Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanistic basis of MAGUK-organized complexes in synaptic development and signalling

Key Points

  • The postsynaptic density (PSD) is a large, dynamic protein assembly that orchestrates the densities and activities of both AMPA-type and NMDA-type glutamate receptors in excitatory synapses.

  • The membrane-associated guanylate kinase (MAGUK) family of scaffold proteins, including Discs large homologues (DLGs) and membrane-associated guanylate kinase inverted (MAGI) proteins, are key organizers of PSDs. They act as an interface between the upstream membrane-spanning glutamate receptors and cell adhesion proteins and the downstream synapse-associated protein 90/postsynaptic density protein 95 (PSD95)-associated protein (SAPAP)–SRC homology 3 (SH3) and multiple ankyrin repeat domains protein (SHANK) complexes and the cytoskeleton.

  • The guanylate kinase-like (GK) domain of MAGUKs binds to target proteins in a phosphorylation-dependent manner. This phosphorylation-dependent target recognition by MAGUKs suggests that the assembly of PSD is activity-dependent.

  • Each MAGUK contains a highly conserved domain organization with PSD95–DLG1–Zonula occludens 1 (PDZ)–SH3–GK domains arranged in tandem. The PDZ–SH3–GK tandem forms a supramodule allowing the MAGUK scaffolds to bind to target proteins with high specificity as well as to cluster transmembrane ion channels and receptors.

  • Biochemical and structural studies of MAGUKs have offered insights into why mutations affecting genes encoding MAGUKs and their target proteins may alter synaptic protein organization and lead to defects of synaptic development and signalling.

Abstract

Membrane-associated guanylate kinases (MAGUKs) are a family of scaffold proteins that are highly enriched in synapses and are responsible for organizing the numerous protein complexes required for synaptic development and plasticity. Mutations in genes encoding MAGUKs and their interacting proteins can cause a broad spectrum of human psychiatric disorders. Here, we review MAGUK-mediated synaptic protein complex formation and regulation by focusing on findings from recent biochemical and structural investigations. These mechanistic-based studies show that the formation of MAGUK-organized complexes is often directly regulated by protein phosphorylation, suggesting a close connection between neuronal activity and the assembly of dynamic protein complexes in synapses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scaffold protein-mediated protein complex organizations in excitatory synapses.
Figure 2: Domain organization of MAGUKs and their related synaptic proteins.
Figure 3: Regulated PDZ–target interactions.
Figure 4: Mechanistic basis governing the phosphorylation-dependent target binding of MAGUK GK domains.
Figure 5: Formation of the MPP5 PSG supramodule and CRB-CT complex.
Figure 6: Mechanistic basis of possible formations of MAGUK polymers.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Funke, L., Dakoji, S. & Bredt, D. S. Membrane-associated guanylate kinases regulate adhesion and plasticity at cell junctions. Annu. Rev. Biochem. 74, 219–245 (2005).

    CAS  PubMed  Google Scholar 

  2. Oliva, C., Escobedo, P., Astorga, C., Molina, C. & Sierralta, J. Role of the MAGUK protein family in synapse formation and function. Dev. Neurobiol. 72, 57–72 (2012).

    CAS  PubMed  Google Scholar 

  3. Zhu, J., Shang, Y., Chen, J. & Zhang, M. Structure and function of the guanylate kinase-like domain of the MAGUK family scaffold proteins. Front. Biol. 7, 379–396 (2012).

    CAS  Google Scholar 

  4. Feng, W. & Zhang, M. Organization and dynamics of PDZ-domain-related supramodules in the postsynaptic density. Nat. Rev. Neurosci. 10, 87–99 (2009).

    CAS  PubMed  Google Scholar 

  5. Chen, K. & Featherstone, D. E. Pre and postsynaptic roles for Drosophila CASK. Mol. Cell. Neurosci. 48, 171–182 (2011).

    CAS  PubMed  Google Scholar 

  6. Danielson, E. et al. S-SCAM/MAGI-2 is an essential synaptic scaffolding molecule for the GluA2-containing maintenance pool of AMPA receptors. J. Neurosci. 32, 6967–6980 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Zheng, C. Y., Seabold, G. K., Horak, M. & Petralia, R. S. MAGUKs, synaptic development, and synaptic plasticity. Neuroscientist 17, 493–512 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Grant, S. G. Synaptopathies: diseases of the synaptome. Curr. Opin. Neurobiol. 22, 522–529 (2012).

    CAS  PubMed  Google Scholar 

  9. Palay, S. L. Synapses in the central nervous system. J. Biophys. Biochem. Cytol. 2, 193–202 (1956).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Gray, E. G. Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. J. Anat. 93, 420–433 (1959).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Blomberg, F., Cohen, R. S. & Siekevitz, P. The structure of postsynaptic densities isolated from dog cerebral cortex. II. Characterization and arrangement of some of the major proteins within the structure. J. Cell Biol. 74, 204–225 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Carlin, R. K., Grab, D. J., Cohen, R. S. & Siekevitz, P. Isolation and characterization of postsynaptic densities from various brain regions: enrichment of different types of postsynaptic densities. J. Cell Biol. 86, 831–845 (1980).

    CAS  PubMed  Google Scholar 

  13. Cohen, R. S., Blomberg, F., Berzins, K. & Siekevitz, P. The structure of postsynaptic densities isolated from dog cerebral cortex. I. Overall morphology and protein composition. J. Cell Biol. 74, 181–203 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Harris, K. M. & Weinberg, R. J. Ultrastructure of synapses in the mammalian brain. Cold Spring Harb. Perspect. Biol. 4, pii: a005587 (2012).

    Google Scholar 

  15. Chen, X. et al. Organization of the core structure of the postsynaptic density. Proc. Natl Acad. Sci. USA 105, 4453–4458 (2008).

    CAS  PubMed  Google Scholar 

  16. Sheng, M. & Hoogenraad, C. C. The postsynaptic architecture of excitatory synapses: a more quantitative view. Annu. Rev. Biochem. 76, 823–847 (2007).

    CAS  PubMed  Google Scholar 

  17. Triller, A. & Choquet, D. New concepts in synaptic biology derived from single-molecule imaging. Neuron 59, 359–374 (2008).

    CAS  PubMed  Google Scholar 

  18. Dani, A., Huang, B., Bergan, J., Dulac, C. & Zhuang, X. Superresolution imaging of chemical synapses in the brain. Neuron 68, 843–856 (2010).This paper reports a systematic three-colour, 3D stochastic optical reconstruction microscopy imaging tool that can determine the spatial organization of sub-synaptic components in both pre- and post-synapses with nanometre precision.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. O'Rourke, N. A., Weiler, N. C., Micheva, K. D. & Smith, S. J. Deep molecular diversity of mammalian synapses: why it matters and how to measure it. Nat. Rev. Neurosci. 13, 365–379 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. MacGillavry, H. D. & Hoogenraad, C. C. The internal architecture of dendritic spines revealed by super-resolution imaging: What did we learn so far? Exp. Cell Res. 335, 180–186 (2015).

    CAS  PubMed  Google Scholar 

  21. Sigrist, S. J. & Sabatini, B. L. Optical super-resolution microscopy in neurobiology. Curr. Opin. Neurobiol. 22, 86–93 (2012).

    CAS  PubMed  Google Scholar 

  22. Maglione, M. & Sigrist, S. J. Seeing the forest tree by tree: super-resolution light microscopy meets the neurosciences. Nat. Neurosci. 16, 790–797 (2013).References 19–22 summarize findings in molecular architecture and the dynamic behaviour of synaptic components from recent super-resolution imaging studies.

    CAS  PubMed  Google Scholar 

  23. Nair, D. et al. Super-resolution imaging reveals that AMPA receptors inside synapses are dynamically organized in nanodomains regulated by PSD95. J. Neurosci. 33, 13204–13224 (2013).This paper shows that, in rat hippocampal neurons, AMPARs are often concentrated into several clusters (the so-called AMPAR nanodomains), each with a width of 70 nm and containing 20 receptors. Moreover, AMPAR nanodomains are often co-clustered with PSD95. The level of PSD95 expression correlates with the AMPAR nanodomain size and neuronal activity.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Cheng, D. et al. Relative and absolute quantification of postsynaptic density proteome isolated from rat forebrain and cerebellum. Mol. Cell. Proteom. 5, 1158–1170 (2006).

    CAS  Google Scholar 

  25. Caroni, P., Donato, F. & Muller, D. Structural plasticity upon learning: regulation and functions. Nat. Rev. Neurosci. 13, 478–490 (2012).

    CAS  PubMed  Google Scholar 

  26. Choquet, D. & Triller, A. The dynamic synapse. Neuron 80, 691–703 (2013).

    CAS  PubMed  Google Scholar 

  27. Bosch, M. et al. Structural and molecular remodeling of dendritic spine substructures during long-term potentiation. Neuron 82, 444–459 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Nishiyama, J. & Yasuda, R. Biochemical computation for spine structural plasticity. Neuron 87, 63–75 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Huganir, R. L. & Nicoll, R. A. AMPARs and synaptic plasticity: the last 25 years. Neuron 80, 704–717 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Fukata, Y. et al. Local palmitoylation cycles define activity-regulated postsynaptic subdomains. J. Cell Biol. 202, 145–161 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. MacGillavry, H. D., Song, Y., Raghavachari, S. & Blanpied, T. A. Nanoscale scaffolding domains within the postsynaptic density concentrate synaptic AMPA receptors. Neuron 78, 615–622 (2013).Together with reference 23, this work demonstrates the critical role of PSD95 in the positioning and clustering of AMPARs.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. de Mendoza, A., Suga, H. & Ruiz-Trillo, I. Evolution of the MAGUK protein gene family in premetazoan lineages. BMC Evol. Biol. 10, 93 (2010).

    PubMed  PubMed Central  Google Scholar 

  33. Woods, D. F., Hough, C., Peel, D., Callaini, G. & Bryant, P. J. Dlg protein is required for junction structure, cell polarity, and proliferation control in Drosophila epithelia. J. Cell Biol. 134, 1469–1482 (1996).

    CAS  PubMed  Google Scholar 

  34. Elias, G. M. & Nicoll, R. A. Synaptic trafficking of glutamate receptors by MAGUK scaffolding proteins. Trends Cell Biol. 17, 343–352 (2007).

    CAS  PubMed  Google Scholar 

  35. Nithianantharajah, J. et al. Synaptic scaffold evolution generated components of vertebrate cognitive complexity. Nat. Neurosci. 16, 16–24 (2013).

    CAS  PubMed  Google Scholar 

  36. Butz, S., Okamoto, M. & Sudhof, T. C. A tripartite protein complex with the potential to couple synaptic vesicle exocytosis to cell adhesion in brain. Cell 94, 773–782 (1998).

    CAS  PubMed  Google Scholar 

  37. Hsueh, Y. P. et al. Direct interaction of CASK/LIN-2 and syndecan heparan sulfate proteoglycan and their overlapping distribution in neuronal synapses. J. Cell Biol. 142, 139–151 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Nagashima, S., Kodaka, M., Iwasa, H. & Hata, Y. MAGI2/S-SCAM outside brain. J. Biochem. 157, 177–184 (2015).

    CAS  PubMed  Google Scholar 

  39. Dudok, J. J., Sanz, A. S., Lundvig, D. M. & Wijnholds, J. MPP3 is required for maintenance of the apical junctional complex, neuronal migration, and stratification in the developing cortex. J. Neurosci. 33, 8518–8527 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Li, Y. et al. Structure of Crumbs tail in complex with the PALS1 PDZ-SH3-GK tandem reveals a highly specific assembly mechanism for the apical Crumbs complex. Proc. Natl Acad. Sci. USA 111, 17444–17449 (2014).This paper shows that the MPP5 PSG forms an integral structural unit in binding to CRB-CT. A structural analysis indicates that the ligand-binding induced domain-swapped homodimer formation of MPP5 PSG may represent a general mode for MAGUKs in organizing large protein complexes in synapses.

    CAS  PubMed  Google Scholar 

  41. Najm, J. et al. Mutations of CASK cause an X-linked brain malformation phenotype with microcephaly and hypoplasia of the brainstem and cerebellum. Nat. Genet. 40, 1065–1067 (2008).

    CAS  PubMed  Google Scholar 

  42. Zhang, M. & Wang, W. Organization of signaling complexes by PDZ-domain scaffold proteins. Acc. Chem. Res. 36, 530–538 (2003).

    CAS  PubMed  Google Scholar 

  43. Hofmann, K., Bucher, P. & Tschopp, J. The CARD domain: a new apoptotic signalling motif. Trends Biochem. Sci. 22, 155–156 (1997).

    CAS  PubMed  Google Scholar 

  44. Sudol, M., Chen, H. I., Bougeret, C., Einbond, A. & Bork, P. Characterization of a novel protein-binding module—the WW domain. FEBS Lett. 369, 67–71 (1995).

    CAS  PubMed  Google Scholar 

  45. Wei, Z. et al. Liprin-mediated large signaling complex organization revealed by the liprin-α/CASK and liprin-α/liprin-β complex structures. Mol. Cell 43, 586–598 (2011).

    CAS  PubMed  Google Scholar 

  46. Mukherjee, K. et al. CASK functions as a Mg2+-independent neurexin kinase. Cell 133, 328–339 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Xu, W. PSD-95-like membrane associated guanylate kinases (PSD-MAGUKs) and synaptic plasticity. Curr. Opin. Neurobiol. 21, 306–312 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen, X. et al. PSD-95 family MAGUKs are essential for anchoring AMPA and NMDA receptor complexes at the postsynaptic density. Proc. Natl Acad. Sci. USA 112, E6983–E6992 (2015).

    CAS  PubMed  Google Scholar 

  49. Kornau, H. C., Schenker, L. T., Kennedy, M. B. & Seeburg, P. H. Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269, 1737–1740 (1995).

    CAS  PubMed  Google Scholar 

  50. Chetkovich, D. M., Chen, L., Stocker, T. J., Nicoll, R. A. & Bredt, D. S. Phosphorylation of the postsynaptic density-95 (PSD-95)/discs large/zona occludens-1 binding site of stargazin regulates binding to PSD-95 and synaptic targeting of AMPA receptors. J. Neurosci. 22, 5791–5796 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Schnell, E. et al. Direct interactions between PSD-95 and stargazin control synaptic AMPA receptor number. Proc. Natl Acad. Sci. USA 99, 13902–13907 (2002).

    CAS  PubMed  Google Scholar 

  52. Hafner, A. S. et al. Lengthening of the Stargazin cytoplasmic tail increases synaptic transmission by promoting interaction to deeper domains of PSD-95. Neuron 86, 475–489 (2015).

    CAS  PubMed  Google Scholar 

  53. Bats, C., Groc, L. & Choquet, D. The interaction between Stargazin and PSD-95 regulates AMPA receptor surface trafficking. Neuron 53, 719–734 (2007).

    CAS  PubMed  Google Scholar 

  54. Levy, J. M., Chen, X., Reese, T. S. & Nicoll, R. A. Synaptic consolidation normalizes AMPAR quantal size following MAGUK loss. Neuron 87, 534–548 (2015).This paper demonstrates that PSD93, PSD95 and SAP102 are all required for synaptic localization of AMPAR and synaptic activity.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Benson, D. L. & Huntley, G. W. Synapse adhesion: a dynamic equilibrium conferring stability and flexibility. Curr. Opin. Neurobiol. 22, 397–404 (2012).

    CAS  PubMed  Google Scholar 

  56. Thalhammer, A. & Cingolani, L. A. Cell adhesion and homeostatic synaptic plasticity. Neuropharmacology 78, 23–30 (2014).

    CAS  PubMed  Google Scholar 

  57. Gottmann, K. Transsynaptic modulation of the synaptic vesicle cycle by cell-adhesion molecules. J. Neurosci. Res. 86, 223–232 (2008).

    CAS  PubMed  Google Scholar 

  58. Yamagata, M., Sanes, J. R. & Weiner, J. A. Synaptic adhesion molecules. Curr. Opin. Cell Biol. 15, 621–632 (2003).

    CAS  PubMed  Google Scholar 

  59. Takahashi, H. & Craig, A. M. Protein tyrosine phosphatases PTPδ, PTPσ, and LAR: presynaptic hubs for synapse organization. Trends Neurosci. 36, 522–534 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Schreiner, D. et al. Targeted combinatorial alternative splicing generates brain region-specific repertoires of neurexins. Neuron 84, 386–398 (2014).

    CAS  PubMed  Google Scholar 

  61. Treutlein, B., Gokce, O., Quake, S. R. & Sudhof, T. C. Cartography of neurexin alternative splicing mapped by single-molecule long-read mRNA sequencing. Proc. Natl Acad. Sci. USA 111, E1291–1299 (2014).

    CAS  PubMed  Google Scholar 

  62. Arac, D. et al. Structures of neuroligin-1 and the neuroligin-1/neurexin-1 β complex reveal specific protein–protein and protein–Ca2+ interactions. Neuron 56, 992–1003 (2007).

    CAS  PubMed  Google Scholar 

  63. Iida, J., Hirabayashi, S., Sato, Y. & Hata, Y. Synaptic scaffolding molecule is involved in the synaptic clustering of neuroligin. Mol. Cell. Neurosci. 27, 497–508 (2004).

    CAS  PubMed  Google Scholar 

  64. Irie, M. et al. Binding of neuroligins to PSD-95. Science 277, 1511–1515 (1997).

    CAS  PubMed  Google Scholar 

  65. Sudhof, T. C. The presynaptic active zone. Neuron 75, 11–25 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Futai, K. et al. Retrograde modulation of presynaptic release probability through signaling mediated by PSD-95-neuroligin. Nat. Neurosci. 10, 186–195 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Wittenmayer, N. et al. Postsynaptic Neuroligin1 regulates presynaptic maturation. Proc. Natl Acad. Sci. USA 106, 13564–13569 (2009).

    CAS  PubMed  Google Scholar 

  68. Hu, Z. et al. Neurexin and neuroligin mediate retrograde synaptic inhibition in C. elegans. Science 337, 980–984 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Froyen, G. et al. Detection of genomic copy number changes in patients with idiopathic mental retardation by high-resolution X-array-CGH: important role for increased gene dosage of XLMR genes. Hum. Mutat. 28, 1034–1042 (2007).

    CAS  PubMed  Google Scholar 

  70. Hayashi, S. et al. The CASK gene harbored in a deletion detected by array-CGH as a potential candidate for a gene causative of X-linked dominant mental retardation. Am. J. Med. Genet. A 146A, 2145–2151 (2008).

    CAS  PubMed  Google Scholar 

  71. Piluso, G. et al. A missense mutation in CASK causes FG syndrome in an Italian family. Am. J. Hum. Genet. 84, 162–177 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Tarpey, P. S. et al. A systematic, large-scale resequencing screen of X-chromosome coding exons in mental retardation. Nat. Genet. 41, 535–543 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Arking, D. E. et al. A common genetic variant in the neurexin superfamily member CNTNAP2 increases familial risk of autism. Am. J. Hum. Genet. 82, 160–164 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Sun, C. et al. Identification and functional characterization of rare mutations of the neuroligin-2 gene (NLGN2) associated with schizophrenia. Hum. Mol. Genet. 20, 3042–3051 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Laumonnier, F. et al. X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family. Am. J. Hum. Genet. 74, 552–557 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Glessner, J. T. et al. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature 459, 569–573 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Kim, J. H., Liao, D., Lau, L. F. & Huganir, R. L. SynGAP: a synaptic RasGAP that associates with the PSD-95/SAP90 protein family. Neuron 20, 683–691 (1998).

    CAS  PubMed  Google Scholar 

  78. Clement, J. P. et al. Pathogenic SYNGAP1 mutations impair cognitive development by disrupting maturation of dendritic spine synapses. Cell 151, 709–723 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Berryer, M. H. et al. Mutations in SYNGAP1 cause intellectual disability, autism, and a specific form of epilepsy by inducing haploinsufficiency. Hum. Mutat. 34, 385–394 (2013).

    CAS  PubMed  Google Scholar 

  80. Hamdan, F. F. et al. Mutations in SYNGAP1 in autosomal nonsyndromic mental retardation. N. Engl. J. Med. 360, 599–605 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Parker, M. J. et al. De novo, heterozygous, loss-of-function mutations in SYNGAP1 cause a syndromic form of intellectual disability. Am. J. Med. Genet. A 167A, 2231–2237 (2015).

    PubMed  Google Scholar 

  82. Araki, Y., Zeng, M., Zhang, M. & Huganir, R. L. Rapid dispersion of SynGAP from synaptic spines triggers AMPA receptor insertion and spine enlargement during LTP. Neuron 85, 173–189 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Penzes, P. et al. The neuronal Rho-GEF Kalirin-7 interacts with PDZ domain-containing proteins and regulates dendritic morphogenesis. Neuron 29, 229–242 (2001).

    CAS  PubMed  Google Scholar 

  84. Ma, X. M. et al. Kalirin-7 is required for synaptic structure and function. J. Neurosci. 28, 12368–12382 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Hotulainen, P. & Hoogenraad, C. C. Actin in dendritic spines: connecting dynamics to function. J. Cell Biol. 189, 619–629 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Frost, N. A., Kerr, J. M., Lu, H. E. & Blanpied, T. A. A network of networks: cytoskeletal control of compartmentalized function within dendritic spines. Curr. Opin. Neurobiol. 20, 578–587 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Bosch, M. & Hayashi, Y. Structural plasticity of dendritic spines. Curr. Opin. Neurobiol. 22, 383–388 (2012).

    CAS  PubMed  Google Scholar 

  88. Urban, N. T., Willig, K. I., Hell, S. W. & Nagerl, U. V. STED nanoscopy of actin dynamics in synapses deep inside living brain slices. Biophys. J. 101, 1277–1284 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Chazeau, A. et al. Nanoscale segregation of actin nucleation and elongation factors determines dendritic spine protrusion. EMBO J. 33, 2745–2764 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Kim, E. et al. GKAP, a novel synaptic protein that interacts with the guanylate kinase-like domain of the PSD-95/SAP90 family of channel clustering molecules. J. Cell Biol. 136, 669–678 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhu, J. et al. Guanylate kinase domains of the MAGUK family scaffold proteins as specific phospho-protein-binding modules. EMBO J. 30, 4986–4997 (2011).By determining the structure of the SAP97 SH3–GK in complex with a phospho-LGN peptide, this study, together with that reported in reference 127, revealed that the MAGUK GK domain has evolved from the ancient nucleotide kinase into a phospho-protein-binding domain.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Naisbitt, S. et al. Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron 23, 569–582 (1999).

    CAS  PubMed  Google Scholar 

  93. Du, Y., Weed, S. A., Xiong, W. C., Marshall, T. D. & Parsons, J. T. Identification of a novel cortactin SH3 domain-binding protein and its localization to growth cones of cultured neurons. Mol. Cell. Biol. 18, 5838–5851 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Han, K. et al. SHANK3 overexpression causes manic-like behaviour with unique pharmacogenetic properties. Nature 503, 72–77 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Niethammer, M. et al. CRIPT, a novel postsynaptic protein that binds to the third PDZ domain of PSD-95/SAP90. Neuron 20, 693–707 (1998).

    CAS  PubMed  Google Scholar 

  96. Brenman, J. E. et al. Localization of postsynaptic density-93 to dendritic microtubules and interaction with microtubule-associated protein 1A. J. Neurosci. 18, 8805–8813 (1998).

    CAS  PubMed  Google Scholar 

  97. Peca, J. et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 472, 437–442 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Schmeisser, M. J. et al. Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature 486, 256–260 (2012).

    CAS  PubMed  Google Scholar 

  99. Won, H. et al. Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function. Nature 486, 261–265 (2012).

    CAS  PubMed  Google Scholar 

  100. Welch, J. M. et al. Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice. Nature 448, 894–900 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Ting, J. T., Peca, J. & Feng, G. Functional consequences of mutations in postsynaptic scaffolding proteins and relevance to psychiatric disorders. Annu. Rev. Neurosci. 35, 49–71 (2012).

    CAS  PubMed  Google Scholar 

  102. Ye, F. & Zhang, M. Structures and target recognition modes of PDZ domains: recurring themes and emerging pictures. Biochem. J. 455, 1–14 (2013).This review comprehensively summarizes the mechanistic bases of complex formation between the extended PDZ domain and the extended PBM, as well as the regulated PDZ–target interactions.

    CAS  PubMed  Google Scholar 

  103. Hillier, B. J., Christopherson, K. S., Prehoda, K. E., Bredt, D. S. & Lim, W. A. Unexpected modes of PDZ domain scaffolding revealed by structure of nNOS–syntrophin complex. Science 284, 812–815 (1999).

    CAS  PubMed  Google Scholar 

  104. Wu, H. et al. PDZ domains of Par-3 as potential phosphoinositide signaling integrators. Mol. Cell 28, 886–898 (2007).

    CAS  PubMed  Google Scholar 

  105. Wang, C. K., Pan, L., Chen, J. & Zhang, M. Extensions of PDZ domains as important structural and functional elements. Protein Cell 1, 737–751 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Wang, W., Weng, J., Zhang, X., Liu, M. & Zhang, M. Creating conformational entropy by increasing interdomain mobility in ligand binding regulation: a revisit to N-terminal tandem PDZ domains of PSD-95. J. Am. Chem. Soc. 131, 787–796 (2009).

    CAS  PubMed  Google Scholar 

  107. McCann, J. J., Zheng, L., Chiantia, S. & Bowen, M. E. Domain orientation in the N-terminal PDZ tandem from PSD-95 is maintained in the full-length protein. Structure 19, 810–820 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Eildal, J. N. et al. Rigidified clicked dimeric ligands for studying the dynamics of the PDZ1-2 supramodule of PSD-95. ChemBioChem 16, 64–69 (2015).

    CAS  PubMed  Google Scholar 

  109. Long, J. F. et al. Supramodular structure and synergistic target binding of the N-terminal tandem PDZ domains of PSD-95. J. Mol. Biol. 327, 203–214 (2003).

    CAS  PubMed  Google Scholar 

  110. Bach, A. et al. A high-affinity, dimeric inhibitor of PSD-95 bivalently interacts with PDZ1-2 and protects against ischemic brain damage. Proc. Natl Acad. Sci. USA 109, 3317–3322 (2012).

    CAS  PubMed  Google Scholar 

  111. Sainlos, M. et al. Biomimetic divalent ligands for the acute disruption of synaptic AMPAR stabilization. Nat. Chem. Biol. 7, 81–91 (2011).

    CAS  PubMed  Google Scholar 

  112. Yau, K. W. & Hardie, R. C. Phototransduction motifs and variations. Cell 139, 246–264 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Mishra, P. et al. Dynamic scaffolding in a G protein-coupled signaling system. Cell 131, 80–92 (2007).

    CAS  PubMed  Google Scholar 

  114. Liu, W. et al. The INAD scaffold is a dynamic, redox-regulated modulator of signaling in the Drosophila eye. Cell 145, 1088–1101 (2011).

    CAS  PubMed  Google Scholar 

  115. Petit, C. M., Zhang, J., Sapienza, P. J., Fuentes, E. J. & Lee, A. L. Hidden dynamic allostery in a PDZ domain. Proc. Natl Acad. Sci. USA 106, 18249–18254 (2009).

    CAS  PubMed  Google Scholar 

  116. Bhattacharya, S. et al. Ligand-induced dynamic changes in extended PDZ domains from NHERF1. J. Mol. Biol. 425, 2509–2528 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Peterson, F. C., Penkert, R. R., Volkman, B. F. & Prehoda, K. E. Cdc42 regulates the Par-6 PDZ domain through an allosteric CRIB-PDZ transition. Mol. Cell 13, 665–676 (2004).

    CAS  PubMed  Google Scholar 

  118. Garrard, S. M. et al. Structure of Cdc42 in a complex with the GTPase-binding domain of the cell polarity protein, Par6. EMBO J. 22, 1125–1133 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. McGee, A. W. et al. Structure of the SH3-guanylate kinase module from PSD-95 suggests a mechanism for regulated assembly of MAGUK scaffolding proteins. Mol. Cell 8, 1291–1301 (2001).

    CAS  PubMed  Google Scholar 

  120. Tavares, G. A., Panepucci, E. H. & Brunger, A. T. Structural characterization of the intramolecular interaction between the SH3 and guanylate kinase domains of PSD-95. Mol. Cell 8, 1313–1325 (2001).

    CAS  PubMed  Google Scholar 

  121. Deguchi, M. et al. BEGAIN (brain-enriched guanylate kinase-associated protein), a novel neuronal PSD-95/SAP90-binding protein. J. Biol. Chem. 273, 26269–26272 (1998).

    CAS  PubMed  Google Scholar 

  122. Colledge, M. et al. Targeting of PKA to glutamate receptors through a MAGUK-AKAP complex. Neuron 27, 107–119 (2000).

    CAS  PubMed  Google Scholar 

  123. Pak, D. T., Yang, S., Rudolph-Correia, S., Kim, E. & Sheng, M. Regulation of dendritic spine morphology by SPAR, a PSD-95-associated RapGAP. Neuron 31, 289–303 (2001).

    CAS  PubMed  Google Scholar 

  124. Siegrist, S. E. & Doe, C. Q. Microtubule-induced Pins/Galphai cortical polarity in Drosophila neuroblasts. Cell 123, 1323–1335 (2005).

    CAS  PubMed  Google Scholar 

  125. Johnston, C. A., Hirono, K., Prehoda, K. E. & Doe, C. Q. Identification of an Aurora-A/PinsLINKER/Dlg spindle orientation pathway using induced cell polarity in S2 cells. Cell 138, 1150–1163 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Hao, Y. et al. Par3 controls epithelial spindle orientation by aPKC-mediated phosphorylation of apical Pins. Curr. Biol. 20, 1809–1818 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhu, J. et al. Phosphorylation-dependent interaction between tumor suppressors Dlg and Lgl. Cell Res. 24, 451–463 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Betschinger, J., Mechtler, K. & Knoblich, J. A. The Par complex directs asymmetric cell division by phosphorylating the cytoskeletal protein Lgl. Nature 422, 326–330 (2003).

    CAS  PubMed  Google Scholar 

  129. Plant, P. J. et al. A polarity complex of mPar-6 and atypical PKC binds, phosphorylates and regulates mammalian Lgl. Nat. Cell Biol. 5, 301–308 (2003).

    CAS  PubMed  Google Scholar 

  130. Bilder, D., Li, M. & Perrimon, N. Cooperative regulation of cell polarity and growth by Drosophila tumor suppressors. Science 289, 113–116 (2000).

    CAS  PubMed  Google Scholar 

  131. Hirao, K. et al. A novel multiple PDZ domain-containing molecule interacting with N-methyl-D-aspartate receptors and neuronal cell adhesion proteins. J. Biol. Chem. 273, 21105–21110 (1998).

    CAS  PubMed  Google Scholar 

  132. Trinidad, J. C., Thalhammer, A., Specht, C. G., Schoepfer, R. & Burlingame, A. L. Phosphorylation state of postsynaptic density proteins. J. Neurochem. 92, 1306–1316 (2005).

    CAS  PubMed  Google Scholar 

  133. Wang, C., Shang, Y., Yu, J. & Zhang, M. Substrate recognition mechanism of atypical protein kinase Cs revealed by the structure of PKCiota in complex with a substrate peptide from Par-3. Structure 20, 791–801 (2012).

    CAS  PubMed  Google Scholar 

  134. Daw, M. I. et al. PDZ proteins interacting with C-terminal GluR2/3 are involved in a PKC-dependent regulation of AMPA receptors at hippocampal synapses. Neuron 28, 873–886 (2000).

    CAS  PubMed  Google Scholar 

  135. Xia, J., Chung, H. J., Wihler, C., Huganir, R. L. & Linden, D. J. Cerebellar long-term depression requires PKC-regulated interactions between GluR2/3 and PDZ domain-containing proteins. Neuron 28, 499–510 (2000).

    CAS  PubMed  Google Scholar 

  136. Fong, D. K., Rao, A., Crump, F. T. & Craig, A. M. Rapid synaptic remodeling by protein kinase C: reciprocal translocation of NMDA receptors and calcium/calmodulin-dependent kinase II. J. Neurosci. 22, 2153–2164 (2002).

    CAS  PubMed  Google Scholar 

  137. Boehm, J. et al. Synaptic incorporation of AMPA receptors during LTP is controlled by a PKC phosphorylation site on GluR1. Neuron 51, 213–225 (2006).

    CAS  PubMed  Google Scholar 

  138. Lowenthal, M. S., Markey, S. P. & Dosemeci, A. Quantitative mass spectrometry measurements reveal stoichiometry of principal postsynaptic density proteins. J. Proteome Res. 14, 2528–2538 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. te Velthuis, A. J., Admiraal, J. F. & Bagowski, C. P. Molecular evolution of the MAGUK family in metazoan genomes. BMC Evol. Biol. 7, 129 (2007).

    PubMed  PubMed Central  Google Scholar 

  140. Pan, L., Chen, J., Yu, J., Yu, H. & Zhang, M. The structure of the PDZ3-SH3-GuK tandem of ZO-1 protein suggests a supramodular organization of the membrane-associated guanylate kinase (MAGUK) family scaffold protein core. J. Biol. Chem. 286, 40069–40074 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Nomme, J. et al. The Src homology 3 domain is required for junctional adhesion molecule binding to the third PDZ domain of the scaffolding protein ZO-1. J. Biol. Chem. 286, 43352–43360 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Zhang, J., Lewis, S. M., Kuhlman, B. & Lee, A. L. Supertertiary structure of the MAGUK core from PSD-95. Structure 21, 402–413 (2013).

    CAS  PubMed  Google Scholar 

  143. McCann, J. J. et al. Supertertiary structure of the synaptic MAGuK scaffold proteins is conserved. Proc. Natl Acad. Sci. USA 109, 15775–15780 (2012).

    CAS  PubMed  Google Scholar 

  144. Hata, Y., Butz, S. & Sudhof, T. C. CASK: a novel dlg/PSD95 homolog with an N-terminal calmodulin-dependent protein kinase domain identified by interaction with neurexins. J. Neurosci. 16, 2488–2494 (1996).

    CAS  PubMed  Google Scholar 

  145. Biederer, T. et al. SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science 297, 1525–1531 (2002).

    CAS  PubMed  Google Scholar 

  146. Hara, H. et al. Clustering of CARMA1 through SH3-GUK domain interactions is required for its activation of NF-κB signalling. Nat. Commun. 6, 5555 (2015).

    CAS  PubMed  Google Scholar 

  147. Moog, U. et al. Phenotypic and molecular insights into CASK-related disorders in males. Orphanet J. Rare Dis. 10, 44 (2015).

    PubMed  PubMed Central  Google Scholar 

  148. Elias, G. M. et al. Synapse-specific and developmentally regulated targeting of AMPA receptors by a family of MAGUK scaffolding proteins. Neuron 52, 307–320 (2006).

    CAS  PubMed  Google Scholar 

  149. Schluter, O. M., Xu, W. & Malenka, R. C. Alternative N-terminal domains of PSD-95 and SAP97 govern activity-dependent regulation of synaptic AMPA receptor function. Neuron 51, 99–111 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research in the laboratory of M.Z. has been supported by grants from the Research Grants Council of Hong Kong (663811, 663812 and AoE-M09-12) and a 973 Program grant from the Minister of Science and Technology of China (2014CB910204). J.Z. is supported by a grant from the National Natural Science Foundation of China (31470733). M.Z. is a Kerry Holdings Professor in Science and a Senior Fellow of the Institute for Advanced Study (IAS) at the Hong Kong University of Science and Technology (HKUST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingjie Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Supplementary information

Supplementary information S1 (Figure)

a | The structure of PKC-ι in complex with a substrate peptide derived from PAR3 (PDB code: 4DC2). (PDF 532 kb)

Supplementary information S2 (Figure)

a | Ribbon diagram of the SAP97 SH3–GK tandem (PDB code: 3UAT). (PDF 532 kb)

Glossary

Dendritic remodelling

A biochemical process of dendritic spines in which the actin cytoskeleton undergoes a rapid change in shape and structure in response to various stimuli.

Multivalency effect

Binding avidity enhancement brought by synergistic actions of individual interaction sites between multi-domain scaffold protein and multivalent target interactions.

Allosteric regulation

Binding of an effector molecule to a specific site of a protein causes conformational changes far away from the binding site and thus alters the function of the protein.

Phosphoprotein-binding modules

Protein domains such as the SH2 domain, the GK domain and the FHA domain that can specifically recognize phosphorylated proteins.

Supramodules

Two or more protein modules arranged in tandem in a protein that interact with each other to form a high-order structure with functions distinct from those of the individual or simple sum of the modules.

Domain-swapped dimer

Two identical protein molecules associate to form dimer by exchanging identical structural elements, such that native intramolecular interactions are replaced by their intermolecular counterparts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Shang, Y. & Zhang, M. Mechanistic basis of MAGUK-organized complexes in synaptic development and signalling. Nat Rev Neurosci 17, 209–223 (2016). https://doi.org/10.1038/nrn.2016.18

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn.2016.18

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing