Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Secretion systems in Gram-negative bacteria: structural and mechanistic insights

Key Points

  • Gram-negative bacteria have evolved a wide array of secretion systems to transport small molecules, proteins and DNA into the extracellular space or target cells. In this Review, we describe insights into the structural and mechanistic features of the six secretion systems (types I–VI) of Gram-negative bacteria, the unique mycobacterial type VII secretion system, the chaperone–usher pathway and the curli biogenesis machinery.

  • These systems are remarkably varied in size, composition and architecture. Double-membrane-spanning secretion systems are composed of many tens of protein subunits and can reach multi-megadalton sizes, whereas outer-membrane-spanning systems are relatively simple and are usually composed of only one type of subunit.

  • These systems can transport folded or unfolded substrates and use various energy sources to power transport, from ATP to proton or entropy gradients.

  • Recent structural and molecular advances have uncovered remarkable structural and functional similarities between secretion systems that have the potential to be exploited for the development of novel antibacterial compounds.

Abstract

Bacteria have evolved a remarkable array of sophisticated nanomachines to export various virulence factors across the bacterial cell envelope. In recent years, considerable progress has been made towards elucidating the structural and molecular mechanisms of the six secretion systems (types I–VI) of Gram-negative bacteria, the unique mycobacterial type VII secretion system, the chaperone–usher pathway and the curli secretion machinery. These advances have greatly enhanced our understanding of the complex mechanisms that these macromolecular structures use to deliver proteins and DNA into the extracellular environment or into target cells. In this Review, we explore the structural and mechanistic relationships between these single- and double-membrane-embedded systems, and we briefly discuss how this knowledge can be exploited for the development of new antimicrobial strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural organization of the secretion systems that span the double membrane of Gram-negative bacteria.
Figure 2: Structural organization of the secretion systems that span the outer membrane of Gram-negative bacteria.
Figure 3: Models for the mechanism of substrate secretion in Gram-negative bacteria.
Figure 4: Timeline of the discovery of Gram-negative bacterial secretion systems and some of the main structural achievements in the field.

Similar content being viewed by others

Accession codes

Accessions

Electron Microscopy Data Bank

Protein Data Bank

References

  1. Gerlach, R. G. & Hensel, M. Protein secretion systems and adhesins: the molecular armory of Gram-negative pathogens. Int. J. Med. Microbiol. 297, 401–415 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Lycklama a Nijehot, J. A. & Driessen, A. J. M. The bacterial Sec-translocase: structure and mechanism. Phil. Trans. R. Soc. B 367, 1016–1028 (2012).

    Article  CAS  Google Scholar 

  3. Palmer, T. & Berks, B. C. The twin-arginine translocation (Tat) protein export pathway. Nature Rev. Microbiol. 10, 483–496 (2012).

    Article  CAS  Google Scholar 

  4. Rego, A. T., Chandran, V. & Waksman, G. Two-step and one-step secretion mechanisms in Gram-negative bacteria: contrasting the type IV secretion system and the chaperone–usher pathway of pilus biogenesis. Biochem. J. 425, 475–488 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Kanonenberg, K., Schwarz, C. K. W. & Schmitt, L. Type I secretion systems — a story of appendices. Res. Microbiol. 164, 596–604 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Piddock, L. J. V. Multidrug-resistance efflux pumps — not just for resistance. Nature Rev. Microbiol. 4, 629–636 (2006).

    Article  CAS  Google Scholar 

  7. Kadaba, N. S., Kaiser, J. T., Johnson, E., Lee, A. & Rees, D. C. The high-affinity E. coli methionine ABC transporter: structure and allosteric regulation. Science 321, 250–253 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shintre, C. A. et al. Structures of ABCB10, a human ATP-binding cassette transporter in apo- and nucleotide-bound states. Proc. Natl Acad. Sci. USA 110, 9710–9715 (2013). This article describes the molecular mechanism of ABC transporters.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Murakami, S., Nakashima, R., Yamashita, E., Matsumoto, T. & Yamaguchi, A. Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature 443, 173–179 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Murakami, S., Nakashima, R., Yamashita, E. & Yamaguchi, A. Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419, 587–593 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Yu, E. W., McDermott, G., Zgurskaya, H. I., Nikaido, H. & Koshland, D. E. Structural basis of multiple drug-binding capacity of the AcrB multidrug efflux pump. Science 300, 976–980 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Seeger, M. A. Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism. Science 313, 1295–1298 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Sennhauser, G., Amstutz, P., Briand, C., Storchenegger, O. & Grütter, M. G. Drug export pathway of multidrug exporter AcrB revealed by DARPin inhibitors. PLoS Biol. 5, e7 (2007). This paper describes the molecular mechanism of transport of the RND inner membrane component.

    Article  PubMed  CAS  Google Scholar 

  14. Eicher, T. et al. Coupling of remote alternating-access transport mechanisms for protons and substrates in the multidrug efflux pump AcrB. eLife 3, e03145 (2014).

    Article  PubMed Central  Google Scholar 

  15. Balakrishnan, L., Hughes, C. & Koronakis, V. Substrate-triggered recruitment of the TolC channel-tunnel during type I export of hemolysin by Escherichia coli. J. Mol. Biol. 313, 501–510 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Delepelaire, P. Type I secretion in Gram-negative bacteria. Biochim. Biophys. Acta 1694, 149–161 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Yum, S. et al. Crystal structure of the periplasmic component of a tripartite macrolide-specific efflux pump. J. Mol. Biol. 387, 1286–1297 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Koronakis, V., Eswaran, J. & Hughes, C. Structure and function of TolC: the bacterial exit duct for proteins and drugs. Annu. Rev. Biochem. 73, 467–489 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Bavro, V. N. et al. Assembly and channel opening in a bacterial drug efflux machine. Mol. Cell 30, 114–121 (2008). This article describes the opening mechanism of TolC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pei, X. Y. et al. Structures of sequential open states in a symmetrical opening transition of the TolC exit duct. Proc. Natl Acad. Sci. USA 108, 2112–2117 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Du, D. et al. Structure of the AcrAB–TolC multidrug efflux pump. Nature 509, 512–515 (2014). This article describes the EM structure of a complete RND pump.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nivaskumar, M. & Francetic, O. Type II secretion system: a magic beanstalk or a protein escalator. Biochim. Biophys. Acta 1843, 1568–1577 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Korotkov, K. V., Sandkvist, M. & Hol, W. G. The type II secretion system: biogenesis, molecular architecture and mechanism. Nature Rev. Microbiol. 10, 336–351 (2012).

    Article  CAS  Google Scholar 

  24. Reichow, S. L., Korotkov, K. V., Hol, W. G. & Gonen, T. Structure of the cholera toxin secretion channel in its closed state. Nature Struct. Mol. Biol. 17, 1226–1232 (2010). This study describes the EM map of a T2SS secretin.

    Article  CAS  Google Scholar 

  25. Korotkov, K. V., Pardon, E., Steyaert, J. & Hol, W. G. Crystal structure of the N-terminal domain of the secretin GspD from ETEC determined with the assistance of a nanobody. Structure 17, 255–265 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Korotkov, K. V., Delarosa, J. R. & Hol, W. G. A dodecameric ring-like structure of the N0 domain of the type II secretin from enterotoxigenic Escherichia coli. J. Struct. Biol. 183, 354–362 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gu, S., Rehman, S., Wang, X., Shevchik, V. E. & Pickersgill, R. W. Structural and functional insights into the pilotin-secretin complex of the type II secretion system. PLoS Pathog. 8, e1002531 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Abendroth, J. et al. The three-dimensional structure of the cytoplasmic domains of EpsF from the type 2 secretion system of Vibrio cholerae. J. Struct. Biol. 166, 303–315 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Abendroth, J., Bagdasarian, M., Sandkvist, M. & Hol, W. G. The structure of the cytoplasmic domain of EpsL, an inner membrane component of the type II secretion system of Vibrio cholerae: an unusual member of the actin-like ATPase superfamily. J. Mol. Biol. 344, 619–633 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Abendroth, J., Murphy, P., Sandkvist, M., Bagdasarian, M. & Hol, W. G. The X-ray structure of the type II secretion system complex formed by the N-terminal domain of EpsE and the cytoplasmic domain of EpsL of Vibrio cholerae. J. Mol. Biol. 348, 845–855 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Abendroth, J., Kreger, A. C. & Hol, W. G. The dimer formed by the periplasmic domain of EpsL from the type 2 secretion system of Vibrio parahaemolyticus. J. Struct. Biol. 168, 313–322 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Korotkov, K. V. et al. Structural and functional studies on the interaction of GspC and GspD in the type II secretion system. PLoS Pathog. 7, e1002228 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McLaughlin, L. S., Haft, R. J. & Forest, K. T. Structural insights into the type II secretion nanomachine. Curr. Opin. Struct. Biol. 22, 208–216 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lu, C. et al. Hexamers of the type II secretion ATPase GspE from Vibrio cholerae with increased ATPase activity. Structure 21, 1707–1717 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gray, M. D., Bagdasarian, M., Hol, W. G. & Sandkvist, M. In vivo cross-linking of EpsG to EpsL suggests a role for EpsL as an ATPase-pseudopilin coupling protein in the type II secretion system of Vibrio cholerae. Mol. Microbiol. 79, 786–798 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Py, B., Loiseau, L. & Barras, F. An inner membrane platform in the type II secretion machinery of Gram-negative bacteria. EMBO Rep. 2, 244–248 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Campos, M., Nilges, M., Cisneros, D. A. & Francetic, O. Detailed structural and assembly model of the type II secretion pilus from sparse data. Proc. Natl Acad. Sci. USA 107, 13081–13086 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cisneros, D. A., Pehau-Arnaudet, G. & Francetic, O. Heterologous assembly of type IV pili by a type II secretion system reveals the role of minor pilins in assembly initiation. Mol. Microbiol. 86, 805–818 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Nivaskumar, M. et al. Distinct docking and stabilization steps of the pseudopilus conformational transition path suggest rotational assembly of type IV pilus-like fibers. Structure 22, 685–696 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Berry, J. L. et al. Structure and assembly of a trans-periplasmic channel for type IV pili in Neisseria meningitidis. PLoS Pathog. 8, e1002923 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Galan, J. E. & Wolf-Watz, H. Protein delivery into eukaryotic cells by type III secretion machines. Nature 444, 567–573 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Cornelis, G. R. The type III secretion injectisome. Nature Rev. Microbiol. 4, 811–825 (2006).

    Article  CAS  Google Scholar 

  43. Büttner, D. Protein export according to schedule: architecture, assembly, and regulation of type III secretion systems from plant- and animal-pathogenic bacteria. Microbiol. Mol. Biol. Rev. 76, 262–310 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Kubori, T. et al. Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280, 602–605 (1998). This study reveals and characterizes the first T3SS isolated from S . Typhimurium by EM.

    Article  CAS  PubMed  Google Scholar 

  45. Schraidt, O. & Marlovits, T. C. Three-dimensional model of Salmonella's needle complex at subnanometer resolution. Science 331, 1192–1195 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Marlovits, T. C. et al. Assembly of the inner rod determines needle length in the type III secretion injectisome. Nature 441, 637–640 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Marlovits, T. C. et al. Structural insights into the assembly of the type III secretion needle complex. Science 306, 1040–1042 (2004). This paper provides the first structural insights into a T3SS needle complex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kawamoto, A. et al. Common and distinct structural features of Salmonella injectisome and flagellar basal body. Sci. Rep. 3, 3369 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Eichelberg, K., Ginocchio, C. C. & Galan, J. E. Molecular and functional characterization of the Salmonella typhimurium invasion genes invB and invC: homology of InvC to the F0F1 ATPase family of proteins. J. Bacteriol. 176, 4501–4510 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Akeda, Y. & Galán, J. E. Chaperone release and unfolding of substrates in type III secretion. Nature 437, 911–915 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Lara-Tejero, M., Kato, J., Wagner, S., Liu, X. & Galán, J. E. A sorting platform determines the order of protein secretion in bacterial type III systems. Science 331, 1188–1191 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Schraidt, O. et al. Topology and organization of the Salmonella typhimurium type III secretion needle complex components. PLoS Pathog. 6, e1000824 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Spreter, T. et al. A conserved structural motif mediates formation of the periplasmic rings in the type III secretion system. Nature Struct. Mol. Biol. 16, 468–476 (2009).

    Article  CAS  Google Scholar 

  54. Yip, C. K. et al. Structural characterization of the molecular platform for type III secretion system assembly. Nature 435, 702–707 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Worrall, L. J., Lameignere, E. & Strynadka, N. C. Structural overview of the bacterial injectisome. Curr. Opin. Microbiol. 14, 3–8 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Abrusci, P. et al. Architecture of the major component of the type III secretion system export apparatus. Nature Struct. Mol. Biol. 20, 99–104 (2013).

    Article  CAS  Google Scholar 

  57. Kubori, T., Sukhan, A., Aizawa, S. I. & Galán, J. E. Molecular characterization and assembly of the needle complex of the Salmonella typhimurium type III protein secretion system. Proc. Natl Acad. Sci. USA 97, 10225–10230 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kimbrough, T. G. & Miller, S. I. Contribution of Salmonella typhimurium type III secretion components to needle complex formation. Proc. Natl Acad. Sci. USA 97, 11008–11013 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Poyraz, O. et al. Protein refolding is required for assembly of the type three secretion needle. Nature Struct. Mol. Biol. 17, 788–792 (2010).

    Article  CAS  Google Scholar 

  60. Loquet, A. et al. Atomic model of the type III secretion system needle. Nature 486, 276–279 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Radics, J., Konigsmaier, L. & Marlovits, T. C. Structure of a pathogenic type 3 secretion system in action. Nature Struct. Mol. Biol. 21, 82–87 (2014). This study describes the first three-dimensional snapshot of a T3SS needle complex in the process of substrate secretion.

    Article  CAS  Google Scholar 

  62. Blocker, A. J. et al. What's the point of the type III secretion system needle? Proc. Natl Acad. Sci. USA 105, 6507–6513 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Izore, T., Job, V. & Dessen, A. Biogenesis, regulation, and targeting of the type III secretion system. Structure 19, 603–612 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Galan, J. E., Lara-Tejero, M., Marlovits, T. C. & Wagner, S. Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. Annu. Rev. Microbiol. 68, 415–438 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Parsot, C., Hamiaux, C. & Page, A. L. The various and varying roles of specific chaperones in type III secretion systems. Curr. Opin. Microbiol. 6, 7–14 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Hu, B. et al. Visualization of the type III secretion sorting platform of Shigella flexneri. Proc. Natl Acad. Sci. USA 112, 1047–1052 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Alvarez-Martinez, C. E. & Christie, P. J. Biological diversity of prokaryotic type IV secretion systems. Microbiol. Mol. Biol. Rev. 73, 775–808 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Christie, P. J., Whitaker, N. & González-Rivera, C. Mechanism and structure of the bacterial type IV secretion systems. Biochim. Biophys. Acta 1843, 1578–1591 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Trokter, M., Felisberto-Rodrigues, C., Christie, P. J. & Waksman, G. Recent advances in the structural and molecular biology of type IV secretion systems. Curr. Opin. Struct. Biol. 27, 16–23 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Low, H. H. et al. Structure of a type IV secretion system. Nature 508, 550–553 (2014). This is the first study to describe the overall architecture of a T4SS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fronzes, R. et al. Structure of a type IV secretion system core complex. Science 323, 266–268 (2009). This paper describes the assembly, purification and EM structure of the core–OM complex of a T4SS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rivera-Calzada, A. et al. Structure of a bacterial type IV secretion core complex at subnanometre resolution. EMBO J. 32, 1195–1204 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chandran, V. et al. Structure of the outer membrane complex of a type IV secretion system. Nature 462, 1011–1015 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cascales, E. & Christie, P. J. Agrobacterium VirB10, an ATP energy sensor required for type IV secretion. Proc. Natl Acad. Sci. USA 101, 17228–17233 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Terradot, L. et al. Structures of two core subunits of the bacterial type IV secretion system, VirB8 from Brucella suis and ComB10 from Helicobacter pylori. Proc. Natl Acad. Sci. USA 102, 4596–4601 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Savvides, S. N. et al. VirB11 ATPases are dynamic hexameric assemblies: new insights into bacterial type IV secretion. EMBO J. 22, 1969–1980 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pena, A. et al. The hexameric structure of a conjugative VirB4 protein ATPase provides new insights for a functional and phylogenetic relationship with DNA translocases. J. Biol. Chem. 287, 39925–39932 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yeo, H. J., Yuan, Q., Beck, M. R., Baron, C. & Waksman, G. Structural and functional characterization of the VirB5 protein from the type IV secretion system encoded by the conjugative plasmid pKM101. Proc. Natl Acad. Sci. USA 100, 15947–15952 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gomis-Rüth, F. X. et al. The bacterial conjugation protein TrwB resembles ring helicases and F1-ATPase. Nature 409, 637–641 (2001).

    Article  PubMed  Google Scholar 

  80. Wallden, K. et al. Structure of the VirB4 ATPase, alone and bound to the core complex of a type IV secretion system. Proc. Natl Acad. Sci. USA 109, 11348–11353 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bradley, D. E. Morphological and serological relationships of conjugative pili. Plasmid 4, 155–169 (1980).

    Article  CAS  PubMed  Google Scholar 

  82. Durrenberger, M. B., Villiger, W. & Bachi, T. Conjugational junctions: morphology of specific contacts in conjugating Escherichia coli bacteria. J. Struct. Biol. 107, 146–156 (1991).

    Article  CAS  PubMed  Google Scholar 

  83. Aly, K. A. & Baron, C. The VirB5 protein localizes to the T-pilus tips in Agrobacterium tumefaciens. Microbiology 153, 3766–3775 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Cascales, E. & Christie, P. J. Definition of a bacterial type IV secretion pathway for a DNA substrate. Science 304, 1170–1173 (2004). This study defines the translocation pathway for a DNA substrate through the bacterial T4SS.

    Article  CAS  PubMed  Google Scholar 

  85. Ripoll-Rozada, J., Zunzunegui, S., de la Cruz, F., Arechaga, I. & Cabezon, E. Functional interactions of VirB11 traffic ATPases with VirB4 and VirD4 molecular motors in type IV secretion systems. J. Bacteriol. 195, 4195–4201 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zoued, A. et al. Architecture and assembly of the Type VI secretion system. Biochim. Biophys. Acta 1843, 1664–1673 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Ho, B. T., Dong, T. G. & Mekalanos, J. J. A view to a kill: the bacterial type VI secretion system. Cell Host Microbe 15, 9–21 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Pukatzki, S. et al. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc. Natl Acad. Sci. USA 103, 1528–1533 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Boyer, F., Fichant, G., Berthod, J., Vandenbrouck, Y. & Attree, I. Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources? BMC Genomics 10, 104 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Zheng, J. & Leung, K. Y. Dissection of a type VI secretion system in Edwardsiella tarda. Mol. Microbiol. 66, 1192–1206 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Ma, L. S., Lin, J. S. & Lai, E. M. An IcmF family protein, ImpLM, is an integral inner membrane protein interacting with ImpKL, and its walker a motif is required for type VI secretion system-mediated Hcp secretion in Agrobacterium tumefaciens. J. Bacteriol. 191, 4316–4329 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Leiman, P. G. et al. Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc. Natl Acad. Sci. USA 106, 4154–4159 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Basler, M., Pilhofer, M., Henderson, G. P., Jensen, G. J. & Mekalanos, J. J. Type VI secretion requires a dynamic contractile phage tail-like structure. Nature 483, 182–186 (2012). This study uses a combination of fluorescence microscopy and electron microscopy to visualize the T6SS in action.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Felisberto-Rodrigues, C. et al. Towards a structural comprehension of bacterial type VI secretion systems: characterization of the TssJ–TssM complex of an Escherichia coli pathovar. PLoS Pathog. 7, e1002386 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zoued, A. et al. TssK is a trimeric cytoplasmic protein interacting with components of both phage-like and membrane anchoring complexes of the type VI secretion system. J. Biol. Chem. 288, 27031–27041 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Shneider, M. M. et al. PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature 500, 350–353 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Brunet, Y. R., Hénin, J., Celia, H. & Cascales, E. Type VI secretion and bacteriophage tail tubes share a common assembly pathway. EMBO Rep. 15, 315–321 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mougous, J. D. et al. A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312, 1526–1530 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kube, S. et al. Structure of the VipA/B type VI secretion complex suggests a contraction-state-specific recycling mechanism. Cell Rep. 8, 20–30 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Bönemann, G., Pietrosiuk, A., Diemand, A., Zentgraf, H. & Mogk, A. Remodelling of VipA/VipB tubules by ClpV-mediated threading is crucial for type VI protein secretion. EMBO J. 28, 315–325 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Kudryashev, M. et al. Structure of the type VI secretion system contractile sheath. Cell 160, 952–962 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Silverman, J. M. et al. Haemolysin coregulated protein is an exported receptor and chaperone of type VI secretion substrates. Mol. Cell 51, 584–593 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Basler, M. & Mekalanos, J. J. Type 6 secretion dynamics within and between bacterial cells. Science 337, 815 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Clemens, D. L., Ge, P., Lee, B. Y., Horwitz, M. A. & Zhou, Z. H. Atomic structure of T6SS reveals interlaced array essential to function. Cell 160, 940–951 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Leo, J. C., Grin, I. & Linke, D. Type V secretion: mechanism(s) of autotransport through the bacterial outer membrane. Phil. Trans. R. Soc. B 367, 1088–1101 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Leyton, D. L., Rossiter, A. E. & Henderson, I. R. From self sufficiency to dependence: mechanisms and factors important for autotransporter biogenesis. Nature Rev. Microbiol. 10, 213–225 (2012).

    Article  CAS  Google Scholar 

  107. Junker, M., Besingi, R. N. & Clark, P. L. Vectorial transport and folding of an autotransporter virulence protein during outer membrane secretion. Mol. Microbiol. 71, 1323–1332 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Roman-Hernandez, G., Peterson, J. H. & Bernstein, H. D. Reconstitution of bacterial autotransporter assembly using purified components. eLife 3, e04234 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Voulhoux, R., Bos, M. P., Geurtsen, J., Mols, M. & Tommassen, J. Role of a highly conserved bacterial protein in outer membrane protein assembly. Science 299, 262–265 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Wu, T. et al. Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli. Cell 121, 235–245 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Hagan, C. L., Kim, S. & Kahne, D. Reconstitution of outer membrane protein assembly from purified components. Science 328, 890–892 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ieva, R., Tian, P., Peterson, J. H. & Bernstein, H. D. Sequential and spatially restricted interactions of assembly factors with an autotransporter β domain. Proc. Natl Acad. Sci. USA 108, E383–E391 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Noinaj, N., Kuszak, A. J., Balusek, C., Gumbart, J. C. & Buchanan, S. K. Lateral opening and exit pore formation are required for BamA function. Structure 22, 1055–1062 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Noinaj, N. et al. Structural insight into the biogenesis of β-barrel membrane proteins. Nature 501, 385–390 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ieva, R. & Bernstein, H. D. Interaction of an autotransporter passenger domain with BamA during its translocation across the bacterial outer membrane. Proc. Natl Acad. Sci. USA 106, 19120–19125 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Oomen, C. J. et al. Structure of the translocator domain of a bacterial autotransporter. EMBO J. 23, 1257–1266 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. van den Berg, B. Crystal structure of a full-length autotransporter. J. Mol. Biol. 396, 627–633 (2010). This article defines the first atomic structure of a full-length autotransporter, including both the translocator and passenger domains.

    Article  CAS  PubMed  Google Scholar 

  118. Meng, G., Surana, N. K., St Geme, J. W. & Waksman, G. Structure of the outer membrane translocator domain of the Haemophilus influenzae Hia trimeric autotransporter. EMBO J. 25, 2297–2304 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ieva, R., Skillman, K. M. & Bernstein, H. D. Incorporation of a polypeptide segment into the β-domain pore during the assembly of a bacterial autotransporter. Mol. Microbiol. 67, 188–201 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Skillman, K. M., Barnard, T. J., Peterson, J. H., Ghirlando, R. & Bernstein, H. D. Efficient secretion of a folded protein domain by a monomeric bacterial autotransporter. Mol. Microbiol. 58, 945–958 (2005).

    Article  CAS  PubMed  Google Scholar 

  121. Pavlova, O., Peterson, J. H., Ieva, R. & Bernstein, H. D. Mechanistic link between β barrel assembly and the initiation of autotransporter secretion. Proc. Natl Acad. Sci. USA 110, E938–E947 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Selkrig, J. et al. Discovery of an archetypal protein transport system in bacterial outer membranes. Nature Struct. Mol. Biol. 19, 506–510 (2012).

    Article  CAS  Google Scholar 

  123. Gruss, F. et al. The structural basis of autotransporter translocation by TamA. Nature Struct. Mol. Biol. 20, 1318–1320 (2013).

    Article  CAS  Google Scholar 

  124. Wright, K. J., Seed, P. C. & Hultgren, S. J. Development of intracellular bacterial communities of uropathogenic Escherichia coli depends on type 1 pili. Cell. Microbiol. 9, 2230–2241 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Lillington, J., Geibel, S. & Waksman, G. Reprint of “Biogenesis and adhesion of type 1 and P pili”. Biochim. Biophys. Acta 1850, 554–564 (2015).

    Article  CAS  PubMed  Google Scholar 

  126. Mu, X. Q. & Bullitt, E. Structure and assembly of P-pili: a protruding hinge region used for assembly of a bacterial adhesion filament. Proc. Natl Acad. Sci. USA 103, 9861–9866 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hahn, E. et al. Exploring the 3D molecular architecture of Escherichia coli type 1 pili. J. Mol. Biol. 323, 845–857 (2002).

    Article  CAS  PubMed  Google Scholar 

  128. Choudhury, D. et al. X-ray structure of the FimC–FimH chaperone-adhesin complex from uropathogenic Escherichia coli. Science 285, 1061–1066 (1999).

    Article  CAS  PubMed  Google Scholar 

  129. Hultgren, S. J., Normark, S. & Abraham, S. N. Chaperone-assisted assembly and molecular architecture of adhesive pili. Annu. Rev. Microbiol. 45, 383–415 (1991).

    Article  CAS  PubMed  Google Scholar 

  130. Vetsch, M. et al. Pilus chaperones represent a new type of protein-folding catalyst. Nature 431, 329–333 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Sauer, F. G. et al. Structural basis of chaperone function and pilus biogenesis. Science 285, 1058–1061 (1999).

    Article  CAS  PubMed  Google Scholar 

  132. Phan, G. et al. Crystal structure of the FimD usher bound to its cognate FimC–FimH substrate. Nature 474, 49–53 (2011). This paper provides the first structural insight into the mechanism of pilus assembly.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Geibel, S., Procko, E., Hultgren, S. J., Baker, D. & Waksman, G. Structural and energetic basis of folded-protein transport by the FimD usher. Nature 496, 243–246 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Remaut, H. et al. Donor-strand exchange in chaperone-assisted pilus assembly proceeds through a concerted β strand displacement mechanism. Mol. Cell 22, 831–842 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Verger, D., Miller, E., Remaut, H., Waksman, G. & Hultgren, S. Molecular mechanism of P pilus termination in uropathogenic Escherichia coli. EMBO Rep. 7, 1228–1232 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Olsen, A., Jonsson, A. & Normark, S. Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli. Nature 338, 652–655 (1989).

    Article  CAS  PubMed  Google Scholar 

  137. Hammar, M., Arnqvist, A., Bian, Z., Olsen, A. & Normark, S. Expression of two csg operons is required for production of fibronectin- and Congo red-binding curli polymers in Escherichia coli K-12. Mol. Microbiol. 18, 661–670 (1995).

    Article  CAS  PubMed  Google Scholar 

  138. Hammer, N. D. et al. The C-terminal repeating units of CsgB direct bacterial functional amyloid nucleation. J. Mol. Biol. 422, 376–389 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Robinson, L. S., Ashman, E. M., Hultgren, S. J. & Chapman, M. R. Secretion of curli fibre subunits is mediated by the outer membrane-localized CsgG protein. Mol. Microbiol. 59, 870–881 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Wang, X., Smith, D. R., Jones, J. W. & Chapman, M. R. In vitro polymerization of a functional Escherichia coli amyloid protein. J. Biol. Chem. 282, 3713–3719 (2007).

    Article  CAS  PubMed  Google Scholar 

  141. Goyal, P. et al. Structural and mechanistic insights into the bacterial amyloid secretion channel CsgG. Nature 516, 250–253 (2014). This study provides the first structure of the translocation channel in the curli system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Takagi, F., Koga, N. & Takada, S. How protein thermodynamics and folding mechanisms are altered by the chaperonin cage: molecular simulations. Proc. Natl Acad. Sci. USA 100, 11367–11372 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Brinker, A. et al. Dual function of protein confinement in chaperonin-assisted protein folding. Cell 107, 223–233 (2001).

    Article  CAS  PubMed  Google Scholar 

  144. Nenninger, A. A., Robinson, L. S. & Hultgren, S. J. Localized and efficient curli nucleation requires the chaperone-like amyloid assembly protein CsgF. Proc. Natl Acad. Sci. USA 106, 900–905 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Hodgkinson, J. L. et al. Three-dimensional reconstruction of the Shigella T3SS transmembrane regions reveals 12-fold symmetry and novel features throughout. Nature Struct. Mol. Biol. 16, 477–485 (2009).

    Article  CAS  Google Scholar 

  146. Leake, M. C. et al. Stoichiometry and turnover in single, functioning membrane protein complexes. Nature 443, 355–358 (2006).

    Article  CAS  PubMed  Google Scholar 

  147. Knowles, T. J., Scott-Tucker, A., Overduin, M. & Henderson, I. R. Membrane protein architects: the role of the BAM complex in outer membrane protein assembly. Nature Rev. Microbiol. 7, 206–214 (2009).

    Article  CAS  Google Scholar 

  148. Palomino, C., Marin, E. & Fernandez, L. A. The fimbrial usher FimD follows the SurA–BamB pathway for its assembly in the outer membrane of Escherichia coli. J. Bacteriol. 193, 5222–5230 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Chen, J., Lu, G., Lin, J., Davidson, A. L. & Quiocho, F. A. A tweezers-like motion of the ATP-binding cassette dimer in an ABC transport cycle. Mol. Cell 12, 651–661 (2003).

    Article  CAS  PubMed  Google Scholar 

  150. Yamagata, A. & Tainer, J. A. Hexameric structures of the archaeal secretion ATPase GspE and implications for a universal secretion mechanism. EMBO J. 26, 878–890 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Lu, C., Korotkov, K. V. & Hol, W. G. Crystal structure of the full-length ATPase GspE from the Vibrio vulnificus type II secretion system in complex with the cytoplasmic domain of GspL. J. Struct. Biol. 187, 223–235 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Zarivach, R., Vuckovic, M., Deng, W., Finlay, B. B. & Strynadka, N. C. Structural analysis of a prototypical ATPase from the type III secretion system. Nature Struct. Mol. Biol. 14, 131–137 (2007).

    Article  CAS  Google Scholar 

  153. Yeo, H. J., Savvides, S. N., Herr, A. B., Lanka, E. & Waksman, G. Crystal structure of the hexameric traffic ATPase of the Helicobacter pylori type IV secretion system. Mol. Cell 6, 1461–1472 (2000).

    Article  CAS  PubMed  Google Scholar 

  154. Steadman, D., Lo, A., Waksman, G. & Remaut, H. Bacterial surface appendages as targets for novel antibacterial therapeutics. Future Microbiol. 9, 887–900 (2014).

    Article  CAS  PubMed  Google Scholar 

  155. Ruer, S., Pinotsis, N., Steadman, D., Waksman, G. & Remaut, H. Virulence-targeted antibacterials: concept, promise, and susceptibility to resistance mechanisms. Chem. Biol. Drug Des. http://dx.doi.org/10.1111/cbdd.12517 (2015).

  156. Houben, E. N., Korotkov, K. V. & Bitter, W. Take five — type VII secretion systems of Mycobacteria. Biochim. Biophys. Acta 1843, 1707–1716 (2014).

    Article  CAS  PubMed  Google Scholar 

  157. Stanley, S. A., Raghavan, S., Hwang, W. W. & Cox, J. S. Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. Proc. Natl Acad. Sci. USA 100, 13001–13006 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Solomonson, M. et al. Structure of the mycosin-1 protease from the mycobacterial ESX-1 protein type VII secretion system. J. Biol. Chem. 288, 17782–17790 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Korotkova, N. et al. Structure of the Mycobacterium tuberculosis type VII secretion system chaperone EspG5 in complex with PE25–PPE41 dimer. Mol. Microbiol. 94, 367–384 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Cegelski, L. et al. Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nature Chem. Biol. 5, 913–919 (2009).

    Article  CAS  Google Scholar 

  161. Duncan, M. C., Linington, R. G. & Auerbuch, V. Chemical inhibitors of the type three secretion system: disarming bacterial pathogens. Antimicrob. Agents Chemother. 56, 5433–5441 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Paschos, A. et al. An in vivo high-throughput screening approach targeting the type IV secretion system component VirB8 identified inhibitors of Brucella abortus 2308 proliferation. Infect. Immun. 79, 1033–1043 (2011).

    Article  CAS  PubMed  Google Scholar 

  163. Brinton, C. C. Jr. Non-flagellar appendages of bacteria. Nature 183, 782–786 (1959).

    Article  PubMed  Google Scholar 

  164. d'Enfert, C., Ryter, A. & Pugsley, A. P. Cloning and expression in Escherichia coli of the Klebsiella pneumoniae genes for production, surface localization and secretion of the lipoprotein pullulanase. EMBO J. 6, 3531–3538 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Galán, J. E. & Curtiss, R. Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc. Natl Acad. Sci. USA 86, 6383–6387 (1989).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Koronakis, V., Sharff, A., Koronakis, E., Luisi, B. & Hughes, C. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405, 914–919 (2000).

    Article  CAS  PubMed  Google Scholar 

  167. Kuldau, G. A., De Vos, G., Owen, J., McCaffrey, G. & Zambryski, P. The virB operon of Agrobacterium tumefaciens pTiC58 encodes 11 open reading frames. Mol. Gen. Genet. 221, 256–266 (1990).

    Article  CAS  PubMed  Google Scholar 

  168. Ma, D. et al. Molecular cloning and characterization of acrA and acrE genes of Escherichia coli. J. Bacteriol. 175, 6299–6313 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Welch, R. A., Dellinger, E. P., Minshew, B. & Falkow, S. Haemolysin contributes to virulence of extra-intestinal E. coli infections. Nature 294, 665–667 (1981).

    Article  CAS  PubMed  Google Scholar 

  170. Pohlner, J., Halter, R., Beyreuther, K. & Meyer, T. F. Gene structure and extracellular secretion of Neisseria gonorrhoeae IgA protease. Nature 325, 458–462 (1987).

    Article  CAS  PubMed  Google Scholar 

  171. Korotkov, K. V. & Hol, W. G. Structure of the GspK–GspI–GspJ complex from the enterotoxigenic Escherichia coli type 2 secretion system. Nature Struct. Mol. Biol. 15, 462–468 (2008).

    Article  CAS  Google Scholar 

  172. Lederberg, J. & Tatum, E. L. Gene recombination in Escherichia coli. Nature 158, 558 (1946).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank T. Marlovits for providing an EM map with a longer T3SS needle and W. G. J. Hol for the constructed dodecameric ring of the GspD cytoplasmic domains. This work was funded by Wellcome Trust grant 098302 and ERC grant 321630 to G.W. The authors apologize for the omission of some studies owing to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Waksman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Pili

Long appendages that are found on the surface of Gram-negative bacteria and are involved in bacterial attachment, motility and inter-bacterial communication.

Curli

Extracellular amyloid-like protein fibres produced by some bacteria, which are involved in adhesion, biofilm formation and surface colonization.

SecYEG translocon

Evolutionarily conserved machinery that transports cytosolic proteins through the cytoplasmic membrane of bacteria and archaea and through the membrane of the endoplasmic reticulum in eukaryotic cells.

Tat system

(Twin-arginine-translocation system). A system that transports fully folded protein substrates across the cytoplasmic membrane of bacteria and archaea, and the thylakoid membrane of plant chloroplasts.

ATP-binding cassette transporter

(ABC transporter). A member of a ubiquitous superfamily of membrane-bound pumps present in all prokaryotes, fungi, plants, yeast and animals. Directional substrate transport across a membrane bilayer is achieved by an ATP-dependent flipping mechanism from an inward- to an outward-facing conformation.

Pseudopilus

A short pilus-like periplasmic structure in the type II secretion system (composed of the GspG, GspH, GspI, GspJ and GspK pseudopilins) that is involved in substrate extrusion through the outer membrane channel.

Type IV pilus

(T4P). A surface appendage used by many pathogenic bacteria for surface motility, biofilm formation and adhesion at the initial stages of infection. T4Ps enable directional crawling (twitching motility) by cycles of repeated extension-adhesion and retraction-release movements driven by ATPases.

Pilotins

Outer membrane lipoproteins that are involved in secretin oligomerization, insertion and correct localization in the bacterial outer membrane.

Bitopic

A transmembrane protein that contains only one transmembrane segment.

Polytopic

A transmembrane protein that crosses the lipid bilayer twice or more.

Solid-state nuclear magnetic resonance spectroscopy

(Solid-state NMR spectroscopy). A powerful atomic-scale characterization technique applicable to systems that cannot be investigated by either solution NMR or X-ray crystallography, ranging from non-crystalline or poorly crystalline assemblies to protein aggregates or fibrils.

Rosetta modelling

A unified software package for computational protein modelling and functional design.

Conjugative plasmids

Self-transmissible plasmids that possess all of the necessary genes for their own mobilization by conjugation.

ClpV recognition motif

A motif present in the amino-terminal domain of TssC that recruits the ATPase ClpV.

Translocation and assembly module

(TAM). A nanomachine composed of two proteins (the outer membrane protein TamA and the inner membrane TamB subunit), which promotes efficient secretion of autotransporters in Proteobacteria.

Donor strand exchange

(DSE). Chaperone-assisted mechanism of type I pilus assembly in which the stabilizing β-strand that is donated by the chaperone is replaced by the amino-terminal extension of the subunit that is next in assembly.

Amyloids

A class of thread-like protein aggregates that self-assemble into insoluble toxic nanofibres. In bacteria, the accumulation of such fibres promotes the formation of a protective biofilm, whereas in humans they are involved in neurodegenerative diseases.

Entropy gradient

An energy gradient produced between two compartments when, in one compartment, the conformational entropy of a peptide or protein is reduced (usually by confinement) while in the other compartment it is not.

Chaperonins

A family of ATP-driven molecular chaperones that form large multisubunit machines to promote protein folding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, T., Felisberto-Rodrigues, C., Meir, A. et al. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat Rev Microbiol 13, 343–359 (2015). https://doi.org/10.1038/nrmicro3456

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3456

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing