Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Microorganisms and autoimmunity: making the barren field fertile?

Abstract

Microorganisms induce strong immune responses, most of which are specific for their encoded antigens. However, microbial infections can also trigger responses against self antigens (autoimmunity), and it has been proposed that this phenomenon could underlie several chronic human diseases, such as type 1 diabetes and multiple sclerosis. Nevertheless, despite intensive efforts, it has proven difficult to identify any single microorganism as the cause of a human autoimmune disease, indicating that the 'one organism–one disease' paradigm that is central to Koch's postulates might not invariably apply to microbially induced autoimmune disease. Here, we review the mechanisms by which microorganisms might induce autoimmunity, and we outline a hypothesis that we call the fertile-field hypothesis to explain how a single autoimmune disease could be induced and exacerbated by many different microbial infections.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Different T-cell populations induced by virus infection.
Figure 2: Molecular mimicry and diabetes.
Figure 3: The fertile-field hypothesis.

Similar content being viewed by others

References

  1. Srinivasappa, J. et al. Molecular mimicry: frequency of reactivity of monoclonal antiviral antibodies with normal tissues. J. Virol. 57, 397–401 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Gebe, J. A. et al. Low-avidity recognition by CD4+ T cells directed to self-antigens. Eur. J. Immunol. 33, 1409–1417 (2003).

    Article  CAS  Google Scholar 

  3. Jacobson, D. L., Gange, S. J., Rose, N. R. & Graham, N. M. Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin. Immunol. Immunopathol. 84, 223–243 (1997).

    Article  CAS  Google Scholar 

  4. Nishioka, K., Nakajima, T., Hasunuma, T. & Sato, K. Rheumatic manifestation of human leukemia virus infection. Rheum. Dis. Clin. North Am. 19, 489–503 (1993).

    CAS  PubMed  Google Scholar 

  5. Zhao, Z. S. et al. Molecular mimicry by herpes simplex virus-type 1: autoimmune disease after viral infection. Science 279, 1344–1347 (1998).

    Article  CAS  Google Scholar 

  6. Deshpande, S. P. et al. Herpes simplex virus-induced keratitis: evaluation of the role of molecular mimicry in lesion pathogenesis. J. Virol. 75, 3077–3088 (2001).

    Article  CAS  Google Scholar 

  7. Eddy, S. et al. Myasthenia gravis: another autoimmune disease associated with hepatitis C virus infection. Dig. Dis. Sci. 44, 186–189 (1999).

    Article  CAS  Google Scholar 

  8. Romero, P. M. et al. Rheumatologic and autoimmune manifestations in patients with chronic hepatitis C virus infection. Rev. Esp. Enferm. Dig. 89, 591–598 (1997).

    Google Scholar 

  9. McMurray, R. W. & Elbourne, K. Hepatitis C virus infection and autoimmunity. Semin. Arthritis Rheum. 26, 689–701 (1997).

    Article  CAS  Google Scholar 

  10. James, J. A. & Harley, J. B. B-cell epitope spreading in autoimmunity. Immunol. Rev. 164, 185–200 (1998).

    Article  CAS  Google Scholar 

  11. Atkinson, M. A. et al. Cellular immunity to a determinant common to glutamate decarboxylase and coxsackie virus in insulin-dependent diabetes. J. Clin. Invest. 94, 2125–2129 (1994).

    Article  CAS  Google Scholar 

  12. Yoon, J. W., Ihm, S. H. & Kim, K. W. Viruses as a triggering factor of type 1 diabetes and genetic markers related to the susceptibility to the virus-associated diabetes. Diabetes Res. Clin. Pract. 7, S47–S58 (1989).

    Article  Google Scholar 

  13. Monteyne, P., Bureau, J. F. & Brahic, M. Viruses and multiple sclerosis. Curr. Opin. Neurobiol. 11, 287–291 (1998).

    Article  CAS  Google Scholar 

  14. Panitch, H. S. Influence of infection on exacerbations of multiple sclerosis. Ann. Neurol. 36, S25–S28 (1994).

    Article  Google Scholar 

  15. Cunningham, M. W. Autoimmunity and molecular mimicry in the pathogenesis of post-streptococcal heart disease. Front. Biosci. 8, S533–S543 (2003).

    Article  CAS  Google Scholar 

  16. Kirvan, C. A., Swedo, S. E., Heuser, J. S. & Cunningham, M. W. Mimicry and autoantibody-mediated neuronal cell signaling in Sydenham chorea. Nature Med. 9, 914–920 (2003).

    Article  CAS  Google Scholar 

  17. Lopez-Larrea, C., Gonzalez, S. & Martinez-Borra, J. The role of HLA-B27 polymorphism and molecular mimicry in spondyloarthropathy. Mol. Med. Today 4, 540–549 (1998).

    Article  CAS  Google Scholar 

  18. Taurog, J. D. & Hammer, R. E. Experimental spondyloarthropathy in HLA-B27 transgenic rats. Clin. Rheumatol. 15, 22–27 (1996).

    Article  Google Scholar 

  19. Benoist, C. & Mathis, D. Autoimmunity provoked by infection: how good is the case for T cell epitope mimicry? Nature Immunol. 2, 797–801 (2001).

    Article  CAS  Google Scholar 

  20. Leon, J. S. & Engman, D. M. The significance of autoimmunity in the pathogenesis of Chagas heart disease. Front. Biosci. 8, E315–E322 (2003).

    Article  CAS  Google Scholar 

  21. Kierszenbaum, F. Views on the autoimmunity hypothesis for Chagas disease pathogenesis. FEMS Immunol. Med. Microbiol. 37, 1–11 (2003).

    Article  CAS  Google Scholar 

  22. Fujinami, R. S. & Oldstone, M. B. A. Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism for autoimmunity. Science 230, 1043–1045 (1985).

    Article  CAS  Google Scholar 

  23. Barnett, L. A., Whitton, J. L., Wada, Y. & Fujinami, R. S. Enhancement of autoimmune disease using recombinant vaccinia virus encoding myelin proteolipid protein. J. Neuroimmunol. 44, 15–25 (1993).

    Article  CAS  Google Scholar 

  24. Tsunoda, I. et al. Enhancement of experimental allergic encephalomyelitis (EAE) by DNA immunization with myelin proteolipid protein (PLP) plasmid DNA. J. Neuropathol. Exp. Neurol. 57, 758–767 (1998).

    Article  CAS  Google Scholar 

  25. Ohashi, P. S. et al. Ablation of tolerance and induction of diabetes by virus infection in viral antigen transgenic mice. Cell 65, 305–318 (1991).

    Article  CAS  Google Scholar 

  26. Oldstone, M. B. A. et al. Virus infection triggers insulin-dependent diabetes mellitus in a transgenic model: role of anti-self (virus) immune response. Cell 65, 319–331 (1991).

    Article  CAS  Google Scholar 

  27. von Herrath M. G., Dockter, J. & Oldstone, M. B. A. How virus induces a rapid or slow onset insulin-dependent diabetes mellitus in a transgenic model. Immunity 1, 231–242 (1994).

    Article  CAS  Google Scholar 

  28. von Herrath M. G. et al. Coexpression of B7-1 and viral ('self') transgenes in pancreatic β cells can break peripheral ignorance and lead to spontaneous autoimmune diabetes. Immunity 3, 727–738 (1995).

    Article  CAS  Google Scholar 

  29. Kagi, D. et al. Development of insulitis without diabetes in transgenic mice lacking perforin-dependent cytotoxicity. J. Exp. Med. 183, 2143–2152 (1996).

    Article  CAS  Google Scholar 

  30. von Herrath M. G. & Oldstone, M. B. A. Interferon-γ is essential for destruction of β cells and development of insulin-dependent diabetes mellitus. J. Exp. Med. 185, 531–539 (1997).

    Article  CAS  Google Scholar 

  31. Wucherpfennig, K. W. Structural basis of molecular mimicry. J. Autoimmun. 16, 293–302 (2001).

    Article  CAS  Google Scholar 

  32. Whitton, J. L. et al. Molecular analyses of a five-amino-acid cytotoxic T-lymphocyte (CTL) epitope: an immunodominant region which induces non-reciprocal CTL cross-reactivity. J. Virol. 63, 4303–4310 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sevilla, N. et al. Virus-induced diabetes in a transgenic model: role of cross-reacting viruses and quantitation of effector T cells needed to cause disease. J. Virol. 74, 3284–3292 (2000).

    Article  CAS  Google Scholar 

  34. Quinn, A. et al. Induction of autoimmune valvular heart disease by recombinant streptococcal M protein. Infect. Immun. 69, 4072–4078 (2001).

    Article  CAS  Google Scholar 

  35. Honeyman, M. C. et al. Association between rotavirus infection and pancreatic islet autoimmunity in children at risk of developing type 1 diabetes. Diabetes 49, 1319–1324 (2000).

    Article  CAS  Google Scholar 

  36. Theil, D. J. et al. Viruses can silently prime for and trigger central nervous system autoimmune disease. J. Neurovirol. 7, 1–8 (2001).

    Article  Google Scholar 

  37. Olson, J. K. et al. A virus-induced molecular mimicry model of multiple sclerosis. J. Clin. Invest. 108, 311–318 (2001).

    Article  CAS  Google Scholar 

  38. Shevach, E. M., Chang, J. T. & Segal, B. M. The critical role of IL-12 and the IL-12R β 2 subunit in the generation of pathogenic autoreactive Th1 cells. Springer Semin. Immunopathol. 21, 249–262 (1999).

    CAS  PubMed  Google Scholar 

  39. Tough, D. F. & Sprent, J. Viruses and T cell turnover: evidence for bystander proliferation. Immunol. Rev. 150, 129–142 (1996).

    Article  CAS  Google Scholar 

  40. Tough, D. F., Borrow, P. & Sprent, J. Induction of bystander T cell proliferation by viruses and type I interferon in vivo. Science 272, 1947–1950 (1996).

    Article  CAS  Google Scholar 

  41. Murali-Krishna, K. et al. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8, 177–187 (1998).

    Article  CAS  Google Scholar 

  42. Butz, E. A. & Bevan, M. J. Massive expansion of antigen-specific CD8+ T cells during an acute virus infection. Immunity 8, 167–175 (1998).

    Article  CAS  Google Scholar 

  43. Hislop, A. D. et al. Epitope-specific evolution of human CD8+ T cell responses from primary to persistent phases of Epstein–Barr virus infection. J. Exp. Med. 195, 893–905 (2002).

    Article  CAS  Google Scholar 

  44. Nguyen, K. B. & Biron, C. A. Synergism for cytokine-mediated disease during concurrent endotoxin and viral challenges: roles for NK and T cell IFN-γ production. J. Immunol. 162, 5238–5246 (1999).

    CAS  PubMed  Google Scholar 

  45. Gangappa, S. et al. Virus-induced immunoinflammatory lesions in the absence of viral antigen recognition. J. Immunol. 161, 4289–4300 (1998).

    CAS  PubMed  Google Scholar 

  46. Haring, J. S., Pewe, L. L. & Perlman, S. BystanderCD8 T cell-mediated demyelination after viral infection of the central nervous system. J. Immunol. 169, 1550–1555 (2002).

    Article  CAS  Google Scholar 

  47. Horwitz, M. S. et al. Diabetes induced by Coxsackie virus: initiation by bystander damage and not molecular mimicry. Nature Med. 4, 781–785 (1998).

    Article  CAS  Google Scholar 

  48. Kim, S. K., Brehm, M. A., Welsh, R. M. & Selin, L. K. Dynamics of memory T cell proliferation under conditions of heterologous immunity and bystander stimulation. J. Immunol. 169, 90–98 (2002).

    Article  CAS  Google Scholar 

  49. Ostler, T., Pircher, H. & Ehl, S. 'Bystander' recruitment of systemic memory T cells delays the immune response to respiratory virus infection. Eur. J. Immunol. 33, 1839–1848 (2003).

    Article  CAS  Google Scholar 

  50. Murali-Krishna, K. et al. In vivo dynamics of anti-viral CD8 T cell responses to different epitopes. An evaluation of bystander activation in primary and secondary responses to viral infection. Adv. Exp. Med. Biol. 452, 123–142 (1998).

    Article  CAS  Google Scholar 

  51. Welsh, R. M. & Selin, L. K. No one is naive: the significance of heterologous T-cell immunity. Nature Rev. Immunol. 2, 417–426 (2002).

    Article  CAS  Google Scholar 

  52. Chen, H. D. et al. Memory CD8+ T cells in heterologous antiviral immunity and immunopathology in the lung. Nature Immunol. 2, 1067–1076 (2001).

    Article  CAS  Google Scholar 

  53. Lin, M. Y., Selin, L. K. & Welsh, R. M. Evolution of the CD8 T-cell repertoire during infections. Microbes. Infect. 2, 1025–1039 (2000).

    Article  CAS  Google Scholar 

  54. Welsh, R. M., McNally, J. M., Brehm, M. A. & Selin, L. K. Consequences of cross-reactive and bystander CTL responses during viral infections. Virology 270, 4–8 (2000).

    Article  CAS  Google Scholar 

  55. Selin, L. K. et al. Attrition of T cell memory: selective loss of LCMV epitope-specific memory CD8 T cells following infections with heterologous viruses. Immunity 11, 733–742 (1999).

    Article  CAS  Google Scholar 

  56. Ahmed, Z. et al. Myelin/axonal pathology in interleukin-12 induced serial relapses of experimental allergic encephalomyelitis in the Lewis rat. Am. J. Pathol. 158, 2127–2138 (2001).

    Article  CAS  Google Scholar 

  57. von Herrath M. G., Allison, J., Miller, J. F. & Oldstone, M. B. Focal expression of interleukin-2 does not break unresponsiveness to 'self' (viral) antigen expressed in β cells but enhances development of autoimmune disease (diabetes) after initiation of an anti-self immune response. J. Clin. Invest. 95, 477–485 (1995).

    Article  CAS  Google Scholar 

  58. Holz, A., Brett, K. & Oldstone, M. B. Constitutive β cell expression of IL-12 does not perturb self-tolerance but intensifies established autoimmune diabetes. J. Clin. Invest. 108, 1749–1758 (2001).

    Article  CAS  Google Scholar 

  59. Lee, M. S. et al. Sensitization to self (virus) antigen by in situ expression of murine interferon-gamma. J. Clin. Invest. 95, 486–492 (1995).

    Article  CAS  Google Scholar 

  60. Seewaldt, S. et al. Virus-induced autoimmune diabetes: most beta-cells die through inflammatory cytokines and not perforin from autoreactive (anti-viral) cytotoxic T-lymphocytes. Diabetes 49, 1801–1809 (2000).

    Article  CAS  Google Scholar 

  61. Gale, C. R. & Martyn, C. N. Migrant studies in multiple sclerosis. Prog. Neurobiol. 47, 425–448 (1995).

    Article  CAS  Google Scholar 

  62. Schwarze, J. & Gelfand, E. W. The role of viruses in development or exacerbation of atopic asthma. Clin. Chest Med. 21, 279–287 (2000).

    Article  CAS  Google Scholar 

  63. Schwarze, J. & Gelfand, E. W. Respiratory viral infections as promoters of allergic sensitization and asthma in animal models. Eur. Respir. J. 19, 341–349 (2002).

    Article  CAS  Google Scholar 

  64. Cohen, I. R. Antigenic mimicry, clonal selection and autoimmunity. J. Autoimmun. 16, 337–340 (2001).

    Article  CAS  Google Scholar 

  65. Christen, U. et al. A dual role for TNFα in type 1 diabetes: islet-specific expression abrogates the ongoing autoimmune process when induced late but not early during pathogenesis. J. Immunol. 166, 7023–7032 (2001).

    Article  CAS  Google Scholar 

  66. Jacob, C. O. et al. Prevention of diabetes in nonobese diabetic mice by tumor necrosis factor (TNF): similarities between TNFα and interleukin 1. Proc. Natl Acad. Sci. USA 87, 968–972 (1990).

    Article  CAS  Google Scholar 

  67. Tracy, S. et al. Toward testing the hypothesis that group B coxsackieviruses (CVB) trigger insulin-dependent diabetes: inoculating nonobese diabetic mice with CVB markedly lowers diabetes incidence. J. Virol. 76, 12097–12111 (2002).

    Article  CAS  Google Scholar 

  68. Barnett, L. A., Whitton, J. L., Wang, L. Y. & Fujinami, R. S. Virus encoding an encephalitogenic peptide protects mice from experimental allergic encephalomyelitis. J. Neuroimmunol. 64, 163–173 (1996).

    Article  CAS  Google Scholar 

  69. Coon, B., An, L. L., Whitton, J. L. & von Herrath M. G., DNA immunization to prevent autoimmune diabetes. J. Clin. Invest. 104, 189–194 (1999).

    Article  CAS  Google Scholar 

  70. von Herrath M. G. & Whitton, J. L. DNA vaccination to treat autoimmune diabetes. Ann. Med. 32, 285–292 (2000).

    Article  CAS  Google Scholar 

  71. Robinson, W. H., Steinman, L. & Utz, P. J. Protein and peptide array analysis of autoimmune disease. Biotechniques 6, S66–S69 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

M. G. V. H. would like to thank D. Frye for her excellent help with this (and many other) manuscripts and his wife B. Ford for her patience with his work. Thanks should also go to C. J. and Chiara, who not only brighten my life but also have certainly primed me with many childcare viruses to hopefully abrogate, but not trigger, autoimmunity. R. S. F. is supported by the National Institutes for Health. The work of J. L. W. on T-cell responses is supported the National Institutes for Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias G. von Herrath.

Related links

Related links

DATABASES

Infectious Disease Information

Epstein–Barr virus

group A Streptococcus

hepatitis C virus

LocusLink

IFN-γ

TNF

OMIM

Graves' disease

multiple sclerosis

rheumatoid arthritis

type 1 diabetes mellitus

vitiligo

FURTHER INFORMATION

La Jolla Institute for Allergy and Immunology

Glossary

ANTIGEN-PRESENTING CELL

A cell that is capable of providing co-stimulation through CD80/86, CD40 and other mechanisms, in addition to presenting antigen in the context of MHC molecules. Examples include dendritic cells, B cells and macrophages.

AUTOAGGRESSIVE

A term that is used to describe autoreactive T cells that are harmful to the host.

AUTOIMMUNE DISEASE

A clinically apparent disease that is attributable to the activities of autoaggressive lymphocytes.

AUTOIMMUNITY

An antigen-specific response against host tissues that is equivalent to autoreactivity. Note that many autoimmune and autoreactive lymphocytes seem to be harmless, or even protective to the host.

AVIDITY

The strength with which a T cell binds to a target cell by multiple receptor–ligand interactions.

BYSTANDER ACTIVATION

The activation of autoreactive lymphocytes that do not recognize microbial antigens. This can be mediated through cytokines and/or APCs.

COGNATE ANTIGEN

An antigen for which an antibody, or a T-cell receptor, is specific.

ISLETS OF LANGERHANS

Clusters of cells that are found in the pancreas. There are five types of islet cells, including β cells, which make insulin; α cells, which make glucagon; and δ cells, which make somatostatin.

MOLECULAR MIMICRY

This can occur when lymphocytes that are induced by a foreign (usually microbial) antigen can recognize (crossreact with) host proteins. Usually, the avidity of the lymphocytes for the self antigen is lower than their avidity for the microbial antigen.

M PROTEIN

A streptococcal virulence factor that protects the bacteria from phagocytosis.

PERFORIN

A pore-forming protein that is present in the granules of cytotoxic lymphocytes.

RANTES

A CC-chemokine that binds to, and activates, signal transduction by several chemokine receptors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Herrath, M., Fujinami, R. & Whitton, J. Microorganisms and autoimmunity: making the barren field fertile?. Nat Rev Microbiol 1, 151–157 (2003). https://doi.org/10.1038/nrmicro754

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro754

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing