Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Coupling cell movement to multicellular development in myxobacteria

Key Points

  • Myxobacteria are Gram-negatives commonly found in the top soil that exhibit social, multicellular behaviour.

  • In the presence of nutrients, myxobacteria feed by forming cooperative swarms of cells, and can prey on other bacteria. In the absence of nutrients, at high cell density on a solid surface they undergo a complex developmental programme, which culminates in the formation of a multicellular fruiting body.

  • Myxobacteria move by gliding motility, which is controlled by two different gliding engines: the S-engine and the A-engine. The S-engine acts as the 'puller' and comprises pili that pull the cells forward by retraction. The A-engine acts as the 'pusher' and pushes cells forward by secreting ribbons of polysaccharide-rich slime.

  • The multicellular development programme of myxobacteria is controlled by a cell-contact-dependent signal, the C-signal.

  • The following development scheme for fruiting-body formation is proposed. The first form of organized movement in a myxobacterial culture is the formation of a wave pattern. The collision of travelling waves of cells in an area of high-cell density creates stationary aggregates of cells, which can become motile and fuse with adjacent aggregates by an as-yet-unknown mechanism. Within the motile aggregates, the myxobacterial cells are streaming in cycles. Travelling waves of cells continue to wash over the aggregates, which accumulate in size to form fruiting bodies comprising up to 105 individual cells. Cell-to-cell contact by motile cells within the aggregates transmits the C-signal between cells, and through a positive-feedback mechanism, the level of C-signal reaches the threshold required for sporulation.

  • The 40 different species of myxobacteria can form fruiting bodies in a variety of shapes and sizes, with both depending on multicellular communication through a cell-contact-dependent system. Understanding this fascinating process could have implications for eukaryotic developmental biology.

Abstract

The myxobacteria are Gram-negative organisms that are capable of multicellular, social behaviour. In the presence of nutrients, swarms of myxobacteria feed cooperatively by sharing extracellular digestive enzymes, and can prey on other bacteria. When the food supply runs low, they initiate a complex developmental programme that culminates in the production of a fruiting body. Myxobacteria move by gliding and have two, polarly positioned engines to control their motility. The two engines undergo coordinated reversals, and changes in the reversal frequency and speed are responsible for the different patterns of movement that are seen during development. The myxobacteria communicate with each other and coordinate their movements through a cell-contact-dependent signal. Here, the cell movements that culminate in the development of the multicellular fruiting body are reviewed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The swarm edges of an AS+ strain and an A+S strain.
Figure 2: The two engines of myxobacteria.
Figure 3: Slime trails at the edge of a Myxococcus xanthus A+S swarm.
Figure 4: Electron micrograph of the sacculus of a Myxococcus xanthus cell.
Figure 5: The directing effect of elasticotaxis on a Myxoccocus swarm towards a colony of prey cells.
Figure 6: The C-signal transduction circuit.
Figure 7: Fruiting-body aggregation in submerged agar culture.
Figure 8: A traffic jam and streaming in the construction of fruiting bodies in submerged agar culture.

Similar content being viewed by others

References

  1. Reichenbach, H. in The Myxobacteria (ed. Rosenberg, E.) 1–50 (Springer–Verlag, New York, 1984).

    Book  Google Scholar 

  2. Rosenberg, E., Keller, K. H. & Dworkin, M. Cell density-dependent growth of Myxococcus xanthus on casein. J. Bacteriol. 129, 770–777 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Reichenbach, H. in Myxobacteria II (eds Dworkin, M. & Kaiser, D.) 13–62 (ASM Press, Washington DC, 1993).

    Google Scholar 

  4. Burchard, R. P. Gliding motility mutants of Myxococcus xanthus. J. Bacteriol. 104, 940–947 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kaiser, D. in The Myxobacteria (ed. Rosenberg, E.) 163–184 (Springer–Verlag, New York, 1984).

    Book  Google Scholar 

  6. Hagen, D. C., Bretscher, A. P. & Kaiser, D. Synergism between morphogenetic mutants of Myxococcus xanthus. Dev. Biol. 64, 284–296 (1978).

    Article  CAS  PubMed  Google Scholar 

  7. Kim, S. K. & Kaiser, D. C-factor: a cell-cell signalling protein required for fruiting-body morphogenesis of M. xanthus. Cell 61, 19–26 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Kuspa, A., Plamann, L. & Kaiser, D. Identification of heat-stable A-factor from Myxococcus xanthus. J. Bacteriol. 174, 3319–3326 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Plamann, L., Kuspa, A. & Kaiser, D. Proteins that rescue A-signal-defective mutants of Myxococcus xanthus. J. Bacteriol. 174, 3311–3318 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim, S. K. & Kaiser, D. Purification and properties of Myxococcus xanthus C-factor, an intercellular signaling protein. Proc. Natl Acad. Sci. USA 87, 3635–3639 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Søgaard-Andersen, L. & Kaiser, D. C-factor, a cell-surface-associated intercellular signaling protein, stimulates the cytoplasmic Frz signal transduction system in Myxococcus xanthus. Proc. Natl Acad. Sci. USA 93, 2675–2679 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Søgaard-Andersen, L. Coupling gene expression and multicellular morphogenesis during fruiting body formation in Myxococcus xanthus. Mol. Microbiol. 48, 1–8 (2003).

    Article  PubMed  Google Scholar 

  13. Kim, S. K. & Kaiser, D. Cell alignment required in differentiation of Myxococcus xanthus. Science 249, 926–928 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. McBride, M. J., Hartzell, P. & Zusman, D. R. in Myxobacteria II (eds Dworkin, M. & Kaiser, D.) 285–305 (ASM Press, Washington DC, 1993).

    Google Scholar 

  15. Hodgkin, J. & Kaiser, D. Genetics of gliding motility in M. xanthus (Myxobacterales): genes controlling movement of single cells. Mol. Gen. Genet. 171, 167–176 (1979).

    Article  Google Scholar 

  16. Hodgkin, J. & Kaiser, D. Genetics of gliding motility in M. xanthus (Myxobacterales): two gene systems control movement. Mol. Gen. Genet. 171, 177–191 (1979).

    Article  Google Scholar 

  17. Maier, B., Potter, L., So, M., Seifert, H. S. & Sheetz, M. P. Single pilus motor forces exceed 100 pN. Proc. Natl Acad. Sci. USA 99, 16012–16017 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kaiser, D. Social gliding is correlated with the presence of pili in Myxococcus xanthus. Proc. Natl Acad. Sci. USA 76, 5952–5956 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu, S. S. & Kaiser, D. Regulation of expression of the pilA gene in Myxococcus xanthus. J. Bacteriol. 179, 7748–7758 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wall, D., Kolenbrander, P. E. & Kaiser, D. The Myxococcus xanthus pilQ (sglA) gene encodes a secretin homolog required for type IV pili biogenesis, S motility and development. J. Bacteriol. 181, 24–33 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wolfgang, M. et al. PilT mutations lead to simultaneous defects in competence for natural transformation and twitching motility in piliated Neisseria gonorrhoeae. Mol. Microbiol. 29, 321–330 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Vale, R. D. AAA proteins: lords of the ring. J. Cell Biol. 150, F13–F19 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Merz, A. J., So, M. & Sheetz, M. P. Pilus retraction powers bacterial twitching motility. Nature 407, 98–102 (2000). Describes the use of laser tweezers to directly measure the force of the type IV pilus retraction.

    Article  CAS  PubMed  Google Scholar 

  24. Merz, A. J. & Forest, K. T. Bacterial surface motility: slime trails, grappling hooks and nozzles. Curr. Biol. 12, R297–R303 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Sun, H., Zusman, D. R. & Shi, W. Type IV pilus of Myxococcus xanthus is a motility apparatus controlled by the frz chemosensory system. Curr. Biol. 10, 1143–1146 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Kaiser, D. How do pili pull? Curr. Biol. 10, R777–R780 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Skerker, J. & Berg, H. Direct observation of extension and retraction of type IV pili. Proc. Natl Acad. Sci. USA 98, 6901–6904 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wall, D. & Kaiser, D. Type IV pili and cell motility. Mol. Microbiol. 32, 1–10 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Arnold, J. W. & Shimkets, L. J. Cell surface properties correlated with cohesion in Myxococcus xanthus. J. Bacteriol. 170, 5771–5777 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Arnold, J. W. & Shimkets, L. Inhibition of cell–cell interactions in Myxococcus xanthus by congo red. J. Bacteriol. 170, 5765–5770 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Behmlander, R. M. & Dworkin, M. Biochemical and structural analyses of the extracellular matrix fibrils of Myxococcus xanthus. J. Bacteriol. 176, 6295–6303 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dworkin, M. Fibrils as extracellular appendages of bacteria: their role in contact-mediated cell–cell interactions in Myxococcus xanthus. BioEssays 21, 590–595 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Yang, Z. et al. The Myxococcus xanthus dif genes are required for the biogenesis of cell surface fibrils essential for social gliding motility. J. Bacteriol. 182, 5793–5798 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kaiser, D. & Crosby, C. Cell movement and its coordination in swarms of Myxococcus xanthus. Cell Motil. 3, 227–245 (1983).

    Article  Google Scholar 

  35. Bowden, M. G. & Kaplan, H. B. The Myxococcus xanthus lipopolysaccharide O-antigen is required for social motility and multicellular development. Mol. Microbiol. 30, 275–284 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Li, Y. et al. Extracellular polysaccharides mediate pilus retraction during social motility of Myxococcus xanthus. Proc. Natl Acad. Sci. USA 100, 5443–5448 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kuhlwein, H. & Reichenbach, H. Schwarmentwicklung und Morphogenese bei Myxobacterien–Archangium, Myxococcus, Chondrococcus, Chondromyces. (eds Heunert, H. H. & Kuczka, H.) Film C893 (Inst. Wissensch. Film, Gottingen, Germany, 1965).

    Google Scholar 

  38. Burchard, R. P. Trail following by gliding bacteria. J. Bacteriol. 152, 495–501 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Shi, W. & Zusman, D. R. The two motility systems of Myxococcus xanthus show different selective advantages on various surfaces. Proc. Natl Acad. Sci. USA 90, 3378–3382 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wolgemuth, C., Hoiczyk, E., Kaiser, D. & Oster, G. How myxobacteria glide. Curr. Biol. 12, 1–20 (2002). Provides experimental evidence for the secretion of slime from jets at the rear of M. xanthus cells that propels them for A-motility.

    Article  Google Scholar 

  41. Hoiczyk, E. & Baumeister, W. The junctional pore complex, a prokaryotic secretion organelle, is the molecular motor underlying gliding motility in cyanobacteria. Curr. Biol. 8, 1161–1168 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Stanier, R. Y. Elasticotaxis in myxobacteria. J. Bacteriol. 44, 405–412 (1942).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Fontes, M. & Kaiser, D. Myxococcus cells respond to elastic forces in their substrate. Proc. Natl Acad. Sci. USA 96, 8052–8057 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dworkin, M. Tactic behavior of Myxococcus xanthus. J. Bacteriol. 154, 452–459 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Burchard, R. P. Growth of surface colonies of the gliding bacterium Myxococcus xanthus. Arch. Microbiol. 96, 247–254 (1974).

    Article  CAS  PubMed  Google Scholar 

  46. Sager, B. & Kaiser, D. Intercellular C-signaling and the traveling waves of Myxococcus. Genes Dev. 8, 2793–2804 (1994).

    Article  CAS  PubMed  Google Scholar 

  47. Kim, S. K. & Kaiser, D. Cell motility is required for the transmission of C-factor, an intercellular signal that coordinates fruiting body morphogenesis of Myxococcus xanthus. Genes Dev. 4, 896–905 (1990).

    Article  CAS  PubMed  Google Scholar 

  48. Gronewold, T. M. A. & Kaiser, D. The act operon controls the level and time of C-signal production for M. xanthus development. Mol. Microbiol. 40, 744–756 (2001). Provides evidence for a positive feedback circuit that increases the number of C-signal molecules that are displayed on the cell surface.

    Article  CAS  PubMed  Google Scholar 

  49. Gronewold, T. M. A. & Kaiser, D. act operon control of developmental gene expression in Myxococcus xanthus. J. Bacteriol. 184, 1172–1179 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ogawa, M., Fujitani, S., Mao, X., Inouye, S. & Komano, T. FruA, a putative transcription factor essential for the development of Myxococcus xanthus. Mol. Microbiol. 22, 757–767 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Ellehauge, E., Norregaard-Madsen, M. & Søgaard-Andersen, L. The FruA signal transduction protein provides a checkpoint for the temporal coordination of intercellular signals in M. xanthus development. Mol. Microbiol. 30, 807–813 (1998). References 50 and 51 show that the fruA response-regulator links reception of the C-signal to the frz chemosensory pathway.

    Article  CAS  PubMed  Google Scholar 

  52. Søgaard-Andersen, L., Slack, F., Kimsey, H. & Kaiser, D. Intercellular C-signaling in Myxococcus xanthus involves a branched signal transduction pathway. Genes Dev. 10, 740–754 (1996).

    Article  PubMed  Google Scholar 

  53. McBride, M. J., Weinberg, R. A. & Zusman, D. R. Frizzy aggregation genes of the gliding bacterium Myxococcus xanthus show sequence similarities to the chemotaxis genes of enteric bacteria. Proc. Natl Acad. Sci. USA 86, 424–428 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. McCleary, W. R., McBride, M. J. & Zusman, D. R. Developmental sensory transduction in Myxococcus xanthus involves methylation and demethylation of frzCD. J. Bacteriol. 172, 4877–4887 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Welch, R. & Kaiser, D. Cell behavior in traveling wave patterns of myxobacteria. Proc. Natl Acad. Sci. USA 98, 14907–14912 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Reichenbach, H. Rhythmic motion in swarms of myxobacteria. Ber. Deutsch. Bot. Ges. 78, 102–105 (1965).

    Google Scholar 

  57. Shimkets, L. & Kaiser, D. Induction of coordinated movement of Myxococcus xanthus cells. J. Bacteriol. 152, 451–461 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Igoshin, O., Mogilner, A., Welch, R., Kaiser, D. & Oster, G. Pattern formation and traveling waves in myxobacteria: theory and modeling. Proc. Natl Acad. Sci. USA 98, 14913–14918 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kuner, J. & Kaiser, D. Fruiting body morphogenesis in submerged cultures of Myxococcus xanthus. J. Bacteriol. 151, 458–461 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Jelsbak, L. & Søgaard-Andersen, L. The cell-surface associated C-signal induces behavioral changes in individual M. xanthus cells during fruiting body morphogenesis. Proc. Natl Acad. Sci. USA 96, 5031–5036 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jelsbak, L. & Søgaard-Andersen, L. Pattern formation by a cell-surface associated morphogen in M. xanthus. Proc. Natl Acad. Sci. USA 99, 2032–2037 (2002). The first cell-tracking experiments of cells that are induced to stream by the C-signal.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sager, B. & Kaiser, D. Two cell-density domains within the Myxococcus xanthus fruiting body. Proc. Natl Acad. Sci. USA 90, 3690–3694 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. O'Connor, K. A. & Zusman, D. R. Patterns of cellular interactions during fruiting-body formation in Myxococcus xanthus. J. Bacteriol. 171, 6013–6024 (1989)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Julien, B., Kaiser, D. & Garza, A. Spatial control of cell differentiation in Myxococcus xanthus. Proc. Natl Acad. Sci. USA 97, 9098–9103 (2000). The first paper to show that the C-signal induces sporulation only inside of a fruiting body.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. O'Connor, K. A. & Zusman, D. R. Behavior of peripheral rods and their role in the life cycle of Myxococcus xanthus. J. Bacteriol. 173, 3342–3355 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kaiser, D. Cell fate and organogenesis in bacteria. Trends Genet. 15, 273–277 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Willert, K. et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423, 448–452 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Henrichsen, J. Bacterial surface translocation: a survey and a classification. Bacteriol. Rev. 36, 478–503 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Henrichsen, J. Twitching motility and its mechanism. Acta Path. Microbiol. Scand. 83, B187–B190 (1975).

    Google Scholar 

  70. Mattick, J. S. Type IV pili and twitching motility. Annu. Rev. Microbiol. 56, 289–314 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Bieber, D. et al. Type IV pili, transient bacterial aggregates and virulence in enteropathogenic Escherichia coli. Science 280, 2114–2118 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. O'Toole, G. A. & Kolter, R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol. Microbiol. 28, 449–461 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Klausen, M. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol. Microbiol. 48, 1511–1524 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Börner, U., Deutsch, A., Reichenbach, H. & Bär, M. Rippling patterns in aggregates of myxobacteria arise from cell–cell collisions. Phys. Rev. Lett. 89, 078101 (2002).

    Article  PubMed  Google Scholar 

  75. Alber, M. S., Jiang, Y. & Kiskowski, M. Lattice gas cellular automata model for rippling and aggregation in myxobacteria. SIAM J. Appl. Math. (in the press).

Download references

Acknowledgements

I thank L. Jelsbak, O. Igoshin, G. Oster and M. Alber for their suggestions. D. K. is supported by a grant from the National Institute of General Medical Sciences.

Author information

Authors and Affiliations

Authors

Supplementary information

Online Movie

To view this movie you need Quicktime. To download this player for free click here: Download Quicktime player . (MOV 631 kb)

Related links

Related links

FURTHER INFORMATION

Dale Kaiser's laboratory

TIGR

Glossary

SPORANGIUM

A specialized structure that contains myxobacterial spores.

TRANSDUCTION

The virus-mediated transfer of host DNA (plasmid or chromosomal) from a donor cell to a recipient cell.

TRANSFECTION

The transformation of prokaryotic cells with viral DNA or RNA.

TYPE IV PILI

Elongated hair-like structures extending from the surface of Gram-negative cells that are independent of flagella, and which can retract and pull the cell forward.

AAA MOTOR PROTEIN

An ATPase that is associated with various cellular activities. AAA proteins are essential in all organisms.

FIBRILS

Filamentous extracellular matrix material comprising polysaccharides and protein.

O-ANTIGEN

A heat-stable antigen that is associated with Gram-negative bacteria and which comprises chains of identical oligosaccharide units that can vary in length.

QUORUM SENSOR

An extracellular signal molecule, the concentration of which is proportional to the cell concentration, and which is used by many bacteria to detect cell density

FOURIER ANALYSIS

Mathematical decomposition of a complex periodic function into a sum of simple sine waves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaiser, D. Coupling cell movement to multicellular development in myxobacteria. Nat Rev Microbiol 1, 45–54 (2003). https://doi.org/10.1038/nrmicro733

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro733

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing