Review Article | Published:

Pathogenic Escherichia coli

Abstract

Few microorganisms are as versatile as Escherichia coli. An important member of the normal intestinal microflora of humans and other mammals, E. coli has also been widely exploited as a cloning host in recombinant DNA technology. But E. coli is more than just a laboratory workhorse or harmless intestinal inhabitant; it can also be a highly versatile, and frequently deadly, pathogen. Several different E. coli strains cause diverse intestinal and extraintestinal diseases by means of virulence factors that affect a wide range of cellular processes.

Key Points

  • In addition to being an important member of the normal intestinal microflora of humans and other mammals, the species Escherichia coli contains many pathotypes that cause a variety of diseases. At least six different pathotypes cause enteric disease, such as diarrhoea or dysentery, and other pathotypes cause extra-intestinal infections, including urinary tract infections and meningitis.

  • Virulence factors of E. coli can affect a wide range of eukaryotic cellular processes, including cell signalling, ion secretion, protein synthesis, mitosis, cytoskeletal function and mitochondrial function.

  • Virulence factors of pathogenic E. coli are frequently encoded on genetic elements such as plasmids, bacteriophage, transposons and pathogenicity islands that can be mobilized into different strains to create novel combinations of virulence factors.

  • The genomic structure of the E. coli pathotypes that have been sequenced so far show a striking mosaic pattern, with 2,000 genes present in 247 islands in one pathotype that are not present in K-12. Up to 0.53 MB of DNA present in K-12 can also be absent from pathogenic E. coli.

  • Genes that encode virulence factors of pathogenic E. coli are regulated by both pathotype-specific regulators that are absent from commensal E. coli, and by 'housekeeping' regulators that are present in commensal E. coli.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Sweeney, N. J. et al. The Escherichia coli K-12 gntP gene allows E. coli F-18 to occupy a distinct nutritional niche in the streptomycin-treated mouse large intestine. Infect. Immun. 64, 3497–3503 (1996).

  2. 2

    Nataro, J. P. & Kaper, J. B. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 11, 142–201 (1998). A comprehensive review of the pathogenesis, epidemiology, diagnosis and clinical aspects of diarrhoeagenic E. coli.

  3. 3

    Russo, T. A. & Johnson, J. R. Proposal for a new inclusive designation for extraintestinal pathogenic isolates of Escherichia coli: ExPEC. J. Infect. Dis. 181, 1753–1754 (2000).

  4. 4

    Whittam, T. S. in Escherichia coli and Salmonella (eds Neidhardt, F. C. et al.) 2708–2720 (ASM Press, Washington DC, USA, 1996).

  5. 5

    Cassels, F. J. & Wolf, M. K. Colonization factors of diarrheagenic E. coli and their intestinal receptors. J. Ind. Microbiol. 15, 214–226 (1995).

  6. 6

    Keller, R. et al. Afa, a diffuse adherence fibrillar adhesin associated with enteropathogenic Escherichia coli. Infect. Immun. 70, 2681–2689 (2002).

  7. 7

    Tieng, V. et al. Binding of Escherichia coli adhesin AfaE to CD55 triggers cell-surface expression of the MHC class I-related molecule MICA. Proc. Natl Acad. Sci. USA 99, 2977–2982 (2002).

  8. 8

    Goldberg, M. B. & Theriot, J. A. Shigella flexneri surface protein IcsA is sufficient to direct actin-based motility. Proc. Natl Acad. Sci. USA 92, 6572–6576 (1995).

  9. 9

    Tapping, R. I., Akashi, S., Miyake, K., Godowski, P. J. & Tobias, P. S. Toll-like receptor 4, but not toll-like receptor 2, is a signaling receptor for Escherichia and Salmonella lipopolysaccharides. J. Immunol. 165, 5780–5787 (2000).

  10. 10

    Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103 (2001).

  11. 11

    Sears, C. L. & Kaper, J. B. Enteric bacterial toxins: mechanisms of action and linkage to intestinal secretion. Microbiol. Rev. 60, 167–215 (1996).

  12. 12

    Melton-Celsa, A. R. & O'Brien, A. D. in Escherichia coli O157:H7 and Other Shiga Toxin-Producing E. coli Strains (eds Kaper, J. B. & O'Brien, A. D.) 121–128 (ASM Press, Washington DC, USA, 1998).

  13. 13

    De Rycke, J. & Oswald, E. Cytolethal distending toxin (CDT): a bacterial weapon to control host cell proliferation? FEMS Microbiol Lett. 203, 141–148 (2001).

  14. 14

    Marches, O. et al. Enteropathogenic and enterohaemorrhagic Eschericha coli deliver a novel effector called Cif, which blocks cell cycle G2/M transition. Mol. Microbiol 50, 1553–1567 (2003).

  15. 15

    Lerm, M. et al. Deamidation of Cdc42 and Rac by Escherichia coli cytotoxic necrotizing factor 1: activation of c-Jun N-terminal kinase in HeLa cells. Infect. Immun. 67, 496–503 (1999).

  16. 16

    Kenny, B. et al. Co-ordinate regulation of distinct host cell signalling pathways by multifunctional enteropathogenic Escherichia coli effector molecules. Mol. Microbiol. 44, 1095–1107 (2002).

  17. 17

    Tauschek, M., Gorrell, R. J., Strugnell, R. A. & Robins-Browne, R. M. Identification of a protein secretory pathway for the secretion of heat-labile enterotoxin by an enterotoxigenic strain of Escherichia coli. Proc. Natl Acad. Sci. USA 99, 7066–7071 (2002).

  18. 18

    Henderson, I. R., Navarro-Garcia, F. & Nataro, J. P. The great escape: structure and function of the autotransporter proteins. Trends Microbiol. 6, 370–378 (1998).

  19. 19

    Hueck, C. J. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62, 379–433 (1998).

  20. 20

    Balakrishnan, L., Hughes, C. & Koronakis, V. Substrate-triggered recruitment of the TolC channel-tunnel during type I export of hemolysin by Escherichia coli. J. Mol. Biol. 313, 501–510 (2001).

  21. 21

    McDaniel, T. K., Jarvis, K. G., Donnenberg, M. S. & Kaper, J. B. A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proc. Natl Acad. Sci. USA 92, 1664–1668 (1995). The first description of a pathogenicity island in enteric E. coli pathotypes.

  22. 22

    Jerse, A. E., Yu, J., Tall, B. D. & Kaper, J. B. A genetic locus of enteropathogenic Escherichia coli necessary for the production of attaching and effacing lesions on tissue culture cells. Proc. Natl Acad. Sci. USA 87, 7839–7843 (1990).

  23. 23

    Higgins, L. M. et al. Role of bacterial intimin in colonic hyperplasia and inflammation. Science 285, 588–591 (1999).

  24. 24

    Kenny, B. et al. Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91, 511–520 (1997). The first report of a bacterium translocating its receptor into mammalian cells by a type III secretion system.

  25. 25

    Muza-Moons, M. M., Koutsouris, A. & Hecht, G. Disruption of cell polarity by enteropathogenic Escherichia coli enables basolateral membrane proteins to migrate apically and to potentiate physiological consequences. Infect. Immun. 71, 7069–7078 (2003).

  26. 26

    Sinclair, J. F. & O'Brien, A. D. Cell surface-localized nucleolin is a eukaryotic receptor for the adhesin intimin-γ of enterohemorrhagic Escherichia coli O157:H7. J. Biol. Chem. 277, 2876–2885 (2002).

  27. 27

    Kalman, D. et al. Enteropathogenic E. coli acts through WASP and Arp2/3 complex to form actin pedestals. Nature Cell Biol. 1, 389–391 (1999).

  28. 28

    Campellone, K. G. & Leong, J. M. Tails of two Tirs: actin pedestal formation by enteropathogenic E. coli and enterohemorrhagic E. coli O157:H7. Curr. Opin. Microbiol. 6, 82–90 (2003).

  29. 29

    Vallance, B. A. & Finlay, B. B. Exploitation of host cells by enteropathogenic Escherichia coli. Proc. Natl Acad. Sci. USA 97, 8799–8806 (2000).

  30. 30

    Sanger, J. M., Chang, R., Ashton, F., Kaper, J. B. & Sanger, J. W. Novel form of actin-based motility transports bacteria on the surface of infected cells. Cell Motil. Cytoskeleton 34, 279–287 (1996).

  31. 31

    Crane, J. K., McNamara, B. P. & Donnenberg, M. S. Role of EspF in host cell death induced by enteropathogenic Escherichia coli. Cell Microbiol. 3, 197–211 (2001).

  32. 32

    McNamara, B. P. et al. Translocated EspF protein from enteropathogenic Escherichia coli disrupts host intestinal barrier function. J. Clin. Invest. 107, 621–629 (2001).

  33. 33

    Klapproth, J. M. et al. A large toxin from pathogenic Escherichia coli strains that inhibits lymphocyte activation. Infect. Immun. 68, 2148–2155 (2000).

  34. 34

    Nicholls, L., Grant, T. H. & Robins-Browne, R. M. Identification of a novel genetic locus that is required for in vitro adhesion of a clinical isolate of enterohaemorrhagic Escherichia coli to epithelial cells. Mol. Microbiol. 35, 275–288 (2000).

  35. 35

    Tobe, T. et al. Complete DNA sequence and structural analysis of the enteropathogenic Escherichia coli adherence factor plasmid. Infect. Immun. 67, 5455–5462 (1999).

  36. 36

    Girón, J. A., Ho, A. S. Y. & Schoolnik, G. K. An inducible bundle-forming pilus of enteropathogenic Escherichia coli. Science 254, 710–713 (1991).

  37. 37

    Trabulsi, L. R., Keller, R. & Tardelli Gomes, T. A. Typical and atypical enteropathogenic Escherichia coli. Emerg. Infect. Dis. 8, 508–513 (2002).

  38. 38

    Hecht, G. Microbes and microbial toxins: paradigms for microbial–mucosal interactions. VII. Enteropathogenic Escherichia coli: physiological alterations from an extracellular position. Am. J. Physiol Gastrointest. Liver Physiol. 281, G1–G7 (2001).

  39. 39

    Frankel, G. et al. Enteropathogenic and enterohaemorrhagic Escherichia coli: more subversive elements. Mol. Microbiol. 30, 911–921 (1998).

  40. 40

    Kenny, B. Mechanism of action of EPEC type III effector molecules. Int. J. Med. Microbiol. 291, 469–477 (2002).

  41. 41

    Hecht, G. et al. Pathogenic Escherichia coli increase Cl secretion from intestinal epithelia by upregulating galanin-1 receptor expression. J. Clin. Invest. 104, 253–262 (1999).

  42. 42

    Varma, J. K. et al. An outbreak of Escherichia coli O157 infection following exposure to a contaminated building. JAMA 290, 2709–2712 (2003).

  43. 43

    Andreoli, S. P., Trachtman, H., Acheson, D. W., Siegler, R. L. & Obrig, T. G. Hemolytic uremic syndrome: epidemiology, pathophysiology, and therapy. Pediatr. Nephrol. 17, 293–298 (2002).

  44. 44

    Jones, N. L. et al. Escherichia coli Shiga toxins induce apoptosis in epithelial cells that is regulated by the Bcl-2 family. Am. J. Physiol. Gastrointest. Liver Physiol. 278, G811–G819 (2000).

  45. 45

    Reid, S. D., Herbelin, C. J., Bumbaugh, A. C., Selander, R. K. & Whittam, T. S. Parallel evolution of virulence in pathogenic Escherichia coli. Nature 406, 64–67 (2000).

  46. 46

    Tatsuno, I. et al. toxB gene on pO157 of enterohemorrhagic Escherichia coli O157:H7 is required for full epithelial cell adherence phenotype. Infect. Immun. 69, 6660–6669 (2001).

  47. 47

    Burland, V. et al. The complete DNA sequence and analysis of the large virulence plasmid of Escherichia coli O157:H7. Nucleic Acids Res. 26, 4196–4204 (1998).

  48. 48

    Lathem, W. W. et al. StcE, a metalloprotease secreted by Escherichia coli O157:H7, specifically cleaves C1 esterase inhibitor. Mol. Microbiol. 45, 277–288 (2002).

  49. 49

    Perna, N. T. et al. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409, 529–533 (2001). The first reported genome sequence for a pathogenic E. coli strain.

  50. 50

    Heimer, S. R. et al. Urease of enterohemorrhagic Escherichia coli: evidence for regulation by fur and a trans-acting factor. Infect. Immun. 70, 1027–1031 (2002).

  51. 51

    Wolf, M. K. Occurrence, distribution, and associations of O and H serogroups, colonization factor antigens, and toxins of enterotoxigenic Escherichia coli. Clin. Microbiol. Rev. 10, 569–584 (1997).

  52. 52

    Spangler, B. D. Structure and function of cholera toxin and the related Escherichia coli heat-labile enterotoxin. Microbiol. Rev. 56, 622–647 (1992).

  53. 53

    Pizza, M. et al. Mucosal vaccines: non-toxic derivatives of LT and CT as mucosal adjuvants. Vaccine 19, 2534–2541 (2001).

  54. 54

    Currie, M. G. et al. Guanylin: an endogenous activator of intestinal guanylate cyclase. Proc. Natl Acad. Sci. USA 89, 947–951 (1992). This paper suggests that STa evolved as a molecular mimic of an endogenous ligand. This model is necessary, not only to understand ETEC pathogenesis and evolution, but also to provide a context for future studies of microbial evolution.

  55. 55

    Dubreuil, J. D. Escherichia coli STb enterotoxin. Microbiology 143, 1783–1795 (1997).

  56. 56

    Pitari, G. M. et al. Bacterial enterotoxins are associated with resistance to colon cancer. Proc. Natl Acad. Sci. USA 100, 2695–2699 (2003).

  57. 57

    Nataro, J. P., Steiner, T. S. & Guerrant, R. L. Enteroaggregative Escherichia coli. Emerg. Infect. Dis. 4, 251–261 (1998).

  58. 58

    Hicks, S., Candy, D. C. A. & Phillips, A. D. Adhesion of enteroaggregative Escherichia coli to pediatric intestinal mucosa in vitro. Infect. Immun. 64, 4751–4760 (1996).

  59. 59

    Vial, P. A. et al. Characterization of enteroadherent-aggregative Escherichia coli, a putative agent of diarrheal disease. J. Infect. Dis. 158, 70–79 (1988).

  60. 60

    Benjamin, P., Federman, M. & Wanke, C. A. Characterization of an invasive phenotype associated with enteroaggregative Escherichia coli. Infect. Immun. 63, 3417–3421 (1995).

  61. 61

    Abe, C. M., Knutton, S., Pedroso, M. Z., Freymuller, E. & Gomes, T. A. An enteroaggregative Escherichia coli strain of serotype O111:H12 damages and invades cultured T84 cells and human colonic mucosa. FEMS Microbiol. Lett. 203, 199–205 (2001).

  62. 62

    Czeczulin, J. R. et al. Aggregative adherence fimbria II, a second fimbrial antigen mediating aggregative adherence in enteroaggregative Escherichia coli. Infect. Immun. 65, 4135–4145 (1997).

  63. 63

    Nataro, J. P. et al. Aggregative adherence fimbriae I of enteroaggregative Escherichia coli mediate adherence to HEp-2 cells and hemagglutination of human erythrocytes. Infect. Immun. 60, 2297–2304 (1992).

  64. 64

    Nataro, J. P., Yikang, D., Yingkang, D. & Walker, K. AggR, a transcriptional activator of aggregative adherence fimbria I expression in enteroaggregative Escherichia coli. J. Bacteriol. 176, 4691–4699 (1994). Describes the emergence of AggR as a global regulator of virulence genes in EAEC

  65. 65

    Sheikh, J. et al. A novel dispersin protein in enteroaggregative Escherichia coli. J. Clin. Invest. 110, 1329–1337 (2002).

  66. 66

    Steiner, T. S., Nataro, J. P., Poteet-Smith, C. E., Smith, J. A. & Guerrant, R. L. Enteroaggregative Escherichia coli expresses a novel flagellin that causes IL-8 release from intestinal epithelial cells. J. Clin. Invest 105, 1769–1777 (2000). The pathogenesis of EAEC is not completely understood, but inflammation might be an important component.

  67. 67

    Henderson, I. R., Czeczulin, J., Eslava, C., Noriega, F. & Nataro, J. P. Characterization of Pic, a secreted protease of Shigella flexneri and enteroaggregative Escherichia coli. Infect. Immun. 67, 5587–5596 (1999).

  68. 68

    Noriega, F. R., Liao, F. M., Formal, S. B., Fasano, A. & Levine, M. M. Prevalence of Shigella enterotoxin 1 among Shigella clinical isolates of diverse serotypes. J. Infect. Dis. 172, 1408–1410 (1995).

  69. 69

    Savarino, S. J. et al. Enteroaggregative Escherichia coli heat-stable enterotoxin 1 represents another subfamily of E. coli heat-stable toxin. Proc. Natl Acad. Sci. USA 90, 3093–3097 (1993).

  70. 70

    Menard, L. P. & Dubreuil, J. D. Enteroaggregative Escherichia coli heat-stable enterotoxin 1 (EAST1): a new toxin with an old twist. Crit. Rev. Microbiol. 28, 43–60 (2002).

  71. 71

    Navarro-Garcia, F. et al. In vitro effects of a high-molecular weight heat-labile enterotoxin from enteroaggregative Escherichia coli. Infect. Immun. 66, 3149–3154 (1998).

  72. 72

    Jiang, Z. D., Greenberg, D., Nataro, J. P., Steffen, R. & DuPont, H. L. Rate of occurrence and pathogenic effect of enteroaggregative Escherichia coli virulence factors in international travelers. J. Clin. Microbiol. 40, 4185–4190 (2002).

  73. 73

    Wei, J. et al. Complete genome sequence and comparative genomics of Shigella flexneri serotype 2a strain 2457T. Infect. Immun. 71, 2775–2786 (2003).

  74. 74

    Pupo, G. M., Lan, R. & Reeves, P. R. Multiple independent origins of Shigella clones of Escherichia coli and convergent evolution of many of their characteristics. Proc. Natl Acad. Sci. USA 97, 10567–10572 (2000). This paper suggests that Shigella should be considered within the species Escherichia coli , and that their evolution represents adaptation to a specific pathogenetic niche, a phenomenon that has occurred on several occasions over many years.

  75. 75

    Sansonetti, P. Host–pathogen interactions: the seduction of molecular cross talk. Gut 50, Suppl. 3 S2–S8 (2002).

  76. 76

    Zychlinsky, A., Prevost, M. C. & Sansonetti, P. J. Shigella flexneri induces apoptosis in infected macrophages. Nature 358, 167–169 (1992).

  77. 77

    Buchrieser, C. et al. The virulence plasmid pWR100 and the repertoire of proteins secreted by the type III secretion apparatus of Shigella flexneri. Mol. Microbiol. 38, 760–771 (2000).

  78. 78

    Egile, C. et al. Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin- based motility. J. Cell Biol. 146, 1319–1332 (1999).

  79. 79

    Sansonetti, P. J. et al. Caspase-1 activation of IL-1β and IL-18 are essential for Shigella flexneri-induced inflammation. Immunity. 12, 581–590 (2000). The pathogenesis of Shigella infection represents a complex manipulation of the immune response, in ways that are beneficial to both pathogen and host.

  80. 80

    Tran Van Nhieu, G., Bourdet-Sicard, R., Dumenil, G., Blocker, A. & Sansonetti, P. J. Bacterial signals and cell responses during Shigella entry into epithelial cells. Cell. Microbiol. 2, 187–193 (2000).

  81. 81

    Niebuhr, K. et al. Conversion of PtdIns(4,5)P2 into PtdIns5P by the S. flexneri effector IpgD reorganizes host cell morphology. EMBO J. 21, 5069–5078 (2002).

  82. 82

    Scaletsky, I. C. et al. Diffusely adherent Escherichia coli as a cause of acute diarrhea in young children in northeast Brazil: a case-control study. J. Clin. Microbiol. 40, 645–648 (2002).

  83. 83

    Bilge, S. S., Clausen, C. R., Lau, W. & Moseley, S. L. Molecular characterization of a fimbrial adhesin, F1845, mediating diffuse adherence of diarrhea-associated Escherichia coli to HEp-2 cells. J. Bacteriol. 171, 4281–4289 (1989).

  84. 84

    Hasan, R. J. et al. Structure–function analysis of decayaccelerating factor: identification of residues important for binding of the Escherichia coli Dr adhesin and complement regulation. Infect. Immun. 70, 4485–4493 (2002).

  85. 85

    Bernet-Camard, M. F., Coconnier, M. H., Hudault, S. & Servin, A. L. Pathogenicity of the diffusely adhering strain Escherichia coli C1845: F1845 adhesin-decay accelerating factor interaction, brush border microvillus injury, and actin disassembly in cultured human intestinal epithelial cells. Infect. Immun. 64, 1918–1928 (1996).

  86. 86

    Peiffer, I., Servin, A. L. & Bernet-Camard, M. F. Piracy of decay-accelerating factor (CD55) signal transduction by the diffusely adhering strain Escherichia coli C1845 promotes cytoskeletal F-actin rearrangements in cultured human intestinal INT407 cells. Infect. Immun. 66, 4036–4042 (1998). DAEC exhibits a unique pathogenetic scheme that includes cytoskeletal sabotage.

  87. 87

    Peiffer, I., Bernet-Camard, M. F., Rousset, M. & Servin, A. L. Impairments in enzyme activity and biosynthesis of brush border-associated hydrolases in human intestinal Caco-2/TC7 cells infected by members of the Afa/Dr family of diffusely adhering Escherichia coli. Cell. Microbiol. 3, 341–357 (2001).

  88. 88

    Phillips, I. et al. Epidemic multiresistant Escherichia coli infection in West Lambeth Health District. Lancet 1, 1038–1041 (1988).

  89. 89

    Manges, A. R. et al. Widespread distribution of urinary tract infections caused by a multidrug-resistant Escherichia coli clonal group. N. Engl. J. Med. 345, 1007–1013 (2001). This work identified specific clonal groups of E. coli that cause widespread antibiotic resistant bacteria.

  90. 90

    Nowicki, B., Svanborg-Eden, C., Hull, R. & Hull, S. Molecular analysis and epidemiology of the Dr hemagglutinin of uropathogenic Escherichia coli. Infect. Immun. 57, 446–451 (1989).

  91. 91

    Johnson, J. R. Virulence factors in Escherichia coli urinary tract infection. Clin. Microbiol. Rev. 4, 80–128 (1991).

  92. 92

    Johnson, J. R. & Stell, A. L. Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. J. Infect. Dis. 181, 261–272 (2000).

  93. 93

    Welch, R. A. et al. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc. Natl Acad. Sci. USA 99, 17020–17024 (2002). The first complete nucleotide sequence of a representative uropathogenic strain of E. coli and shows that EHEC, UPEC and E. coli K-12 share only 39.2% of the combined set of predicted proteins.

  94. 94

    Bahrani-Mougeot, F. K. et al. Type 1 fimbriae and extracellular polysaccharides are preeminent uropathogenic Escherichia coli virulence determinants in the murine urinary tract. Mol. Microbiol. 45, 1079–1093 (2002).

  95. 95

    Gunther, N. W., Lockatell, V., Johnson, D. E. & Mobley, H. L. In vivo dynamics of type 1 fimbria regulation in uropathogenic Escherichia coli during experimental urinary tract infection. Infect. Immun. 69, 2838–2846 (2001).

  96. 96

    Connell, I. et al. Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proc. Natl Acad. Sci. USA 93, 9827–9832 (1996). Demonstrates that type 1 fimbriae satisfies molecular Koch's postulates.

  97. 97

    Mulvey, M. A. et al. Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science 282, 1494–1497 (1998).

  98. 98

    Anderson, G. G. et al. Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301, 105–107 (2003).

  99. 99

    Svanborg-Eden, C. & Hansson, H. A. Escherichia coli pili as possible mediators of attachment to human urinary tract epithelial cells. Infect. Immun. 21, 229–237 (1978).

  100. 100

    Korhonen, T. K., Virkola, R. & Holthofer, H. Localization of binding sites for purified Escherichia coli P fimbriae in the human kidney. Infect. Immun. 54, 328–332 (1986).

  101. 101

    Trifillis, A. L. et al. Binding to and killing of human renal epithelial cells by hemolytic P-fimbriated E. coli. Kidney Int. 46, 1083–1091 (1994).

  102. 102

    Uhlen, P. et al. α-haemolysin of uropathogenic E. coli induces Ca2+ oscillations in renal epithelial cells. Nature 405, 694–697 (2000).

  103. 103

    Guyer, D. M., Henderson, I. R., Nataro, J. P. & Mobley, H. L. Identification of Sat, an autotransporter toxin produced by uropathogenic Escherichia coli. Mol. Microbiol. 38, 53–66 (2000). Describes the identification of a new toxin of uropathogenic E. coli

  104. 104

    Unhanand, M., Mustafa, M. M., McCracken, G. H. Jr & Nelson, J. D. Gram-negative enteric bacillary meningitis: a twenty-one-year experience. J. Pediatr. 122, 15–21 (1993).

  105. 105

    Dawson, K. G., Emerson, J. C. & Burns, J. L. Fifteen years of experience with bacterial meningitis. Pediatr. Infect. Dis. J. 18, 816–822 (1999).

  106. 106

    Stoll, B. J. et al. Changes in pathogens causing early-onset sepsis in very-low-birth-weight infants. N. Engl. J. Med. 347, 240–247 (2002).

  107. 107

    Dietzman, D. E., Fischer, G. W. & Schoenknecht, F. D. Neonatal Escherichia coli septicemia-bacterial counts in blood. J. Pediatr. 85, 128–130 (1974).

  108. 108

    Stins, M. F., Badger, J. L. & Kim, K. S. Bacterial invasion and transcytosis in transfected human brain microvascular endothelial cells. Microb. Pathog. 30, 19–28 (2001).

  109. 109

    Stins, M. F., Nemani, P. V., Wass, C. & Kim, K. S. Escherichia coli binding to and invasion of brain microvascular endothelial cells derived from humans and rats of different ages. Infect. Immun. 67, 5522–5525 (1999).

  110. 110

    Kim, K. S. et al. The K1 capsule is the critical determinant in the development of Escherichia coli meningitis in the rat. J. Clin. Invest. 90, 897–905 (1992). Recognition of the importance of capsule for virulence of MNEC.

  111. 111

    Rode, C. K., Melkerson-Watson, L. J., Johnson, A. T. & Bloch, C. A. Type-specific contributions to chromosome size differences in Escherichia coli. Infect. Immun. 67, 230–236 (1999).

  112. 112

    Bonacorsi, S. P. et al. Identification of regions of the Escherichia coli chromosome specific for neonatal meningitis-associated strains. Infect. Immun. 68, 2096–2101 (2000).

  113. 113

    Badger, J. L., Wass, C. A., Weissman, S. J. & Kim, K. S. Application of signature-tagged mutagenesis for identification of Escherichia coli K1 genes that contribute to invasion of human brain microvascular endothelial cells. Infect. Immun. 68, 5056–5061 (2000).

  114. 114

    Parkkinen, J., Korhonen, T. K., Pere, A., Hacker, J. & Soinila, S. Binding sites in the rat brain for Escherichia coli S fimbriae associated with neonatal meningitis. J. Clin. Invest 81, 860–865 (1988).

  115. 115

    Prasadarao, N. V., Wass, C. A. & Kim, K. S. Endothelial cell GlcNAc β,1-4GlcNAc epitopes for outer membrane protein A enhance traversal of Escherichia coli across the blood–brain barrier. Infect. Immun. 64, 154–160 (1996).

  116. 116

    Kim, K. S. Escherichia coli translocation at the blood–brain barrier. Infect. Immun. 69, 5217–5222 (2001).

  117. 117

    Badger, J. L. & Kim, K. S. Environmental growth conditions influence the ability of Escherichia coli K1 to invade brain microvascular endothelial cells and confer serum resistance. Infect. Immun. 66, 5692–5697 (1998).

  118. 118

    Hoffman, J. A., Wass, C., Stins, M. F. & Kim, K. S. The capsule supports survival but not traversal of Escherichia coli K1 across the blood–brain barrier. Infect. Immun. 67, 3566–3570 (1999).

  119. 119

    Reddy, M. A., Wass, C. A., Kim, K. S., Schlaepfer, D. D. & Prasadarao, N. V. Involvement of focal adhesion kinase in Escherichia coli invasion of human brain microvascular endothelial cells. Infect. Immun. 68, 6423–6430 (2000).

  120. 120

    Khan, M. A. & Isaacson, R. E. Identification of Escherichia coli genes that are specifically expressed in a murine model of septicemic infection. Infect. Immun. 70, 3404–3412 (2002).

  121. 121

    Darfeuille-Michaud, A. Adherent-invasive Escherichia coli: a putative new E. coli pathotype associated with Crohn's disease. Int. J. Med. Microbiol. 292, 185–193 (2002).

  122. 122

    Panigrahi, P., Bamford, P., Horvath, K., Morris, J. G. Jr & Gewolb, I. H. Escherichia coli transcytosis in a Caco-2 cell model: implications in neonatal necrotizing enterocolitis. Pediatr. Res. 40, 415–421 (1996).

  123. 123

    De Rycke, J., Milon, A. & Oswald, E. Necrotoxic Escherichia coli (NTEC): two emerging categories of human and animal pathogens. Vet. Res. 30, 221–233 (1999).

  124. 124

    Elliott, S. J. et al. Characterization of the roles of hemolysin and other toxins in enteropathy caused by α-hemolytic Escherichia coli linked to human diarrhea. Infect. Immun. 66, 2040–2051 (1998).

  125. 125

    Toth, I., Herault, F., Beutin, L. & Oswald, E. Production of cytolethal distending toxins by pathogenic Escherichia coli strains isolated from human and animal sources: establishment of the existence of a new cdt variant (type IV). J. Clin. Microbiol. 41, 4285–4291 (2003).

  126. 126

    Janka, A. et al. Cytolethal distending toxin gene cluster in enterohemorrhagic Escherichia coli O157:H- and O157:H7: characterization and evolutionary considerations. Infect. Immun. 71, 3634–3638 (2003).

  127. 127

    Otto, B. R., van Dooren, S. J., Dozois, C. M., Luirink, J. & Oudega, B. Escherichia coli hemoglobin protease autotransporter contributes to synergistic abscess formation and heme-dependent growth of Bacteroides fragilis. Infect. Immun. 70, 5–10 (2002).

  128. 128

    McVeigh, A. et al. IS 1414, an Escherichia coli insertion sequence with a heat-stable enterotoxin gene embedded in a transposase-like gene. Infect. Immun. 68, 5710–5715 (2000).

  129. 129

    Hacker, J. & Kaper, J. B. Pathogenicity islands and the evolution of microbes. Annu. Rev. Microbiol. 54, 641–679 (2000).

  130. 130

    Dobrindt, U. et al. Genetic structure and distribution of four pathogenicity islands (PAI I(536) to PAI IV(536)) of uropathogenic Escherichia coli strain 536. Infect. Immun. 70, 6365–6372 (2002).

  131. 131

    Tauschek, M., Strugnell, R. A. & Robins-Browne, R. M. Characterization and evidence of mobilization of the LEE pathogenicity island of rabbit-specific strains of enteropathogenic Escherichia coli. Mol. Microbiol. 44, 1533–1550 (2002).

  132. 132

    Torres, A. G. & Kaper, J. B. Pathogenicity islands of intestinal E. coli. Curr. Top. Microbiol. Immunol. 264, 31–48 (2002).

  133. 133

    Ingersoll, M., Groisman, E. A. & Zychlinsky, A. Pathogenicity islands of Shigella. Curr. Top. Microbiol. Immunol. 264, 49–65 (2002).

  134. 134

    Redford, P. & Welch, R. A. Extraintestinal Escherichia coli as a model system for the study of pathogenicity islands. Curr. Top. Microbiol. Immunol. 264, 15–30 (2002).

  135. 135

    Schubert, S., Cuenca, S., Fischer, D. & Heesemann, J. High-pathogenicity island of Yersinia pestis in enterobacteriaceae isolated from blood cultures and urine samples: prevalence and functional expression. J. Infect. Dis. 182, 1268–1271 (2000).

  136. 136

    Maurelli, A. T., Fernández, R. E., Bloch, C. A., Rode, C. K. & Fasano, A. 'Black holes' and bacterial pathogenicity: a large genomic deletion that enhances the virulence of Shigella spp. and enteroinvasive Escherichia coli. Proc. Natl Acad. Sci. USA 95, 3943–3948 (1998).

  137. 137

    Casalino, M., Latella, M. C., Prosseda, G. & Colonna, B. CadC is the preferential target of a convergent evolution driving enteroinvasive Escherichia coli toward a lysine decarboxylase-defective phenotype. Infect. Immun. 71, 5472–5479 (2003).

  138. 138

    Weissman, S. J., Moseley, S. L., Dykhuizen, D. E. & Sokurenko, E. V. Enterobacterial adhesins and the case for studying SNPs in bacteria. Trends Microbiol. 11, 115–117 (2003).

  139. 139

    Dobrindt, U. et al. Analysis of genome plasticity in pathogenic and commensal Escherichia coli isolates by use of DNA arrays. J. Bacteriol. 185, 1831–1840 (2003).

  140. 140

    Mellies, J. L., Elliott, S. J., Sperandio, V., Donnenberg, M. S. & Kaper, J. B. The Per regulon of enteropathogenic Escherichia coli: identification of a regulatory cascade and a novel transcriptional activator, the locus of enterocyte effacement (LEE)-encoded regulator (Ler). Mol. Microbiol. 33, 296–306 (1999).

  141. 141

    Xia, Y., Gally, D., Forsman-Semb, K. & Uhlin, B. E. Regulatory cross-talk between adhesin operons in Escherichia coli: inhibition of type 1 fimbriae expression by the PapB protein. EMBO J. 19, 1450–1457 (2000).

  142. 142

    Wagner, P. L. et al. Bacteriophage control of Shiga toxin 1 production and release by Escherichia coli. Mol. Microbiol. 44, 957–970 (2002).

  143. 143

    Zhang, X. et al. Quinolone antibiotics induce Shiga toxin-encoding bacteriophages, toxin production, and death in mice. J. Infect. Dis. 181, 664–670 (2000).

  144. 144

    Sperandio, V., Mellies, J. L., Nguyen, W., Shin, S. & Kaper, J. B. Quorum sensing controls expression of the type III secretion gene transcription and protein secretion in enterohemorrhagic and enteropathogenic Escherichia coli. Proc. Natl Acad. Sci. USA 96, (1999). First report that enteric bacterial virulence factors are regulated by quorum sensing.

  145. 145

    Sperandio, V., Torres, A. G., Jarvis, B., Nataro, J. P. & Kaper, J. B. Bacteria–host communication: the language of hormones. Proc. Natl Acad. Sci. USA 100, 8951–8956 (2003).

  146. 146

    Abraham, J. M., Freitag, C. S., Clements, J. R. & Eisenstein, B. I. An invertible element of DNA controls phase variation of type 1 fimbriae of Escherichia coli. Proc. Natl Acad. Sci. USA 82, 5724–5727 (1985).

  147. 147

    Kuehn, M. J., Heuser, J., Normark, S. & Hultgren, S. J. P pili in uropathogenic E. coli are composite fibres with distinct fibrillar adhesive tips. Nature 356, 252–255 (1992).

  148. 148

    Bustamante, V. H., Santana, F. J., Calva, E. & Puente, J. L. Transcriptional regulation of type III secretion genes in enteropathogenic Escherichia coli: Ler antagonizes H-NS-dependent repression. Mol. Microbiol. 39, 664–678 (2001).

  149. 149

    Friedberg, D., Umanski, T., Fang, Y. & Rosenshine, I. Hierarchy in the expression of the locus of enterocyte effacement genes of enteropathogenic Escherichia coli. Mol. Microbiol. 34, 941–952 (1999).

  150. 150

    Goldberg, M. D., Johnson, M., Hinton, J. C. & Williams, P. H. Role of the nucleoid-associated protein Fis in the regulation of virulence properties of enteropathogenic Escherichia coli. Mol. Microbiol. 41, 549–559 (2001).

  151. 151

    Grant, A. J. et al. Co-ordination of pathogenicity island expression by the BipA GTPase in enteropathogenic Escherichia coli (EPEC). Mol. Microbiol. 48, 507–521 (2003).

  152. 152

    Sperandio, V., Li, C. C. & Kaper, J. B. Quorum-sensing Escherichia coli regulator A: a regulator of the LysR family involved in the regulation of the locus of enterocyte effacement pathogenicity island in enterohemorrhagic E. coli. Infect. Immun. 70, 3085–3093 (2002).

  153. 153

    Sperandio, V., Torres, A. G. & Kaper, J. B. Quorum sensing Escherichia coli regulators B and C (QseBC): a novel two-component regulatory system involved in the regulation of flagella and motility by quorum sensing in E. coli. Mol. Microbiol. 43, 809–821 (2002).

  154. 154

    Gómez-Duarte, O. G. & Kaper, J. B. A plasmid-encoded regulatory region activates chromosomal eaeA expression in enteropathogenic Escherichia coli. Infect. Immun. 63, 1767–1776 (1995).

  155. 155

    Tobe, T., Schoolnik, G. K., Sohel, I., Bustamante, V. H. & Puente, J. L. Cloning and characterization of bfpTVW, genes required for the transcriptional activation of bfpA in enteropathogenic Escherichia coli. Mol. Microbiol. 21, 963–975 (1996).

  156. 156

    Shin, S. et al. An activator of glutamate decarboxylase genes regulates the expression of enteropathogenic Escherichia coli virulence genes through control of the plasmid-encoded regulator, Per. Mol. Microbiol. 41, 1133–1150 (2001).

  157. 157

    Mellies, J. L. et al. espC pathogenicity island of enteropathogenic Escherichia coli encodes an enterotoxin. Infect. Immun. 69, 315–324 (2001)

Download references

Acknowledgements

Work in the authors' laboratories is supported by the National Institutes of Health. We thank J. Girón for providing electron micrographs. We apologize to the numerous investigators whose papers could not be cited due to space constraints.

Author information

Competing interests

The authors declare no competing financial interests.

Correspondence to James B. Kaper.

Related links

Glossary

PATHOTYPES

A group of strains of a single species that cause a common disease using a common set of virulence factors.

SEROGROUP

An antigenically distinct variety of serotype, based only on O (LPS) antigens.

SEROTYPE

An antigenically distinct variety within a bacterial species. For E. coli, a specific combination of O (lipopolysaccharide), H (flagellar) and sometimes K (capsular) antigens defines a serotype.

DECAY-ACCELERATING FACTOR

(DAF). A plasma membrane protein, also called CD55, that regulates the complement cascade by interfering with the formation of the C3bBb complex.

MICA

A homologue of MHC (major histocompatibility complex) I molecules. Two homologues have been described called MICA (MHC class I chain-related gene A) and MICB (MHC class I chain-related gene B).

TH1 IMMUNE RESPONSE

A response that is characterized by a subset of helper T cells that secrete a particular set of cytokines, including IL-2, interferon-γ and TNF-α, the main function of which is to stimulate phagocytosis-mediated defences against intracellular pathogens.

NUCLEOLIN

A nucleolar protein that functions as a shuttle protein between the nucleus and the cytoplasm and is also found on the cell surface.

GAP

GTPase-activating protein. A family of eukaryotic proteins that modulate the activity of Rac, Rho and Cdc42.

GALANIN

A neuropeptide that is widely distributed in the central nervous system and the gastrointestinal tract. Binding to the galanin-1 receptor can alter intestinal ion flux.

USSING CHAMBER

A device that is used to measure ion flow across an epithelium. Bacterial enterotoxins that induce ion fluxes are frequently studied in Ussing chambers.

SIGNATURE-TAGGED MUTAGENESIS

(STM). A technique to screen large numbers of distinct mutants for those that fail to survive an animal infection. Each mutant is tagged with a unique DNA sequence (called a signature tag), which allows a specific mutant to be tracked within a large pool of bacteria.

IVET

In vivo expression technology is a promoter trap technique that uses cloned promoters fused to a reporter gene. A library of such constructs is introduced into an animal model to detect promoters that are activated in vivo.

Rights and permissions

Reprints and Permissions

About this article

Further reading

Figure 1: Pathogenic schema of diarrhoeagenic E. coli.
Figure 2: Colonization factors of E. coli.
Figure 3: Attaching and effacing histopathology caused by EPEC and EHEC.
Figure 4: Pathogenesis of urinary tract infection caused by uropathogenic E. coli.
Figure 5: Contribution of mobile genetic elements to the evolution of pathogenic E. coli.
Figure 6: Expression of virulence factors in pathogenic E. coli utilizes regulators that are present only in pathogenic strains as well as regulators present in all E. coli strains, commensals and pathogens.