive neurons in rat hypothalamic slices. Neurosci. Lett. 275, 93–96 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Abe, J., Okazawa, M., Adachi, R., Matsumura, K. & Kobayashi, S. Primary cold-sensitive neurons in acutely dissociated cells of rat hypothalamus. Neurosci. Lett. 342, 29–32 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Travis, K. A., Bockholt, H. J., Zardetto-Smith, A. M. & Johnson, A. K. In vitro thermosensitivity of the midline thalamus. Brain Res. 686, 17–22 (1995).

    Article  CAS  PubMed  Google Scholar 

  64. Boulant, J. A. Role of the preoptic-anterior hypothalamus in thermoregulation and fever. Clin. Infect. Dis. 31, S157–S161 (2000).

    Article  PubMed  Google Scholar 

  65. Suzuki, M., Mizuno, A., Kodaira, K. & Imai, M. Impaired pressure sensation with mice lacking TRPV4. J. Biol. Chem. Apr 13 2003 (doi:10.1074/jbc.M302561200).

  66. Simone, D. A. & Kajander, K. C. Responses of cutaneous A-fiber nociceptors to noxious cold. J. Neurophysiol. 77, 2049–2060 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Hensel, H. & Zotterman, Y. The effect of menthol on the thermoreceptors. Acta Physiol. Scand. 24, 27–34 (1951).

    Article  CAS  PubMed  Google Scholar 

  68. Schafer, K., Braun, H. A. & Isenberg, C. Effect of menthol on cold receptor activity. Analysis of receptor processes. J. Gen. Physiol. 88, 757–776 (1986).

    Article  CAS  PubMed  Google Scholar 

  69. Reid, G. & Flonta, M. L. Physiology. Cold current in thermoreceptive neurons. Nature 413, 480 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Reid, G. & Flonta, M. L. Ion channels activated by cold and menthol in cultured rat dorsal root ganglion neurones. Neurosci. Lett. 324, 164–168 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Peier, A. M. et al. A TRP channel that senses cold stimuli and menthol. Cell 108, 705–715 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. McKemy, D. D., Neuhausser, W. M. & Julius, D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416, 52–58 (2002). Together with reference 71, this paper describes the molecular identity and function of the first cloned cold and menthol receptor, Trpm8.

    Article  CAS  PubMed  Google Scholar 

  73. Wei, E. T. & Seid, D. A. AG-3-5: a chemical producing sensations of cold. J. Pharm. Pharmacol. 35, 110–112 (1983).

    Article  CAS  PubMed  Google Scholar 

  74. Hensel, H. & Zotterman, Y. The response of the cold receptors at constant cooling. Acta Physiol. Scand. 22, 291–319 (1951).

    Article  Google Scholar 

  75. Nealen, M. L., Gold, M. S., Thut, P. D. & Caterina, M. J. TRPM8 mRNA is expressed in a subset of cold-responsive trigeminal neurons from rat. J. Neurophysiol. Mar 12 2003 (doi:10.1152/jn.00843.2002).

  76. Tsavaler, L., Shapero, M. H., Morkowski, S. & Laus, R. Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins. Cancer Res. 61, 3760–3769 (2001).

    CAS  PubMed  Google Scholar 

  77. Story, G. M. et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112, 819–829 (2003). This paper describes Antkm1, a distantly related TRP channel that is menthol insensitive and activated by colder temperatures than Trpm8. It shows that the expression of Antkm1 might mark polymodal nociceptors, as it is contained within a subset of neurons that also express the noxious-heat receptor, Trpv1.

    Article  CAS  PubMed  Google Scholar 

  78. Reid, G., Babes, A. & Pluteanu, F. A cold- and menthol-activated current in rat dorsal root ganglion neurones: properties and role in cold transduction. J. Physiol. (Lond.) 545, 595–614 (2002).

    Article  CAS  Google Scholar 

  79. Craig, A. D., Krout, K. & Andrew, D. Quantitative response characteristics of thermoreceptive and nociceptive lamina I spinothalamic neurons in the cat. J. Neurophysiol. 86, 1459–1480 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Han, Z. S., Zhang, E. T. & Craig, A. D. Nociceptive and thermoreceptive lamina I neurons are anatomically distinct. Nature Neurosci. 1, 218–225 (1998). This paper describes both anatomical and functional distinctions between lamina I interneurons that respond to innocuous versus noxious thermal and mechanical stimuli. This study lends support to the hypothesis that these sensory modalities are transmitted along separate labelled lines.

    Article  CAS  PubMed  Google Scholar 

  81. Craig, A. D. & Dostrovsky, J. O. Differential projections of thermoreceptive and nociceptive lamina I trigeminothalamic and spinothalamic neurons in the cat. J. Neurophysiol. 86, 856–780 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Defrin, R., Ohry, A., Blumen, N. & Urca, G. Sensory determinants of thermal pain. Brain 125, 501–510 (2002).

    Article  PubMed  Google Scholar 

  83. Craig, A. D., Reiman, E. M., Evans, A. & Bushnell, M. C. Functional imaging of an illusion of pain. Nature 384, 258–260 (1996).

    Article  CAS  PubMed  Google Scholar 

  84. Craig, A. D. & Bushnell, M. C. The thermal grill illusion: unmasking the burn of cold pain. Science 265, 252–255 (1994).

    Article  CAS  PubMed  Google Scholar 

  85. Jung, J. et al. Agonist recognition sites in the cytosolic tails of vanilloid receptor 1. J. Biol. Chem. 277, 44448–44454 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Reid, G. & Flonta, M. Cold transduction by inhibition of a background potassium conductance in rat primary sensory neurones. Neurosci. Lett. 297, 171–174 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Viana, F., de la Pena, E. & Belmonte, C. Specificity of cold thermotransduction is determined by differential ionic channel expression. Nature Neurosci. 5, 254–260 (2002). This paper postulates that cold transduction involves not only a single ion channel but a repertoire of ion channels.

    Article  CAS  PubMed  Google Scholar 

  88. Fink, M. et al. A neuronal two P domain K+ channel stimulated by arachidonic acid and polyunsaturated fatty acids. EMBO J. 17, 3297–3308 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Maingret, F. et al. TREK-1 is a heat-activated background K+ channel. EMBO J. 19, 2483–2491 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Pierau, F. K., Torrey, P. & Carpenter, D. O. Mammalian cold receptor afferents: role of an electrogenic sodium pump in sensory transduction. Brain Res. 73, 156–160 (1974).

    Article  CAS  PubMed  Google Scholar 

  91. Carpenter, D. O. Temperature effects on pacemaker generation, membrane potential, and critical firing threshold in Aplysia neurons. J. Gen. Physiol. 50, 1469–1484 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Askwith, C. C., Benson, C. J., Welsh, M. J. & Snyder, P. M. DEG/ENaC ion channels involved in sensory transduction are modulated by cold temperature. Proc. Natl Acad. Sci. USA 98, 6459–6463 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Burnstock, G. Purine-mediated signalling in pain and visceral perception. Trends Pharmacol. Sci. 22, 182–188 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Souslova, V. et al. Warm-coding deficits and aberrant inflammatory pain in mice lacking P2X3 receptors. Nature 407, 1015–1017 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Mori, I. Genetics of chemotaxis and thermotaxis in the nematode Caenorhabditis elegans. Annu. Rev. Genet. 33, 399–422 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Wittenburg, N. & Baumeister, R. Thermal avoidance in Caenorhabditis elegans: an approach to the study of nociception. Proc. Natl Acad. Sci. USA 96, 10477–10482 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sayeed, O. & Benzer, S. Behavioral genetics of thermosensation and hygrosensation in Drosophila. Proc. Natl Acad. Sci. USA 93, 6079–6084 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Liu, L., Yermolaieva, O., Johnson, W. A., Abboud, F. M. & Welsh, M. J. Identification and function of thermosensory neurons in Drosophila larvae. Nature Neurosci. 6, 267–273 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Vennekens, R., Voets, T., Bindels, R. J., Droogmans, G. & Nilius, B. Current understanding of mammalian TRP homologues. Cell Calcium 31, 253–264 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Tracey, W. D., Wilson, R. I., Laurent, G. & Benzer, S. painless, a Drosophila gene essential for nociception. Cell 113, 261–273 (2003). This study provides genetic evidence that an Anktm1 homologue is essential for the response to noxious thermal and mechanical stimuli in Drosophila larvae.

    Article  CAS  PubMed  Google Scholar 

  101. Viswanath, V. et al. Opposite thermosensor in fruitfly and mouse. Nature (in the press).

  102. Tobin, D. et al. Combinatorial expression of TRPV channel proteins defines their sensory functions and subcellular localization in C. elegans neurons. Neuron 35, 307–318 (2002). These authors propose that, in C. elegans, the TRPV homologues have varied sensory functions and subcellular localization on the basis of their combinatorial expression pattern in a sensory neuron.

    Article  CAS  PubMed  Google Scholar 

  103. Cassata, G. et al. The LIM homeobox gene ceh-14 confers thermosensory function to the AFD neurons in Caenorhabditis elegans. Neuron 25, 587–597 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Satterlee, J. S. et al. Specification of thermosensory neuron fate in C. elegans requires ttx-1, a homolog of otd/Otx. Neuron 31, 943–956 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Zhou, X. L. et al. The transient receptor potential channel on the yeast vacuole is mechanosensitive. Proc. Natl Acad. Sci. USA May 27 2003 (doi:10.1073/pnas.1230540100).

  106. Watanabe, H. et al. Activation of TRPV4 channels (hVRL-2/mTRP12) by phorbol derivatives. J. Biol. Chem. 277, 13569–13577 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. Benham, C. D., Gunthorpe, M. J. & Davis, J. B. TRPV channels as temperature sensors. Cell Calcium 33, 479–487 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Stowers, L., Holy, T. E., Meister, M., Dulac, C. & Koentges, G. Loss of sex discrimination and male-male aggression in mice deficient for TRP2. Science 295, 1493–1500 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Perez, C. A. et al. A transient receptor potential channel expressed in taste receptor cells. Nature Neurosci. 5, 1169–1176 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Zhang, Y. et al. Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 112, 293–301 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. Nauli, S. M. et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nature Genet. 33, 129–137 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Montell, C. & Rubin, G. M. Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2, 1313–1323 (1989).

    Article  CAS  PubMed  Google Scholar 

  113. Walker, R. G., Willingham, A. T. & Zuker, C. S. A Drosophila mechanosensory transduction channel. Science 287, 2229–2234 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Palmer, C. P. et al. A TRP homolog in Saccharomyces cerevisiae forms an intracellular Ca2+- permeable channel in the yeast vacuolar membrane. Proc. Natl Acad. Sci. USA 98, 7801–7805 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank N. Hong, T. Jegla, U. Mueller and L. Stowers for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ardem Patapoutian.

Related links

Related links

DATABASES

Flybase

painless

LocusLink

Anktm1

Trpm8

Trpv1

Trpv2

Trpv3

Trpv4

Glossary

PROPRIOCEPTORS

Sensory terminals that are present in muscles, tendons and joint capsules, which receive information about the movements and position of the body.

ANKYRIN

A protein domain that attaches integral membrane proteins to cytoskeletal elements.

Q10

The change in the rate of activity resulting from a 10°C increase in temperature. The higher the Q10, the more sensitive to temperature the reaction is.

HYPERALGESIA

Repeated application of a noxious stimulus leads to a progressive increase in the response of nociceptors. This process, known as hyperalgesia, manifests as a prolonged pain sensation even after the stimulus is removed.

NORTHERN BLOT

A molecular technique in which RNA molecules are separated by electrophoresis, transferred to nitrocellulose, and subsequently identified with a suitable probe.

PARADOXICAL HEAT AND COLD

Conditions in which a cold stimulus produces the sensation of being hot and vice versa.

THERMAL GRILL ILLUSION

A sensation of painful heat that is elicited by touching interlaced warm and cool bars. It was first shown by T. Thunberg in 1896.

ALLODYNIA

A heightened sensitivity to a normally innocuous stimulus such that it is perceived as painful. An example is an increased sensitivity of sunburned skin to light touch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patapoutian, A., Peier, A., Story, G. et al. ThermoTRP channels and beyond: mechanisms of temperature sensation. Nat Rev Neurosci 4, 529–539 (2003). https://doi.org/10.1038/nrn1141

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1141

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing