Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Patterning cell types in the dorsal spinal cord: what the mouse mutants say

Key Points

  • Neural activity in the spinal cord enables an animal to sense and respond to stimuli from internal organs and external sensory structures. Broadly speaking, neurons in the ventral half of the spinal cord regulate motor output, whereas neurons in the dorsal half mediate and integrate sensory input. The organization of the mature spinal cord derives from a dorsoventral pattern of cell types that is specified early in neural tube development.

  • Five parallel layers (laminae) have been defined in the dorsal horn of the mature spinal cord, and specific laminae receive input from different sensory modalities through the dorsal root ganglia. Generating the proper connections between the sensory neurons and the neurons of the spinal cord depends on the prior specification of the distinct laminae as target fields for the incoming axons.

  • Four non-overlapping proneural gene expression domains define progenitor cell types in the dorsal neural tube, which generate six types of dorsal interneuron (dI1–dI6). Interneurons derived from Mash1-expressing progenitors contribute to both deep and superficial laminae, whereas Math1-expressing cells migrate exclusively to the deep laminae. Homeodomain transcription factors define region-specific neural identity in the neural tube.

  • The surface ectoderm and notochord specify two secondary signalling centres at the ventral and dorsal midlines of the early neural tube — the floor plate and the roof plate — that produce signals that pattern the neural tube. Sonic hedgehog (Shh) signals from the notochord induce formation of the floor plate, and subsequent Shh expression in the floor plate generates a Shh gradient that promotes the specification of a series of ventral cell types.

  • The roof plate could provide the signals to specify the dorsal cell types of the neural tube — for example, in mice where the roof plate is ablated, dI1–dI3 are not specified. The classic mouse mutant dreher also lacks a roof plate, and the number of early-born dI1 cells is diminished in these mice.

  • Experiments in the chick indicate that bone morphogenetic protein (BMP) 6 and Bmp7 from the roof plate are probably important for specifying dorsal neural fates. Testing the roles of the BMPs in dorsal spinal-cord patterning in the mouse will require the generation of conditional mutants, in which the Bmp genes are inactivated only in the roof plate. Wnt signalling has also been implicated in the patterning of the dorsal neural tube, as have Shh antagonists, such as Gli3 and the Zic family of transcription factors.

  • Ablation experiments indicate that dI1–dI3 are specified by signals from the roof plate, but it is not known what signals direct the development of the dI4–dI6 cells, which arise from more ventral regions. However, experiments in mouse and chick indicate that expression of the Lbx1 homeobox gene normally prevents dI4–dI6 cells from acquiring a dI2–dI4 fate.

  • The mouse mutants do not support a simple morphogen model — such as the Shh model that has been proposed for the ventral neural tube — for dorsal neural tube patterning. However, recent genetic analysis has indicated that factors other than Shh participate in ventral patterning, so similar strategies, albeit different from those that were initially proposed, might be used for ventral and dorsal patterning.

Abstract

The organized arrangement of neurons in the mature spinal cord arises from a pattern of cell types that is established in the embryonic neural tube. Initial research on the molecular mechanisms that underlie this cellular diversity focused on the specification of ventral cell types, but recently more has been learned about cell-type specification in the dorsal neural tube. Genetic loss-of-function analysis in the mouse has provided important insights into the functions of several genes that direct neural cell fate, and we are beginning to define how the organization and connectivity of these neurons is established.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Organization of the spinal cord.
Figure 2: Migratory paths of neurons from the dorsal neural tube.
Figure 3: A combinatorial code of transcription factors directs the cell type specification in the neural tube.
Figure 4: Dorsal cell specification is disrupted in Gdf7-DTA, dreher and Gdf7 mutant mice.
Figure 5: Dorsal cell specification is altered in Wnt1;Wnt3a double mutant mice.

Similar content being viewed by others

References

  1. Altman, J. & Bayer, S. A. The development of the rat spinal cord. Adv. Anat. Embryol. Cell Biol. 85, 1–164 (1984).

    CAS  PubMed  Google Scholar 

  2. Leber, S. M. & Sanes, J. R. Migratory paths of neurons and glia in the embryonic chick spinal cord. J. Neurosci. 15, 1236–1248 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Oudega, M., Lakke, E. A., Marani, E. & Thomeer, R. T. Development of the Rat Spinal Cord: Immuno- and Enzyme Histochemical Approaches (Springer-Verlag, Berlin, Heidelberg, 1993).

    Google Scholar 

  4. Ang, S. L. & Rossant, J. HNF-3β is essential for node and notochord formation in mouse development. Cell 78, 561–574 (1994).

    CAS  PubMed  Google Scholar 

  5. Chiang, C. et al. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383, 407–413 (1996).

    CAS  PubMed  Google Scholar 

  6. Goodrich, L. V., Milenkovic, L., Higgins, K. M. & Scott, M. P. Altered neural cell fates and medulloblastoma in mouse Patched mutants. Science 277, 1109–1113 (1997).

    CAS  PubMed  Google Scholar 

  7. Ding, Q. et al. Diminished Sonic hedgehog signaling and lack of floor plate differentiation in Gli2 mutant mice. Development 125, 2533–2543 (1998).

    CAS  PubMed  Google Scholar 

  8. Matise, M. P., Epstein, D. J., Park, H. L., Platt, K. A. & Joyner, A. L. Gli2 is required for induction of floor plate and adjacent cells, but not most ventral neurons in the mouse central nervous system. Development 125, 2759–2770 (1998).

    CAS  PubMed  Google Scholar 

  9. Park, H. L. et al. Mouse Gli1 mutants are viable but have defects in SHH signaling in combination with a Gli2 mutation. Development 127, 1593–1605 (2000).

    CAS  PubMed  Google Scholar 

  10. Zhang, X. M., Ramalho-Santos, M. & McMahon, A. P. Smoothened mutants reveal redundant roles for Shh and Ihh signaling including regulation of L/R symmetry by the mouse node. Cell 106, 781–792 (2001).

    CAS  PubMed  Google Scholar 

  11. Persson, M. et al. Dorsal-ventral patterning of the spinal cord requires Gli3 transcriptional repressor activity. Genes Dev. 16, 2865–78 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wijgerde, M., McMahon, J. A., Rule, M. & McMahon, A. P. A direct requirement for Hedgehog signaling for normal specification of all ventral progenitor domains in the presumptive mammalian spinal cord. Genes Dev. 16, 2849–2864 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Nornes, H. O. & Carry, M. Neurogenesis in spinal cord of mouse: an autoradiographic analysis. Brain Res. 159, 1–6 (1978).

    CAS  PubMed  Google Scholar 

  14. Jessell, T. M. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nature Rev. Genet. 1, 20–29 (2000).

    CAS  PubMed  Google Scholar 

  15. Briscoe, J. & Ericson, J. Specification of neuronal fates in the ventral neural tube. Curr. Opin. Neurobiol. 11, 43–49 (2001).

    CAS  PubMed  Google Scholar 

  16. Lee, K. J. & Jessell, T. M. The specification of dorsal cell fates in the vertebrate central nervous system. Annu. Rev. Neurosci. 22, 261–294 (1999).

    CAS  PubMed  Google Scholar 

  17. Gowan, K. et al. Crossinhibitory activities of Ngn1 and Math1 allow specification of distinct dorsal interneurons. Neuron 31, 219–232 (2001). Provides genetic evidence that the bHLH genes in the dorsal neural tube use mutual repression at the transcriptional level to define their expression domains.

    CAS  PubMed  Google Scholar 

  18. Gross, M. K., Dottori, M. & Goulding, M. Lbx1 specifies somatosensory association interneurons in the dorsal spinal cord. Neuron 34, 535–549 (2002).

    CAS  PubMed  Google Scholar 

  19. Müller, T. et al. The homeodomain factor Lbx1 distinguishes two major programs of neuronal differentiation in the dorsal spinal cord. Neuron 34, 551–562 (2002). References 18 and 19 define the function of Lbx1 in repressing dI1–dI3 fates, through a combination of loss-of-function and gain-of-function experiments. Furthermore, the careful characterization of temporal expression patterns defines two later-born populations of neurons that populate the outer laminae of the spinal cord.

    PubMed  Google Scholar 

  20. Helms, A. W. & Johnson, J. E. Progenitors of dorsal commissural interneurons are defined by MATH1 expression. Development 125, 919–928 (1998).

    CAS  PubMed  Google Scholar 

  21. Lee, K. J., Mendelsohn, M. & Jessell, T. M. Neuronal patterning by BMPs: a requirement for GDF7 in the generation of a discrete class of commissural interneurons in the mouse spinal cord. Genes Dev. 12, 3394–3407 (1998). This paper provides the only genetic evidence to date that a BMP family member is necessary for dorsal neural tube patterning.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Bermingham, N. A. et al. Proprioceptor pathway development is dependent on Math1. Neuron 30, 411–422 (2001).

    CAS  PubMed  Google Scholar 

  23. Arber, S., Ladle, D. R., Lin, J. H., Frank, E. & Jessell, T. M. ETS gene Er81 controls the formation of functional connections between group Ia sensory afferents and motor neurons. Cell 101, 485–498 (2000).

    CAS  PubMed  Google Scholar 

  24. Ma, Q., Fode, C., Guillemot, F. & Anderson, D. J. Neurogenin1 and neurogenin2 control two distinct waves of neurogenesis in developing dorsal root ganglia. Genes Dev. 13, 1717–1728 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Guillemot, F. et al. Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 75, 463–476 (1993).

    CAS  PubMed  Google Scholar 

  26. Fode, C. et al. A role for neural determination genes in specifying the dorsoventral identity of telencephalic neurons. Genes Dev. 14, 67–80 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Parras, C. M. et al. Divergent functions of the proneural genes Mash1 and Ngn2 in the specification of neuronal subtype identity. Genes Dev. 16, 324–338 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Qian, Y., Shirasawa, S., Chen, C. L., Cheng, L. & Ma, Q. Proper development of relay somatic sensory neurons and D2/D4 interneurons requires homeobox genes Rnx/Tlx-3 and Tlx-1. Genes Dev. 16, 1220–1233 (2002). A detailed genetic analysis of how local interactions control cell fate in the neural tube.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen, Z. F. et al. The paired homeodomain protein DRG11 is required for the projection of cutaneous sensory afferent fibers to the dorsal spinal cord. Neuron 31, 59–73 (2001).

    CAS  PubMed  Google Scholar 

  30. Briscoe, J., Pierani, A., Jessell, T. M. & Ericson, J. A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell 101, 435–445 (2000).

    CAS  PubMed  Google Scholar 

  31. Jostes, B., Walther, C. & Gruss, P. The murine paired box gene, Pax7, is expressed specifically during the development of the nervous and muscular system. Mech. Dev. 33, 27–37 (1990).

    CAS  PubMed  Google Scholar 

  32. Goulding, M. D., Chalepakis, G., Deutsch, U., Erselius, J. R. & Gruss, P. Pax-3, a novel murine DNA binding protein expressed during early neurogenesis. EMBO J. 10, 1135–1147 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Mansouri, A., Stoykova, A., Torres, M. & Gruss, P. Dysgenesis of cephalic neural crest derivatives in Pax7−/− mutant mice. Development 122, 831–838 (1996).

    CAS  PubMed  Google Scholar 

  34. Mansouri, A. & Gruss, P. Pax3 and Pax7 are expressed in commissural neurons and restrict ventral neuronal identity in the spinal cord. Mech. Dev. 78, 171–178 (1998).

    CAS  PubMed  Google Scholar 

  35. Yamada, T., Placzek, M., Tanaka, H., Dodd, J. & Jessell, T. M. Control of cell pattern in the developing nervous system: polarizing activity of the floor plate and notochord. Cell 64, 635–647 (1991).

    CAS  PubMed  Google Scholar 

  36. Ericson, J. et al. Pax6 controls progenitor cell identity and neuronal fate in response to graded Shh signaling. Cell 90, 169–180 (1997).

    CAS  PubMed  Google Scholar 

  37. Ericson, J., Briscoe, J., Rashbass, P., van Heyningen, V. & Jessell, T. M. Graded Sonic Hedgehog signaling and the specification of cell fate in the ventral neural tube. Cold Spring Harb. Symp. Quant. Biol. 62, 451–466 (1997).

    CAS  PubMed  Google Scholar 

  38. Dickinson, M. E., Selleck, M. A., McMahon, A. P. & Bronner-Fraser, M. Dorsalization of the neural tube by the non-neural ectoderm. Development 121, 2099–2106 (1995).

    CAS  PubMed  Google Scholar 

  39. Liem, K. F. Jr, Tremml, G., Roelink, H. & Jessell, T. M. Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell 82, 969–979 (1995).

    CAS  PubMed  Google Scholar 

  40. Garcia-Castro, M. I., Marcelle, C. & Bronner-Fraser, M. Ectodermal Wnt function as a neural crest inducer. Science 297, 848–851 (2002).

    CAS  PubMed  Google Scholar 

  41. Zhang, H. & Bradley, A. Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 122, 2977–2986 (1996).

    CAS  PubMed  Google Scholar 

  42. Winnier, G., Blessing, M., Labosky, P. A. & Hogan, B. L. Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev. 9, 2105–2116 (1995).

    CAS  PubMed  Google Scholar 

  43. Dudley, A. T., Lyons, K. M. & Robertson, E. J. A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev. 9, 2795–2807 (1995).

    CAS  PubMed  Google Scholar 

  44. Luo, G. et al. BMP-7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning. Genes Dev. 9, 2808–2820 (1995).

    CAS  PubMed  Google Scholar 

  45. Lyons, K. M., Hogan, B. L. & Robertson, E. J. Colocalization of BMP 7 and BMP 2 RNAs suggests that these factors cooperatively mediate tissue interactions during murine development. Mech. Dev. 50, 71–83 (1995).

    CAS  PubMed  Google Scholar 

  46. Dudley, A. T. & Robertson, E. J. Overlapping expression domains of bone morphogenetic protein family members potentially account for limited tissue defects in BMP7 deficient embryos. Dev. Dyn. 208, 349–362 (1997).

    CAS  PubMed  Google Scholar 

  47. Mishina, Y., Suzuki, A., Ueno, N. & Behringer, R. R. Bmpr encodes a type I bone morphogenetic protein receptor that is essential for gastrulation during mouse embryogenesis. Genes Dev. 9, 3027–3037 (1995).

    CAS  PubMed  Google Scholar 

  48. Yi, S. E., Daluiski, A., Pederson, R., Rosen, V. & Lyons, K. M. The type I BMP receptor BMPRIB is required for chondrogenesis in the mouse limb. Development 127, 621–630 (2000).

    CAS  PubMed  Google Scholar 

  49. Beppu, H. et al. BMP type II receptor is required for gastrulation and early development of mouse embryos. Dev. Biol. 221, 249–258 (2000).

    CAS  PubMed  Google Scholar 

  50. Lee, K. J., Dietrich, P. & Jessell, T. M. Genetic ablation reveals that the roof plate is essential for dorsal interneuron specification. Nature 403, 734–740 (2000). The importance of this paper is twofold: it provides in vivo evidence that the proper patterning of the neural tube depends on the maintenance of the roof plate, and it exemplifies the sophistication of mouse genetics with its cleverly designed construct.

    CAS  PubMed  Google Scholar 

  51. Millonig, J. H., Millen, K. J. & Hatten, M. E. The mouse dreher gene Lmx1a controls formation of the roof plate in the vertebrate CNS. Nature 403, 764–769 (2000). The first example of the use of forward genetics to identify the Lmx1a gene, and to characterize its role in dorsal neural tube patterning.

    CAS  PubMed  Google Scholar 

  52. Manzanares, M., Trainor, P. A., Ariza-McNaughton, L., Nonchev, S. & Krumlauf, R. Dorsal patterning defects in the hindbrain, roof plate and skeleton in the dreher (dr(J)) mouse mutant. Mech. Dev. 94, 147–156 (2000).

    CAS  PubMed  Google Scholar 

  53. Liem, K. F. Jr, Tremml, G. & Jessell, T. M. A role for the roof plate and its resident TGFβ-related proteins in neuronal patterning in the dorsal spinal cord. Cell 91, 127–138 (1997).

    CAS  PubMed  Google Scholar 

  54. Timmer, J. R., Wang, C. & Niswander, L. BMP signaling patterns the dorsal and intermediate neural tube via regulation of homeobox and helix–loop–helix transcription factors. Development 129, 2459–2472 (2002).

    CAS  PubMed  Google Scholar 

  55. Basler, K., Edlund, T., Jessell, T. M. & Yamada, T. Control of cell pattern in the neural tube: regulation of cell differentiation by dorsalin-1, a novel TGFβ family member. Cell 73, 687–702 (1993).

    CAS  PubMed  Google Scholar 

  56. Solloway, M. J. et al. Mice lacking Bmp6 function. Dev. Genet. 22, 321–339 (1998).

    CAS  PubMed  Google Scholar 

  57. Shimeld, S. M., McKay, I. J. & Sharpe, P. T. The murine homeobox gene Msx-3 shows highly restricted expression in the developing neural tube. Mech. Dev. 55, 201–210 (1996).

    CAS  PubMed  Google Scholar 

  58. Wang, W., Chen, X., Xu, H. & Lufkin, T. Msx3: a novel murine homologue of the Drosophila msh homeobox gene restricted to the dorsal embryonic central nervous system. Mech. Dev. 58, 203–215 (1996).

    CAS  PubMed  Google Scholar 

  59. Hebert, J. M., Mishina, Y. & McConnell, S. K. BMP signaling is required locally to pattern the dorsal telencephalic midline. Neuron 35, 1029–1041 (2002).

    CAS  PubMed  Google Scholar 

  60. Isaka, F. et al. Ectopic expression of the bHLH gene Math1 disturbs neural development. Eur. J. Neurosci. 11, 2582–2588 (1999).

    CAS  PubMed  Google Scholar 

  61. McMahon, A. P. & Bradley, A. The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell 62, 1073–1085 (1990).

    CAS  PubMed  Google Scholar 

  62. Thomas, K. R. & Capecchi, M. R. Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature 346, 847–850 (1990).

    CAS  PubMed  Google Scholar 

  63. Takada, S. et al. Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes Dev. 8, 174–189 (1994).

    CAS  PubMed  Google Scholar 

  64. Yoshikawa, Y., Fujimori, T., McMahon, A. P. & Takada, S. Evidence that absence of Wnt-3a signaling promotes neuralization instead of paraxial mesoderm development in the mouse. Dev. Biol. 183, 234–242 (1997).

    CAS  PubMed  Google Scholar 

  65. Yamaguchi, T. P., Takada, S., Yoshikawa, Y., Wu, N. & McMahon, A. P. T (Brachyury) is a direct target of Wnt3a during paraxial mesoderm specification. Genes Dev. 13, 3185–3190 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Lee, S. M., Tole, S., Grove, E. & McMahon, A. P. A local Wnt-3a signal is required for development of the mammalian hippocampus. Development 127, 457–467 (2000).

    CAS  PubMed  Google Scholar 

  67. Muroyama, Y., Fujihara, M., Ikeya, M., Kondoh, H. & Takada, S. Wnt signaling plays an essential role in neuronal specification of the dorsal spinal cord. Genes Dev. 16, 548–553 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Chenn, A. & Walsh, C. A. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297, 365–369 (2002).

    CAS  PubMed  Google Scholar 

  69. Megason, S. G. & McMahon, A. P. A mitogen gradient of dorsal midline Wnts organizes growth in the CNS. Development 129, 2087–2098 (2002).

    CAS  PubMed  Google Scholar 

  70. Theil, T., Aydin, S., Koch, S., Grotewold, L. & Rüther, U. Wnt and Bmp signalling cooperatively regulate graded Emx2 expression in the dorsal telencephalon. Development 129, 3045–3054 (2002).

    CAS  PubMed  Google Scholar 

  71. Arkell, R. & Beddington, R. S. BMP-7 influences pattern and growth of the developing hindbrain of mouse embryos. Development 124, 1–12 (1997).

    CAS  PubMed  Google Scholar 

  72. Aruga, J., Tohmonda, T., Homma, S. & Mikoshiba, K. Zic1 promotes the expansion of dorsal neural progenitors in spinal cord by inhibiting neuronal differentiation. Dev. Biol. 244, 329–341 (2002).

    CAS  PubMed  Google Scholar 

  73. Günther, T., Struwe, M., Aguzzi, A. & Schughart, K. open brain, a new mouse mutant with severe neural tube defects, shows altered gene expression patterns in the developing spinal cord. Development 120, 3119–3130 (1994).

    PubMed  Google Scholar 

  74. Spörle, R., Gunther, T., Struwe, M. & Schughart, K. Severe defects in the formation of epaxial musculature in open brain (opb) mutant mouse embryos. Development 122, 79–86 (1996).

    PubMed  Google Scholar 

  75. Kasarskis, A., Manova, K. & Anderson, K. V. A phenotype-based screen for embryonic lethal mutations in the mouse. Proc. Natl Acad. Sci. USA 95, 7485–7490 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Eggenschwiler, J. T., Espinoza, E. & Anderson, K. V. Rab23 is an essential negative regulator of the mouse Sonic hedgehog signalling pathway. Nature 412, 194–198 (2001). Identifies Rab23 as a negative regulator of the Shh pathway, and through double mutant analysis reinforces the case that a Shh-independent or parallel pathway must also pattern the neural tube.

    CAS  PubMed  Google Scholar 

  77. Eggenschwiler, J. T. & Anderson, K. V. Dorsal and lateral fates in the mouse neural tube require the cell-autonomous activity of the open brain gene. Dev. Biol. 227, 648–660 (2000).

    CAS  PubMed  Google Scholar 

  78. Litingtung, Y. & Chiang, C. Specification of ventral neuron types is mediated by an antagonistic interaction between Shh and Gli3. Nature Neurosci. 3, 979–985 (2000). Provides the first genetic evidence to establish that a Shh-independent or parallel pathway is involved in patterning the neural tube.

    CAS  PubMed  Google Scholar 

  79. Aruga, J. et al. The mouse zic gene family. Homologues of the Drosophila pair-rule gene odd-paired. J. Biol. Chem. 271, 1043–1047 (1996).

    CAS  PubMed  Google Scholar 

  80. Nagai, T. et al. Zic2 regulates the kinetics of neurulation. Proc. Natl Acad. Sci. USA 97, 1618–1623 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Mizugishi, K., Aruga, J., Nakata, K. & Mikoshiba, K. Molecular properties of Zic proteins as transcriptional regulators and their relationship to GLI proteins. J. Biol. Chem. 276, 2180–2188 (2001).

    CAS  PubMed  Google Scholar 

  82. Aruga, J. et al. Zic1 regulates the patterning of vertebral arches in cooperation with Gli3. Mech. Dev. 89, 141–150 (1999).

    CAS  PubMed  Google Scholar 

  83. Takahashi, Y., Bontoux, M. & Le Douarin, N. M. Epithelio-mesenchymal interactions are critical for Quox 7 expression and membrane bone differentiation in the neural crest derived mandibular mesenchyme. EMBO J. 10, 2387–2393 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Koyabu, Y., Nakata, K., Mizugishi, K., Aruga, J. & Mikoshiba, K. Physical and functional interactions between Zic and Gli proteins. J. Biol. Chem. 276, 6889–6892 (2001).

    CAS  PubMed  Google Scholar 

  85. Jagla, K. et al. Mouse Lbx1 and human LBX1 define a novel mammalian homeobox gene family related to the Drosophila lady bird genes. Mech. Dev. 53, 345–356 (1995).

    CAS  PubMed  Google Scholar 

  86. Pituello, F., Medevielle, F., Foulquier, F. & Duprat, A. M. Activation of Pax6 depends on somitogenesis in the chick embryo cervical spinal cord. Development 126, 587–596 (1999).

    CAS  PubMed  Google Scholar 

  87. Pierani, A., Brenner-Morton, S., Chiang, C. & Jessell, T. M. A sonic hedgehog-independent, retinoid-activated pathway of neurogenesis in the ventral spinal cord. Cell 97, 903–915 (1999).

    CAS  PubMed  Google Scholar 

  88. Begemann, G., Schilling, T. F., Rauch, G. J., Geisler, R. & Ingham, P. W. The zebrafish neckless mutation reveals a requirement for raldh2 in mesodermal signals that pattern the hindbrain. Development 128, 3081–3094 (2001).

    CAS  PubMed  Google Scholar 

  89. Niederreither, K., McCaffery, P., Drager, U. C., Chambon, P. & Dollé, P. Restricted expression and retinoic acid-induced downregulation of the retinaldehyde dehydrogenase type 2 (RALDH-2) gene during mouse development. Mech. Dev. 62, 67–78 (1997).

    CAS  PubMed  Google Scholar 

  90. Niederreither, K., Subbarayan, V., Dollé, P. & Chambon, P. Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nature Genet. 21, 444–448 (1999).

    CAS  PubMed  Google Scholar 

  91. Niederreither, K., Vermot, J., Schuhbaur, B., Chambon, P. & Dollé, P. Retinoic acid synthesis and hindbrain patterning in the mouse embryo. Development 127, 75–85 (2000).

    CAS  PubMed  Google Scholar 

  92. Matise, M. A dorsal elaboration in the spinal cord. Neuron 34, 491–493 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to C. Chesnut, J. Eggenschewiler and J. Timmer for insightful discussions. J. Timmer also contributed through helpful comments on the manuscript. T.C. is a recipient of a Burroughs Wellcome Fund Hitchings-Elion Fellowship. In this lab, research on the genetics of neural tube development in the mouse is funded by NIH Grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn V. Anderson.

Related links

Related links

DATABASES

LocusLink

Bmpr

Brn3a

dreher

Emx2

Gdf7

Gli3

Irx3

Lbx1

Lh2a

Lh2b

Lim1

Lim2

Lmx1a

Lmx1b

Mash1

Math1

Msx

nestin

Ngn1

Ngn2

Pax2

Pax3

Pax7

Rab23

Rnx/Tlx3

Shh

Wnt1

Wnt3a

Zic

FURTHER INFORMATION

Encyclopedia of Life Sciences

neural crest: origin, migration and differentiation

neuronal subtype identity regulation

vertebrate embryo: patterning of the neural crest lineage

Glossary

HEDGEHOG FAMILY

A group of signalling molecules with several roles during development. It includes Hedgehog, which specifies the segmental polarity of the blastoderm and cell fate in imaginal discs of Drosophila: Sonic hedgehog, which participates in many aspects of neural development in vertebrates; Indian hedgehog, which participates in endoderm differentiation and bone growth; and Desert hedgehog, which is involved in spermatogenesis.

DORSAL ROOT GANGLIA

Paired ganglia that lie alongside the spinal cord and contain the cell bodies of sensory neurons.

MANTLE LAYER

A layer of cells in the developing spinal cord that gives rise to the grey matter. It is initially generated by the migration of neuroblasts from the ventricular zone.

BASIC HELIX–LOOP–HELIX

A structural motif that is characterized by two α-helices separated by a loop. The helices mediate dimerization, and the adjacent basic region is required for DNA binding.

HOMEODOMAIN

A 60-amino-acid DNA-binding domain that comprises three α-helices.

COMMISSURAL

A term that refers to neuronal projections that span the midline of the brain or spinal cord.

DII

A lipophilic dye that emits an intense fluorescence when incorporated into cell membranes. It is commonly used to track cell migration, or for the retrograde or anterograde tracing of axons.

PROPRIOCEPTIVE

Relating to the perception of position and movement of the body parts in response to stimuli generated within the body.

GREEN FLUORESCENT PROTEIN

(GFP). Fluorescent protein cloned from the jellyfish Aequoria victoria. The most frequently used mutant, enhanced GFP, is excited at 488 nm and has an emission maximum at 510 nm.

NOCICEPTIVE

Referring to the perception of painful stimuli.

NOTOCHORD

A rod-like structure of mesodermal origin that is found in vertebrate embryos. Signals from the notochord participate in the differentiation of the ventral neural tube and in the specification of motor neurons.

BONE MORPHOGENETIC PROTEINS

(BMPs). Multifunctional secreted proteins of the transforming growth factor-β superfamily.

NEURAL CREST

Groups of cells that migrate from the neural tube to the periphery, where they give rise to a wide variety of cell types.

CHOROID PLEXUS

A site of production of cerebrospinal fluid in the adult brain. It is formed by the invagination of ependymal cells into the ventricles, which become richly vascularized.

CRE RECOMBINASE

Part of a site-specific recombination system derived from Escherichia coli bacteriophage P1. Two short DNA sequences (loxP sites) are engineered to flank the target DNA. Activation of the Cre recombinase enzyme catalyses recombination between the loxP sites. If the loxP sequences are arranged as a direct repeat, recombination will delete the DNA between the sites, leading to excision of the intervening sequence.

ZINC FINGER

A protein module in which cysteine or cysteine–histidine residues coordinate a zinc ion. Zinc fingers are often used in DNA recognition and in protein–protein interactions.

HYPOMORPHIC

A mutation that does not eliminate the wild-type function of a gene and gives a less severe phenotype than a loss-of-function mutation.

PARAXIAL MESODERM

A region of the mesoderm adjacent to the notochord, which becomes segmented rostrocaudally to give rise to the somites early in development.

VENTRICULAR ZONE

The proliferative inner layer of the neural tube.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caspary, T., Anderson, K. Patterning cell types in the dorsal spinal cord: what the mouse mutants say. Nat Rev Neurosci 4, 289–297 (2003). https://doi.org/10.1038/nrn1073

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1073

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing