Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease

Key Points

  • Here, we review literature determining the arterial and arteriolar component of cerebral blood flow regulation.

  • Furthermore, we describe evidence of arterial and arteriolar blood flow control by vascular smooth muscle cells (VSMCs), astrocyte-mediated, direct neuron-mediated and endothelium-mediated regulation of VSMC tone.

  • Also, we discuss the capillary component of cerebral blood flow regulation.

  • Importantly, we highlight recent findings regarding the control of capillary blood flow by pericytes, and signalling in astrocytes and pericytes regulating capillary tone.

  • In addition, we examine vascular dysfunction in animal models, including amyloid-β-independent vascular changes, amyloid-β-dependent vascular changes and combined amyloid-β and vascular models.

  • Last, we emphasize Alzheimer disease vascular dysfunction, including cerebrovascular reactivity, cerebral blood flow reductions and neurovascular uncoupling.

Abstract

Cerebral blood flow (CBF) regulation is essential for normal brain function. The mammalian brain has evolved a unique mechanism for CBF control known as neurovascular coupling. This mechanism ensures a rapid increase in the rate of CBF and oxygen delivery to activated brain structures. The neurovascular unit is composed of astrocytes, mural vascular smooth muscle cells and pericytes, and endothelia, and regulates neurovascular coupling. This Review article examines the cellular and molecular mechanisms within the neurovascular unit that contribute to CBF control, and neurovascular dysfunction in neurodegenerative disorders such as Alzheimer disease.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: A schematic representation of the neurovascular unit showing cellular elements regulating cerebral blood flow along the vascular tree.
Figure 2: Arteriolar regulation of cerebral blood flow.
Figure 3: Capillary regulation of cerebral blood flow.
Figure 4: Neurovascular dysfunction in Alzheimer disease: two-hit vascular hypothesis.

References

  1. Zlokovic, B. V. Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders. Nat. Rev. Neurosci. 12, 723–738 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Attwell, D. et al. Glial and neuronal control of brain blood flow. Nature 468, 232–243 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Iadecola, C. The pathobiology of vascular dementia. Neuron 80, 844–866 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Moskowitz, M. A., Lo, E. H. & Iadecola, C. The science of stroke: mechanisms in search of treatments. Neuron 67, 181–198 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Iadecola, C. Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat. Rev. Neurosci. 5, 347–360 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Buxton, R. B. Interpreting oxygenation-based neuroimaging signals: the importance and the challenge of understanding brain oxygen metabolism. Front. Neuroenergetics 2, 8 (2010).

    PubMed  PubMed Central  Google Scholar 

  7. Lin, A.-L., Fox, P. T., Hardies, J., Duong, T. Q. & Gao, J.-H. Nonlinear coupling between cerebral blood flow, oxygen consumption, and ATP production in human visual cortex. Proc. Natl Acad. Sci. USA 107, 8446–8451 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Greicius, M. D., Krasnow, B., Reiss, A. L. & Menon, V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl Acad. Sci. USA 100, 253–258 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Snyder, A. Z. & Raichle, M. E. A brief history of the resting state: the Washington University perspective. Neuroimage 62, 902–910 (2012).

    Article  PubMed  Google Scholar 

  10. Attwell, D. & Iadecola, C. The neural basis of functional brain imaging signals. Trends Neurosci. 25, 621–625 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Lauritzen, M., Mathiesen, C., Schaefer, K. & Thomsen, K. J. Neuronal inhibition and excitation, and the dichotomic control of brain hemodynamic and oxygen responses. Neuroimage 62, 1040–1050 (2012).

    Article  PubMed  Google Scholar 

  12. Hillman, E. M. C. Coupling mechanism and significance of the BOLD signal: a status report. Annu. Rev. Neurosci. 37, 161–181 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cauli, B. & Hamel, E. Revisiting the role of neurons in neurovascular coupling. Front. Neuroenergetics 2, 9 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Iadecola, C. & Nedergaard, M. Glial regulation of the cerebral microvasculature. Nat. Neurosci. 10, 1369–1376 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Zhao, Z., Nelson, A. R., Betsholtz, C. & Zlokovic, B. V. Establishment and dysfunction of the blood–brain barrier. Cell 163, 1064–1078 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen, B. R., Bouchard, M. B., McCaslin, A. F. H., Burgess, S. A. & Hillman, E. M. C. High-speed vascular dynamics of the hemodynamic response. Neuroimage 54, 1021–1030 (2011).

    Article  PubMed  Google Scholar 

  17. Chen, B. R., Kozberg, M. G., Bouchard, M. B., Shaik, M. A. & Hillman, E. M. C. A. Critical role for the vascular endothelium in functional neurovascular coupling in the brain. J. Am. Heart Assoc. 3, e000787 (2014).

    PubMed  PubMed Central  Google Scholar 

  18. Iadecola, C., Yang, G., Ebner, T. J. & Chen, G. Local and propagated vascular responses evoked by focal synaptic activity in cerebellar cortex. J. Neurophysiol. 78, 651–659 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Tian, P. et al. Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal. Proc. Natl Acad. Sci. USA 107, 15246–15251 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Devor, A. et al. 'Overshoot' of O2 is required to maintain baseline tissue oxygenation at locations distal to blood vessels. J. Neurosci. 31, 13676–13681 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kasischke, K. A. et al. Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions. J. Cereb. Blood Flow Metab. 31, 68–81 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Sakadžic´, S. et al. Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue. Nat. Commun. 5, 5734 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Kisler, K. et al. Pericyte degeneration leads to neurovascular uncoupling and limits oxygen supply to brain. Nat. Neurosci. 20, 406–416 (2017). This was the first study to demonstrate that pericyte degeneration in a pericyte loss-of-function model leads to a loss of neurovascular coupling and diminished O 2 delivery to brain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hall, C. N. et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508, 55–60 (2014). This was the first study to show that pericytes have an active role in CBF regulation in vivo and that capillaries can dilate ahead of arterioles. In ischaemic conditions, pericytes rapidly constrict capillaries and die, consistent with the no-reflow phenomenon observed in stroke.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hill, R. A. et al. Regional blood flow in the normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes. Neuron 87, 95–110 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mishra, A. et al. Astrocytes mediate neurovascular signaling to capillary pericytes but not to arterioles. Nat. Neurosci. 19, 1619–1627 (2016). This was the first study to show that astrocytes mediate neurovascular signalling to capillary pericytes but not to arterioles, which involves a rise of Ca2+ in astrocytes caused by entry through adenosine triphosphate-gated channels.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Biesecker, K. R. et al. Glial cell calcium signaling mediates capillary regulation of blood flow in the retina. J. Neurosci. 36, 9435–9445 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Khakh, B. S. & Sofroniew, M. V. Diversity of astrocyte functions and phenotypes in neural circuits. Nat. Neurosci. 18, 942–952 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tsai, H.-H. et al. Regional astrocyte allocation regulates CNS synaptogenesis and repair. Science 337, 358–362 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gundersen, V., Storm-Mathisen, J. & Bergersen, L. H. Neuroglial transmission. Physiol. Rev. 95, 695–726 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Lee, H. S. et al. Astrocytes contribute to gamma oscillations and recognition memory. Proc. Natl Acad. Sci. USA 111, E3343–E3352 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sofroniew, M. V. Astrocyte barriers to neurotoxic inflammation. Nat. Rev. Neurosci. 16, 249–263 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mulligan, S. J. & MacVicar, B. A. Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 431, 195–199 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Zonta, M. et al. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat. Neurosci. 6, 43–50 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Takano, T. et al. Astrocyte-mediated control of cerebral blood flow. Nat. Neurosci. 9, 260–267 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. MacVicar, B. A. & Newman, E. A. Astrocyte regulation of blood flow in the brain. Cold Spring Harb. Perspect. Biol. 7, a020388 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Otsu, Y. et al. Calcium dynamics in astrocyte processes during neurovascular coupling. Nat. Neurosci. 18, 210–218 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Agulhon, C. et al. What is the role of astrocyte calcium in neurophysiology? Neuron 59, 932–946 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nizar, K. et al. In vivo stimulus-induced vasodilation occurs without IP3 receptor activation and may precede astrocytic calcium increase. J. Neurosci. 33, 8411–8422 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bonder, D. E. & McCarthy, K. D. Astrocytic Gq-GPCR-linked IP3R-dependent Ca2+ signaling does not mediate neurovascular coupling in mouse visual cortex in vivo. J. Neurosci. 34, 13139–13150 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sun, W. et al. Glutamate-dependent neuroglial calcium signaling differs between young and adult brain. Science 339, 197–200 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Piet, R. & Jahr, C. E. Glutamatergic and purinergic receptor-mediated calcium transients in Bergmann glial cells. J. Neurosci. 27, 4027–4035 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kim, K. J. et al. Astrocyte contributions to flow/pressure-evoked parenchymal arteriole vasoconstriction. J. Neurosci. 35, 8245–8257 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dunn, K. M., Hill-Eubanks, D. C., Liedtke, W. B. & Nelson, M. T. TRPV4 channels stimulate Ca2+-induced Ca2+ release in astrocytic endfeet and amplify neurovascular coupling responses. Proc. Natl Acad. Sci. USA 110, 6157–6162 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Longden, T. A. & Nelson, M. T. Vascular inward rectifier K+ channels as external K+ sensors in the control of cerebral blood flow. Microcirculation 22, 183–196 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Girouard, H. et al. Astrocytic endfoot Ca2+ and BK channels determine both arteriolar dilation and constriction. Proc. Natl Acad. Sci. USA 107, 3811–3816 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gordon, G. R. J., Choi, H. B., Rungta, R. L., Ellis-Davies, G. C. R. & MacVicar, B. A. Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature 456, 745–749 (2008). This study in live brain slices revealed that the metabolic state of brain tissue, such as oxygenation and lactate levels, influences both arteriolar dilation or constriction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mishra, A., Hamid, A. & Newman, E. A. Oxygen modulation of neurovascular coupling in the retina. Proc. Natl Acad. Sci. USA 108, 17827–17831 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Brazitikos, P. D., Pournaras, C. J., Munoz, J. L. & Tsacopoulos, M. Microinjection of L-lactate in the preretinal vitreous induces segmental vasodilation in the inner retina of miniature pigs. Invest. Ophthalmol. Vis. Sci. 34, 1744–1752 (1993).

    CAS  PubMed  Google Scholar 

  50. Dai, M., Yang, Y. & Shi, X. Lactate dilates cochlear capillaries via type V fibrocyte-vessel coupling signaled by nNOS. Am. J. Physiol. Heart Circ. Physiol. 301, H1248–H1254 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Faraci, F. M. & Breese, K. R. Nitric oxide mediates vasodilatation in response to activation of N-methyl-D-aspartate receptors in brain. Circ. Res. 72, 476–480 (1993). This classic paper demonstrated that activation of N-methyl-d-aspartate receptors in neurons leads to concentration-dependent NO-mediated dilation of pial arterioles.

    Article  CAS  PubMed  Google Scholar 

  52. Bhardwaj, A. et al. P-450 epoxygenase and NO synthase inhibitors reduce cerebral blood flow response to N-methyl-D-aspartate. Am. J. Physiol. Heart Circ. Physiol. 279, H1616–H1624 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Buerk, D. G., Ances, B. M., Greenberg, J. H. & Detre, J. A. Temporal dynamics of brain tissue nitric oxide during functional forepaw stimulation in rats. Neuroimage 18, 1–9 (2003).

    Article  PubMed  Google Scholar 

  54. Kur, J. & Newman, E. A. Purinergic control of vascular tone in the retina. J. Physiol. 592, 491–504 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Horiuchi, T., Dietrich, H. H., Tsugane, S. & Dacey, R. G. Analysis of purine- and pyrimidine-induced vascular responses in the isolated rat cerebral arteriole. Am. J. Physiol. Heart Circ. Physiol. 280, H767–H776 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Fields, R. D. & Burnstock, G. Purinergic signalling in neuron–glia interactions. Nat. Rev. Neurosci. 7, 423–436 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pascual, O. et al. Astrocytic purinergic signaling coordinates synaptic networks. Science 310, 113–116 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Lovatt, D. et al. Neuronal adenosine release, and not astrocytic ATP release, mediates feedback inhibition of excitatory activity. Proc. Natl Acad. Sci. USA 109, 6265–6270 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bekar, L. K., Wei, H. S. & Nedergaard, M. The locus coeruleus-norepinephrine network optimizes coupling of cerebral blood volume with oxygen demand. J. Cereb. Blood Flow Metab. 32, 2135–2145 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kozberg, M. G., Chen, B. R., DeLeo, S. E., Bouchard, M. B. & Hillman, E. M. C. Resolving the transition from negative to positive blood oxygen level-dependent responses in the developing brain. Proc. Natl Acad. Sci. USA 110, 4380–4385 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Uhlirova, H. et al. Cell type specificity of neurovascular coupling in cerebral cortex. eLife 5, e14315 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wölfle, S. E. et al. Non-linear relationship between hyperpolarisation and relaxation enables long distance propagation of vasodilatation. J. Physiol. 589, 2607–2623 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ralevic, V. & Dunn, W. R. Purinergic transmission in blood vessels. Auton. Neurosci. 191, 48–66 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Zlokovic, B. V., Deane, R., Sagare, A. P., Bell, R. D. & Winkler, E. A. Low-density lipoprotein receptor-related protein-1: a serial clearance homeostatic mechanism controlling Alzheimer's amyloid β-peptide elimination from the brain. J. Neurochem. 115, 1077–1089 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Attwell, D., Mishra, A., Hall, C. N., O'Farrell, F. M. & Dalkara, T. What is a pericyte? J. Cereb. Blood Flow Metab. 36, 451–455 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Fernández-Klett, F. & Priller, J. Diverse functions of pericytes in cerebral blood flow regulation and ischemia. J. Cereb. Blood Flow Metab. 35, 883–887 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hartmann, D. A. et al. Pericyte structure and distribution in the cerebral cortex revealed by high-resolution imaging of transgenic mice. Neurophotonics 2, 041402 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Cuevas, P. et al. Pericyte endothelial gap junctions in human cerebral capillaries. Anat. Embryol. (Berl.) 170, 155–159 (1984).

    Article  CAS  Google Scholar 

  69. Armulik, A., Genové, G. & Betsholtz, C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev. Cell 21, 193–215 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Gerhardt, H., Wolburg, H. & Redies, C. N-Cadherin mediates pericytic-endothelial interaction during brain angiogenesis in the chicken. Dev. Dyn. 218, 472–479 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Winkler, E. A., Bell, R. D. & Zlokovic, B. V. Central nervous system pericytes in health and disease. Nat. Neurosci. 14, 1398–1405 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zeisel, A. et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138–1142 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Sweeney, M. D., Ayyadurai, S. & Zlokovic, B. V. Pericytes of the neurovascular unit: key functions and signaling pathways. Nat. Neurosci. 19, 771–783 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dai, M., Nuttall, A., Yang, Y. & Shi, X. Visualization and contractile activity of cochlear pericytes in the capillaries of the spiral ligament. Hear. Res. 254, 100–107 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Fernández-Klett, F., Offenhauser, N., Dirnagl, U., Priller, J. & Lindauer, U. Pericytes in capillaries are contractile in vivo, but arterioles mediate functional hyperemia in the mouse brain. Proc. Natl Acad. Sci. USA 107, 22290–22295 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Neuhaus, A. A., Couch, Y., Sutherland, B. A. & Buchan, A. M. Novel method to study pericyte contractility and responses to ischaemia in vitro using electrical impedance. J. Cereb. Blood Flow Metab. http://dx.doi.org/10.1177/0271678X16659495 (2016).

  77. Peppiatt, C. M., Howarth, C., Mobbs, P. & Attwell, D. Bidirectional control of CNS capillary diameter by pericytes. Nature 443, 700–704 (2006). This important work in brain slices and retina demonstrated pericyte contractility and control of capillary diameter.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yamanishi, S., Katsumura, K., Kobayashi, T. & Puro, D. G. Extracellular lactate as a dynamic vasoactive signal in the rat retinal microvasculature. Am. J. Physiol. Heart Circ. Physiol. 290, H925–H934 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Wei, H. S. et al. Erythrocytes are oxygen-sensing regulators of the cerebral microcirculation. Neuron 91, 851–862 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kawamura, H. et al. Effects of angiotensin II on the pericyte-containing microvasculature of the rat retina. J. Physiol. 561, 671–683 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bandopadhyay, R. et al. Contractile proteins in pericytes at the blood–brain and blood–retinal barriers. J. Neurocytol. 30, 35–44 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Chaigneau, E., Oheim, M., Audinat, E. & Charpak, S. Two-photon imaging of capillary blood flow in olfactory bulb glomeruli. Proc. Natl Acad. Sci. USA 100, 13081–13086 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Stefanovic, B. et al. Functional reactivity of cerebral capillaries. J. Cereb. Blood Flow Metab. 28, 961–972 (2008).

    Article  PubMed  Google Scholar 

  84. Hutchinson, E. B., Stefanovic, B., Koretsky, A. P. & Silva, A. C. Spatial flow-volume dissociation of the cerebral microcirculatory response to mild hypercapnia. Neuroimage 32, 520–530 (2006).

    Article  PubMed  Google Scholar 

  85. Fernández-Klett, F. et al. Early loss of pericytes and perivascular stromal cell-induced scar formation after stroke. J. Cereb. Blood Flow Metab. 33, 428–439 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Yemisci, M. et al. Pericyte contraction induced by oxidative–nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat. Med. 15, 1031–1037 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Kawamura, H. et al. ATP: a vasoactive signal in the pericyte-containing microvasculature of the rat retina. J. Physiol. 551, 787–799 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lacar, B., Herman, P., Hartman, N. W., Hyder, F. & Bordey, A. S phase entry of neural progenitor cells correlates with increased blood flow in the young subventricular zone. PLoS ONE 7, e31960 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hamilton, N. B., Attwell, D. & Hall, C. N. Pericyte-mediated regulation of capillary diameter: a component of neurovascular coupling in health and disease. Front. Neuroenergetics 2, 5 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Toledo, J. B. et al. Clinical and multimodal biomarker correlates of ADNI neuropathological findings. Acta Neuropathol. Commun. 1, 65 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Montagne, A. et al. Blood–brain barrier breakdown in the aging human hippocampus. Neuron 85, 296–302 (2015). This study was the first to demonstrate age-associated BBB breakdown in the hippocampus in the living human brain and accelerated breakdown in humans with MCI.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sweeney, M. D., Sagare, A. P. & Zlokovic, B. V. Cerebrospinal fluid biomarkers of neurovascular dysfunction in mild dementia and Alzheimer's disease. J. Cereb. Blood Flow Metab. 35, 1055–1068 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Arvanitakis, Z., Capuano, A. W., Leurgans, S. E., Bennett, D. A. & Schneider, J. A. Relation of cerebral vessel disease to Alzheimer's disease dementia and cognitive function in elderly people: a cross-sectional study. Lancet Neurol. 15, 934–943 (2016). This large cross-sectional neuropathological study showed that cerebral vessel disease plays a part in dementia that is typically attributed to AD during life.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Iturria-Medina, Y., Sotero, R. C., Toussaint, P. J., Mateos-Pérez, J. M. & Evans, A. C. Alzheimer's Disease Neuroimaging Initiative. Early role of vascular dysregulation on late-onset Alzheimer's disease based on multifactorial data-driven analysis. Nat. Commun. 7, 11934 (2016). This was one of the largest and most comprehensive biomarker studies to show the early role of vascular dysregulation in memory dysfunction in AD prior to cerebral amyloidosis and tau-mediated neurodegeneration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nelson, A. R., Sweeney, M. D., Sagare, A. P. & Zlokovic, B. V. Neurovascular dysfunction and neurodegeneration in dementia and Alzheimer's disease. Biochim. Biophys. Acta 1862, 887–900 (2016).

    Article  CAS  PubMed  Google Scholar 

  96. Wardlaw, J. M. et al. STandards for ReportIng Vascular changes on nEuroimaging (STRIVE v1). Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 12, 822–838 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Montine, T. J. et al. ADRD 2013 Conference Organizing Committee. Recommendations of the Alzheimer's disease-related dementias conference. Neurology 83, 851–860 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Snyder, H. M. et al. Vascular contributions to cognitive impairment and dementia including Alzheimer's disease. Alzheimers Dement. 11, 710–717 (2015).

    Article  PubMed  Google Scholar 

  99. Hachinski, V. World Stroke Organization. Stroke and potentially preventable dementias proclamation: updated World Stroke Day proclamation. Stroke 46, 3039–3040 (2015).

    Article  PubMed  Google Scholar 

  100. Iadecola, C. Cerebrovascular effects of amyloid-ß peptides: mechanisms and implications for Alzheimer's dementia. Cell. Mol. Neurobiol. 23, 681–689 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Zlokovic, B. V. The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron 57, 178–201 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Bell, R. D. et al. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68, 409–427 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sengillo, J. D. et al. Deficiency in mural vascular cells coincides with blood–brain barrier disruption in Alzheimer's disease. Brain Pathol. 23, 303–310 (2013).

    Article  PubMed  Google Scholar 

  104. Halliday, M. R. et al. Accelerated pericyte degeneration and blood-brain barrier breakdown in apolipoprotein E4 carriers with Alzheimer's disease. J. Cereb. Blood Flow Metab. 36, 216–227 (2015).

    Article  CAS  Google Scholar 

  105. Park, L. et al. Age-dependent neurovascular dysfunction and damage in a mouse model of cerebral amyloid angiopathy. Stroke 45, 1815–1821 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sagare, A. P. et al. Pericyte loss influences Alzheimer-like neurodegeneration in mice. Nat. Commun. 4, 2932 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Farkas, E. & Luiten, P. G. Cerebral microvascular pathology in aging and Alzheimer's disease. Prog. Neurobiol. 64, 575–611 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Baloyannis, S. J. & Baloyannis, I. S. The vascular factor in Alzheimer's disease: a study in Golgi technique and electron microscopy. J. Neurol. Sci. 322, 117–121 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. Winkler, E. A. et al. Blood–spinal cord barrier breakdown and pericyte reductions in amyotrophic lateral sclerosis. Acta Neuropathol. 125, 111–120 (2013).

    Article  CAS  PubMed  Google Scholar 

  110. Winkler, E. A., Sengillo, J. D., Bell, R. D., Wang, J. & Zlokovic, B. V. Blood–spinal cord barrier pericyte reductions contribute to increased capillary permeability. J. Cereb. Blood Flow Metab. 32, 1841–1852 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Underly, R. G. et al. Pericytes as inducers of rapid, matrix metalloproteinase-9-dependent capillary damage during ischemia. J. Neurosci. 37, 129–140 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wilhelmus, M. M. M. et al. Lipoprotein receptor-related protein-1 mediates amyloid-ß-mediated cell death of cerebrovascular cells. Am. J. Pathol. 171, 1989–1999 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Faraco, G. & Iadecola, C. Hypertension: a harbinger of stroke and dementia. Hypertension 62, 810–817 (2013).

    Article  CAS  PubMed  Google Scholar 

  114. Capone, C. et al. Central cardiovascular circuits contribute to the neurovascular dysfunction in angiotensin II hypertension. J. Neurosci. 32, 4878–4886 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Faraco, G. et al. Hypertension enhances Aβ-induced neurovascular dysfunction, promotes β-secretase activity, and leads to amyloidogenic processing of APP. J. Cereb. Blood Flow Metab. 36, 241–252 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Capone, C. et al. The cerebrovascular dysfunction induced by slow pressor doses of angiotensin II precedes the development of hypertension. Am. J. Physiol. Heart Circ. Physiol. 300, H397–H407 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. Kazama, K. Angiotensin II impairs neurovascular coupling in neocortex through NADPH oxidase-derived radicals. Circ. Res. 95, 1019–1026 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Girouard, H. Angiotensin II attenuates endothelium-dependent responses in the cerebral microcirculation through Nox-2-derived radicals. Arterioscler. Thromb. Vasc. Biol. 26, 826–832 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Didion, S. P., Sigmund, C. D., Faraci, F. M. & Katusic, Z. S. Impaired endothelial function in transgenic mice expressing both human renin and human angiotensinogen. Stroke 31, 760–765 (2000).

    Article  CAS  PubMed  Google Scholar 

  120. Toth, P. et al. Age-related autoregulatory dysfunction and cerebromicrovascular injury in mice with angiotensin II-induced hypertension. J. Cereb. Blood Flow Metab. 33, 1732–1742 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ghosh, M. et al. Pericytes are involved in the pathogenesis of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Ann. Neurol. 78, 887–900 (2015).

    Article  CAS  PubMed  Google Scholar 

  122. Joutel, A. et al. Cerebrovascular dysfunction and microcirculation rarefaction precede white matter lesions in a mouse genetic model of cerebral ischemic small vessel disease. J. Clin. Invest. 120, 433–445 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Dziewulska, D. & Lewandowska, E. Pericytes as a new target for pathological processes in CADASIL. Neuropathology 32, 515–521 (2012).

    Article  PubMed  Google Scholar 

  124. Lacombe, P., Oligo, C., Domenga, V., Tournier-Lasserve, E. & Joutel, A. Impaired cerebral vasoreactivity in a transgenic mouse model of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy arteriopathy. Stroke 36, 1053–1058 (2005).

    Article  PubMed  Google Scholar 

  125. Bell, R. D. et al. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature 485, 512–516 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wiesmann, M. et al. A dietary treatment improves cerebral blood flow and brain connectivity in aging apoE4 mice. Neural Plast. 2016, 6846721 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Alata, W., Ye, Y., St-Amour, I., Vandal, M. & Calon, F. Human apolipoprotein E ɛ4 expression impairs cerebral vascularization and blood–brain barrier function in mice. J. Cereb. Blood Flow Metab. 35, 86–94 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Thomas, T., Thomas, G., McLendon, C., Sutton, T. & Mullan, M. β-Amyloid-mediated vasoactivity and vascular endothelial damage. Nature 380, 168–171 (1996). This paper was the first to demonstrate Aβ vasoconstrictive properties in the isolated rat aorta.

    Article  CAS  PubMed  Google Scholar 

  129. Zhang, F., Eckman, C., Younkin, S., Hsiao, K. K. & Iadecola, C. Increased susceptibility to ischemic brain damage in transgenic mice overexpressing the amyloid precursor protein. J. Neurosci. 17, 7655–7661 (1997). This study was the first to demonstrate Aβ vasoactive properties on cerebral blood vessels in vivo in transgenic mice overexpressing APP (Swedish mutation).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Iadecola, C. et al. SOD1 rescues cerebral endothelial dysfunction in mice overexpressing amyloid precursor protein. Nat. Neurosci. 2, 157–161 (1999).

    Article  CAS  PubMed  Google Scholar 

  131. Niwa, K. et al. Aβ1-40-related reduction in functional hyperemia in mouse neocortex during somatosensory activation. Proc. Natl Acad. Sci. USA 97, 9735–9740 (2000). This paper was the first to demonstrate altered neurovascular coupling by Aβ.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Deane, R. et al. RAGE mediates amyloid-ß peptide transport across the blood–brain barrier and accumulation in brain. Nat. Med. 9, 907–913 (2003).

    Article  CAS  PubMed  Google Scholar 

  133. Deane, R. et al. A multimodal RAGE-specific inhibitor reduces amyloid β-mediated brain disorder in a mouse model of Alzheimer disease. J. Clin. Invest. 122, 1377–1392 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Park, L. et al. NADPH-oxidase-derived reactive oxygen species mediate the cerebrovascular dysfunction induced by the amyloid ß peptide. J. Neurosci. 25, 1769–1777 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Park, L. et al. The key role of transient receptor potential melastatin-2 channels in amyloid-β-induced neurovascular dysfunction. Nat. Commun. 5, 5318 (2014).

    Article  CAS  PubMed  Google Scholar 

  136. Park, L. et al. Scavenger receptor CD36 is essential for the cerebrovascular oxidative stress and neurovascular dysfunction induced by amyloid-ß. Proc. Natl Acad. Sci. USA 108, 5063–5068 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Bell, R. D. et al. SRF and myocardin regulate LRP-mediated amyloid-ß clearance in brain vascular cells. Nat. Cell Biol. 11, 143–153 (2009).

    Article  CAS  PubMed  Google Scholar 

  138. Kimbrough, I. F., Robel, S., Roberson, E. D. & Sontheimer, H. Vascular amyloidosis impairs the gliovascular unit in a mouse model of Alzheimer's disease. Brain 138, 3716–3733 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Chow, N. et al. Serum response factor and myocardin mediate arterial hypercontractility and cerebral blood flow dysregulation in Alzheimer's phenotype. Proc. Natl Acad. Sci. USA 104, 823–828 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Wiesmann, M. et al. Angiotensin II, hypertension, and angiotensin II receptor antagonism: roles in the behavioural and brain pathology of a mouse model of Alzheimer's disease. J. Cereb. Blood Flow Metab. http://dx.doi.org/10.1177/0271678X16667364 (2016).

  141. Okamoto, Y. et al. Cerebral hypoperfusion accelerates cerebral amyloid angiopathy and promotes cortical microinfarcts. Acta Neuropathol. 123, 381–394 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Milner, E. et al. Cerebral amyloid angiopathy increases susceptibility to infarction after focal cerebral ischemia in Tg2576 mice. Stroke 45, 3064–3069 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Toda, N. & Okamura, T. Hyperhomocysteinemia impairs regional blood flow: involvements of endothelial and neuronal nitric oxide. Pflugers Arch. 468, 1517–1525 (2016).

    Article  CAS  PubMed  Google Scholar 

  144. Sudduth, T. L., Powell, D. K., Smith, C. D., Greenstein, A. & Wilcock, D. M. Induction of hyperhomocysteinemia models vascular dementia by induction of cerebral microhemorrhages and neuroinflammation. J. Cereb. Blood Flow Metab. 33, 708–715 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Sudduth, T. L., Weekman, E. M., Brothers, H. M., Braun, K. & Wilcock, D. M. β-Amyloid deposition is shifted to the vasculature and memory impairment is exacerbated when hyperhomocysteinemia is induced in APP/PS1 transgenic mice. Alzheimers Res. Ther. 6, 32 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Den Abeelen, A. S., Lagro, J., van Beek, A. H. & Claassen, J. A. Impaired cerebral autoregulation and vasomotor reactivity in sporadic Alzheimer's disease. Curr. Alzheimer Res. 11, 11–17 (2014).

    Article  CAS  PubMed  Google Scholar 

  147. Suri, S. et al. Reduced cerebrovascular reactivity in young adults carrying the APOE ɛ4 allele. Alzheimers Dement. 11, 648–657.e1 (2015).

    Article  PubMed  Google Scholar 

  148. Hajjar, I., Sorond, F. & Lipsitz, L. A. Apolipoprotein E, carbon dioxide vasoreactivity, and cognition in older adults: effect of hypertension. J. Am. Geriatr. Soc. 63, 276–281 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Yezhuvath, U. S. et al. Forebrain-dominant deficit in cerebrovascular reactivity in Alzheimer's disease. Neurobiol. Aging 33, 75–82 (2012).

    Article  PubMed  Google Scholar 

  150. Ruitenberg, A. et al. Cerebral hypoperfusion and clinical onset of dementia: the Rotterdam Study. Ann. Neurol. 57, 789–794 (2005). This large population-based study showed that diminished CBF precedes cognitive decline and hippocampal atrophy.

    Article  PubMed  Google Scholar 

  151. Kogure, D. et al. Longitudinal evaluation of early Alzheimer's disease using brain perfusion SPECT. J. Nucl. Med. 41, 1155–1162 (2000).

    CAS  PubMed  Google Scholar 

  152. Minoshima, S. et al. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease. Ann. Neurol. 42, 85–94 (1997).

    Article  CAS  PubMed  Google Scholar 

  153. Hirao, K. et al. Functional interactions between entorhinal cortex and posterior cingulate cortex at the very early stage of Alzheimer's disease using brain perfusion single-photon emission computed tomography. Nucl. Med. Commun. 27, 151–156 (2006).

    Article  PubMed  Google Scholar 

  154. Yuan, B. et al. Differential effects of APOE genotypes on the anterior and posterior subnetworks of default mode network in amnestic mild cognitive impairment. J. Alzheimers Dis. 54, 1409–1423 (2016).

    Article  CAS  PubMed  Google Scholar 

  155. Matsuda, H. et al. Longitudinal evaluation of both morphologic and functional changes in the same individuals with Alzheimer's disease. J. Nucl. Med. 43, 304–311 (2002).

    PubMed  Google Scholar 

  156. Daulatzai, M. A. Cerebral hypoperfusion and glucose hypometabolism: key pathophysiological modulators promote neurodegeneration, cognitive impairment, and Alzheimer's disease. J. Neurosci. Res. 95, 943–972 (2016).

    Article  CAS  PubMed  Google Scholar 

  157. Mosconi, L. et al. Functional interactions of the entorhinal cortex: an 18F-FDG PET study on normal aging and Alzheimer's disease. J. Nucl. Med. 45, 382–392 (2004).

    PubMed  Google Scholar 

  158. Hirao, K. et al. The prediction of rapid conversion to Alzheimer's disease in mild cognitive impairment using regional cerebral blood flow SPECT. Neuroimage 28, 1014–1021 (2005).

    Article  PubMed  Google Scholar 

  159. Borroni, B. et al. Combined 99mTc-ECD SPECT and neuropsychological studies in MCI for the assessment of conversion to AD. Neurobiol. Aging 27, 24–31 (2006).

    Article  CAS  PubMed  Google Scholar 

  160. Thambisetty, M., Beason-Held, L., An, Y., Kraut, M. A. & Resnick, S. M. APOE ɛ4 genotype and longitudinal changes in cerebral blood flow in normal aging. Arch. Neurol. 67, 93–98 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Reiman, E. M. et al. Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer's dementia. Proc. Natl Acad. Sci. USA 101, 284–289 (2004).

    Article  CAS  PubMed  Google Scholar 

  162. Chen, Y. et al. Voxel-level comparison of arterial spin-labeled perfusion MRI and FDG-PET in Alzheimer disease. Neurology 77, 1977–1985 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Michels, L. et al. Arterial spin labeling imaging reveals widespread and Aβ-independent reductions in cerebral blood flow in elderly apolipoprotein epsilon-4 carriers. J. Cereb. Blood Flow Metab. 36, 581–595 (2016).

    Article  CAS  PubMed  Google Scholar 

  164. Wirth, M. et al. Divergent regional patterns of cerebral hypoperfusion and gray matter atrophy in mild cognitive impairment patients. J. Cereb. Blood Flow Metab. 37, 814–824 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Small, S. A., Perera, G. M., DeLaPaz, R., Mayeux, R. & Stern, Y. Differential regional dysfunction of the hippocampal formation among elderly with memory decline and Alzheimer's disease. Ann. Neurol. 45, 466–472 (1999).

    Article  CAS  PubMed  Google Scholar 

  166. Sperling, R. A. et al. fMRI studies of associative encoding in young and elderly controls and mild Alzheimer's disease. J. Neurol. Neurosurg. Psychiatry 74, 44–50 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Smith, C. D. et al. Altered brain activation in cognitively intact individuals at high risk for Alzheimer's disease. Neurology 53, 1391–1396 (1999).

    Article  CAS  PubMed  Google Scholar 

  168. Dumas, A. et al. Functional magnetic resonance imaging detection of vascular reactivity in cerebral amyloid angiopathy. Ann. Neurol. 72, 76–81 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Kim, S.-G. & Ogawa, S. Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals. J. Cereb. Blood Flow Metab. 32, 1188–1206 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Dennis, E. L. & Thompson, P. M. Functional brain connectivity using fMRI in aging and Alzheimer's disease. Neuropsychol. Rev. 24, 49–62 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Raichle, M. E. et al. A default mode of brain function. Proc. Natl Acad. Sci. USA 98, 676–682 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Greicius, M. D., Srivastava, G., Reiss, A. L. & Menon, V. Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc. Natl Acad. Sci. USA 101, 4637–4642 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Wang, L. et al. Changes in hippocampal connectivity in the early stages of Alzheimer's disease: evidence from resting state fMRI. Neuroimage 31, 496–504 (2006).

    Article  PubMed  Google Scholar 

  174. Chhatwal, J. P. et al. Impaired default network functional connectivity in autosomal dominant Alzheimer disease. Neurology 81, 736–744 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Thomas, J. B. et al. Functional connectivity in autosomal dominant and late-onset Alzheimer disease. JAMA Neurol. 71, 1111–1122 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Sheline, Y. I. et al. APOE4 allele disrupts resting state fMRI connectivity in the absence of amyloid plaques or decreased CSF Aβ42. J. Neurosci. 30, 17035–17040 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Zimmerman, K. W. Der feinere Bau der Blutkapillaren [German]. Z. Anat. Entwicklungsgesch. 68, 29–110 (1923).

    Article  Google Scholar 

  178. Winkler, E. A., Sagare, A. P. & Zlokovic, B. V. The pericyte: a forgotten cell type with important implications for Alzheimer's disease? Brain Pathol. 24, 371–386 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Nehls, V. & Drenckhahn, D. Heterogeneity of microvascular pericytes for smooth muscle type alpha-actin. J. Cell Biol. 113, 147–154 (1991).

    Article  CAS  PubMed  Google Scholar 

  180. Montagne, A. et al. Brain imaging of neurovascular dysfunction in Alzheimer's disease. Acta Neuropathol. 131, 687–707 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Starr, J. M., Farrall, A. J., Armitage, P., McGurn, B. & Wardlaw, J. Blood–brain barrier permeability in Alzheimer's disease: a case-control MRI study. Psychiatry Res. 171, 232–241 (2009).

    Article  CAS  PubMed  Google Scholar 

  182. Van de Haar, H. J. et al. Blood–brain barrier leakage in patients with early Alzheimer disease. Radiology 281, 527–535 (2016).

    Article  PubMed  Google Scholar 

  183. Taheri, S. et al. Blood–brain barrier permeability abnormalities in vascular cognitive impairment. Stroke 42, 2158–2163 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Nir, T. M. et al. Effectiveness of regional DTI measures in distinguishing Alzheimer's disease, MCI, and normal aging. Neuroimage Clin. 3, 180–195 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work of B.V.Z. is supported by the US National Institutes of Health (grants R01AG023084, R01NS090904, R01NS034467, R01AG039452, R01NS100459, P01AG052350) and Cure for Alzheimer's fund. The authors thank M. Sweeney for careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berislav V. Zlokovic.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Neurovascular coupling

The dynamic functional change in cerebral blood flow that occurs in response to local neuronal activity.

Functional hyperaemia

The increase in cerebral blood flow that occurs in response to brain activity.

Neurovascular unit

(NVU). A functionally integrated group of different cell types in the brain composed of vascular cells (endothelial cells, vascular smooth muscle cells and pericytes), glia (astrocytes, microglia and oligodendrocytes) and neurons.

Functional connectivity

The temporal dependency of neuronal activation patterns of anatomically separated brain regions determined by measuring the level of co-activation of resting-state MRI time series between brain regions.

Cytochrome P450

Enzymes belonging to a superfamily of haemoproteins that contain haem as a cofactor.

Cyclooxygenase 1

(COX1). An enzyme, also known as prostaglandin-endoperoxide synthase 1, responsible for the formation of prostanoids and prostaglandins.

Mechanical shear stress

The physical stress caused to endothelial cells by the flow of blood through vessels.

Hypercapnia

A condition of abnormally increased carbon dioxide levels in the blood.

Vasculotropic

Affecting, acting upon or attracted to blood vessels

Microhaemorrhages

Small focal cerebral microbleeds in the brain, which can be visualized by MRI sequences.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kisler, K., Nelson, A., Montagne, A. et al. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat Rev Neurosci 18, 419–434 (2017). https://doi.org/10.1038/nrn.2017.48

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn.2017.48

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing