Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tackling antibiotic resistance: the environmental framework

Abstract

Antibiotic resistance is a threat to human and animal health worldwide, and key measures are required to reduce the risks posed by antibiotic resistance genes that occur in the environment. These measures include the identification of critical points of control, the development of reliable surveillance and risk assessment procedures, and the implementation of technological solutions that can prevent environmental contamination with antibiotic resistant bacteria and genes. In this Opinion article, we discuss the main knowledge gaps, the future research needs and the policy and management options that should be prioritized to tackle antibiotic resistance in the environment.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Minimizing the spread of antibiotic resistance in the environment.

References

  1. World Health Organization. Antimicrobial resistance: global report on surveillance (WHO, 2014).

  2. Cantón, R. Antibiotic resistance genes from the environment: a perspective through newly identified antibiotic resistance mechanisms in the clinical setting. Clin. Microbiol. Infect. 15 (Suppl. 1), 20–25 (2009).

    Article  Google Scholar 

  3. Allen, H. K. et al. Call of the wild: antibiotic resistance genes in natural environments. Nature Rev. Microbiol. 8, 251–259 (2010).

    Article  CAS  Google Scholar 

  4. Bush, K. et al. Tackling antibiotic resistance. Nature Rev. Microbiol. 9, 894–896 (2011).

    Article  CAS  Google Scholar 

  5. D'Costa, V. M. et al. Antibiotic resistance is ancient. Nature 477, 457–461 (2011).

    Article  CAS  Google Scholar 

  6. Baquero, F., Martinez, J. L. & Canton, R. Antibiotics and antibiotic resistance in water environments. Curr. Opin. Biotechnol. 19, 260–265 (2008).

    Article  CAS  Google Scholar 

  7. Martinez, J. L. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ. Pollut. 157, 2893–2902 (2009).

    Article  CAS  Google Scholar 

  8. Wright, G. D. Antibiotic resistance in the environment: a link to the clinic? Curr. Opin. Microbiol. 13, 589–594 (2010).

    Article  CAS  Google Scholar 

  9. Vaz-Moreira, I., Nunes, O. C. & Manaia, C. M. Bacterial diversity and antibiotic resistance in water habitats: searching the links with the human microbiome. FEMS Microbiol. Rev. 38, 761–778 (2014).

    Article  CAS  Google Scholar 

  10. Kahlmeter, G. Defining antibiotic resistance — towards international harmonization. Ups. J. Med. Sci. 119, 78–86 (2014).

    Article  Google Scholar 

  11. De Gelder, L., Williams, J. J., Ponciano, J. M., Sota, M. & Top, E. M. Adaptive plasmid evolution results in host-range expansion of a broad-host-range plasmid. Genetics 178, 2179–2190 (2008).

    Article  CAS  Google Scholar 

  12. Carattoli, A., Villa, L., Poirel, L., Bonnin, R. A. & Nordmann, P. Evolution of IncA/C blaCMY-2-carrying plasmids by acquisition of the blaNDM-1 carbapenemase gene. Antimicrob. Agents Chemother. 56, 783–786 (2012).

    Article  CAS  Google Scholar 

  13. Walsh, T. R., Weeks, J., Livermore, D. M. & Toleman, M. A. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect. Dis. 11, 355–362 (2011).

    Article  Google Scholar 

  14. Dantas, G., Sommer, M. O., Oluwasegun, R. D. & Church, G. M. Bacteria subsisting on antibiotics. Science 320, 100–103 (2008).

    Article  CAS  Google Scholar 

  15. Popowska, M. et al. Influence of soil use on prevalence of tetracycline, streptomycin, and erythromycin resistance and associated resistance genes. Antimicrob. Agents Chemother. 56, 1434–1443 (2012).

    Article  CAS  Google Scholar 

  16. Rizzo, L. et al. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Sci. Total Environ. 447, 345–360 (2013).

    Article  CAS  Google Scholar 

  17. Schwartz, T., Kohnen, W., Jansen, B. & Obst, U. Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms. FEMS Microbiol. Ecol. 43, 325–335 (2003).

    Article  CAS  Google Scholar 

  18. Volkmann, H., Schwartz, T., Bischoff, P., Kirchen, S. & Obst, U. Detection of clinically relevant antibiotic-resistance genes in municipal wastewater using real-time PCR (TaqMan). J. Microbiol. Methods 56, 277–286 (2004).

    Article  CAS  Google Scholar 

  19. Szczepanowski, R. et al. Detection of 140 clinically relevant antibiotic-resistance genes in the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to selected antibiotics. Microbiology 155, 2306–2319 (2009).

    Article  CAS  Google Scholar 

  20. Negreanu, Y., Pasternak, Z., Jurkevitch, E. & Cytryn, E. Impact of treated wastewater irrigation on antibiotic resistance in agricultural soils. Environ. Sci. Technol. 46, 4800–4808 (2012).

    Article  CAS  Google Scholar 

  21. Czekalski, N., Gascon Diez, E. & Burgmann, H. Wastewater as a point source of antibiotic-resistance genes in the sediment of a freshwater lake. ISME J. 8, 1381–1390 (2014).

    Article  CAS  Google Scholar 

  22. European Centre for Disease Prevention and Control. Antimicrobial resistance surveillance in Europe 2011 report (ECDC, 2012).

  23. Tzouvelekis, L. S., Markogiannakis, A., Psichogiou, M., Tassios, P. T. & Daikos, G. L. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin. Microbiol. Rev. 25, 682–707 (2012).

    Article  CAS  Google Scholar 

  24. Livermore, D. M. & Woodford, N. The β-lactamase threat in Enterobacteriaceae, Pseudomonas and Acinetobacter. Trends Microbiol. 14, 413–420 (2006).

    Article  CAS  Google Scholar 

  25. Jacobs, L. & Chenia, H. Y. Characterization of integrons and tetracycline resistance determinants in Aeromonas spp. isolated from South African aquaculture systems. Int. J. Food Microbiol. 114, 295–306 (2007).

    Article  CAS  Google Scholar 

  26. Cytryn, E. The soil resistome: the anthropogenic, the native, and the unknown. Soil Biol. Biochem. 63, 18–23 (2013).

    Article  CAS  Google Scholar 

  27. Allen, H. K. Antibiotic resistance gene discovery in food-producing animals. Curr. Opin. Microbiol. 19, 25–29 (2014).

    Article  CAS  Google Scholar 

  28. Wang, F. H. et al. High throughput profiling of antibiotic resistance genes in urban park soils with reclaimed water irrigation. Environ. Sci. Technol. 48, 9079–9085 (2014).

    Article  CAS  Google Scholar 

  29. de Jong, A. et al. Pan-European resistance monitoring programmes encompassing food-borne bacteria and target pathogens of food-producing and companion animals. Int. J. Antimicrob. Agents 41, 403–409 (2013).

    Article  CAS  Google Scholar 

  30. Morrissey, I. et al. A review of ten years of the study for monitoring antimicrobial resistance trends (SMART) from 2002 to 2011. Pharmaceuticals (Basel) 6, 1335–1346 (2013).

    Article  Google Scholar 

  31. McArthur, A. G. et al. The comprehensive antibiotic resistance database. Antimicrob. Agents Chemother. 57, 3348–3357 (2013).

    Article  CAS  Google Scholar 

  32. Liu, B. & Pop, M. ARDB — antibiotic resistance genes database. Nucleic Acids Res. 37, D443–D447 (2009).

    Article  CAS  Google Scholar 

  33. Lagier, J. C. et al. Microbial culturomics: paradigm shift in the human gut microbiome study. Clin. Microbiol. Infect. 18, 1185–1193 (2012).

    Article  CAS  Google Scholar 

  34. Graham, D. W. et al. Antibiotic resistance gene abundances associated with waste discharges to the Almendares River near Havana, Cuba. Environ. Sci. Technol. 45, 418–424 (2011).

    Article  CAS  Google Scholar 

  35. Huerta, B. et al. Exploring the links between antibiotic occurrence, antibiotic resistance, and bacterial communities in water supply reservoirs. Sci. Total Environ. 456–457, 161–170 (2013).

    Article  Google Scholar 

  36. Novo, A., Andre, S., Viana, P., Nunes, O. C. & Manaia, C. M. Antibiotic resistance, antimicrobial residues and bacterial community composition in urban wastewater. Water Res. 47, 1875–1887 (2013).

    Article  CAS  Google Scholar 

  37. American Public Health Association. Standard Methods for the Examination of Water and Wastewater 21st edn (APHA, 2005).

  38. Council of the European Union. Council Directive 98/83/EC. of 3 November 1998 on the quality of water intended for human consumption as amended by regulation 1882/2003/EC. FAOLEX [online], (1998).

  39. Fajardo, A. & Martinez, J. L. Antibiotics as signals that trigger specific bacterial responses. Curr. Opin. Microbiol. 11, 161–167 (2008).

    Article  CAS  Google Scholar 

  40. Baquero, F., Tedim, A. P. & Coque, T. M. Antibiotic resistance shaping multi-level population biology of bacteria. Front. Microbiol. 4, 15 (2013).

    Article  Google Scholar 

  41. Gibson, M. K., Forsberg, K. J. & Dantas, G. Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology. ISME J. 9, 207–216 (2014).

    Article  Google Scholar 

  42. Forsberg, K. J. et al. Bacterial phylogeny structures soil resistomes across habitats. Nature 509, 612–616 (2014).

    Article  CAS  Google Scholar 

  43. Port, J. A., Cullen, A. C., Wallace, J. C., Smith, M. N. & Faustman, E. M. Metagenomic frameworks for monitoring antibiotic resistance in aquatic environments. Environ. Health Perspect. 122, 222–228 (2014).

    Article  CAS  Google Scholar 

  44. Donato, J. J. et al. Metagenomic analysis of apple orchard soil reveals antibiotic resistance genes encoding predicted bifunctional proteins. Appl. Environ. Microbiol. 76, 4396–4401 (2010).

    Article  CAS  Google Scholar 

  45. Nesme, J. et al. Large-scale metagenomic-based study of antibiotic resistance in the environment. Curr. Biol. 24, 1096–1100 (2014).

    Article  CAS  Google Scholar 

  46. European Medicines Agency. Guideline on the environmental risk assessment of medicinal products for human use. Pre-authorisation evaluation of medicines for human use (EMA, 2006).

  47. European Commission. Common Implementation Strategy for the EU Water Framework Directive (2000/60/EC). The guidance document No. 27: technical guidance for deriving environmental quality standards (European Communities, 2011).

  48. Negri, M. C., Lipsitch, M., Blazquez, J., Levin, B. R. & Baquero, F. Concentration-dependent selection of small phenotypic differences in TEM β-lactamase-mediated antibiotic resistance. Antimicrob. Agents Chemother. 44, 2485–2491 (2000).

    Article  CAS  Google Scholar 

  49. Andersson, D. I. & Hughes, D. Evolution of antibiotic resistance at non-lethal drug concentrations. Drug Resist. Updat. 15, 162–172 (2012).

    Article  CAS  Google Scholar 

  50. Gullberg, E. et al. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog. 7, e1002158 (2011).

    Article  CAS  Google Scholar 

  51. Goh, E. B. et al. Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. Proc. Natl Acad. Sci. USA 99, 17025–17030 (2002).

    Article  CAS  Google Scholar 

  52. Davies, J., Spiegelman, G. B. & Yim, G. The world of subinhibitory antibiotic concentrations. Curr. Opin. Microbiol. 9, 445–453 (2006).

    Article  CAS  Google Scholar 

  53. Bruchmann, J., Kirchen, S. & Schwartz, T. Sub-inhibitory concentrations of antibiotics and wastewater influencing biofilm formation and gene expression of multi-resistant Pseudomonas aeruginosa wastewater isolates. Environ. Sci. Pollut. Res. Int. 20, 3539–3549 (2013).

    Article  CAS  Google Scholar 

  54. Tello, A., Austin, B. & Telfer, T. C. Selective pressure of antibiotic pollution on bacteria of importance to public health. Environ. Health Perspect. 120, 1100–1106 (2012).

    Article  Google Scholar 

  55. Ciusa, M. L. et al. A novel resistance mechanism to triclosan that suggests horizontal gene transfer and demonstrates a potential selective pressure for reduced biocide susceptibility in clinical strains of Staphylococcus aureus. Int. J. Antimicrob. Agents 40, 210–220 (2012).

    Article  CAS  Google Scholar 

  56. Davies, J. Everything depends on everything else. Clin. Microbiol. Infect. 15 (Suppl. 1), 1–4 (2009).

    Article  Google Scholar 

  57. Seiler, C. & Berendonk, T. U. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Front. Microbiol. 3, 399 (2012).

    Article  Google Scholar 

  58. Baquero, F. Environmental stress and evolvability in microbial systems. Clin. Microbiol. Infect. 15 (Suppl. 1), 5–10 (2009).

    Article  Google Scholar 

  59. Martinez, J. L. et al. A global view of antibiotic resistance. FEMS Microbiol. Rev. 33, 44–65 (2009).

    Article  CAS  Google Scholar 

  60. Nielsen, K. M., Bohn, T. & Townsend, J. P. Detecting rare gene transfer events in bacterial populations. Front. Microbiol. 4, 415 (2014).

    Article  Google Scholar 

  61. Nguyen, T. T. et al. Mathematical modeling of bacterial kinetics to predict the impact of antibiotic colonic exposure and treatment duration on the amount of resistant enterobacteria excreted. PLoS Comput. Biol. 10, e1003840 (2014).

    Article  Google Scholar 

  62. Kohanski, M. A., DePristo, M. A. & Collins, J. J. Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol. Cell 37, 311–320 (2010).

    Article  CAS  Google Scholar 

  63. European Parliament and the Council of the European Union. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy. FAOLEX [online], (2000).

  64. Czekalski, N., Berthold, T., Caucci, S., Egli, A. & Burgmann, H. Increased levels of multiresistant bacteria and resistance genes after wastewater treatment and their dissemination into Lake Geneva, Switzerland. Front. Microbiol. 3, 106 (2012).

    Article  Google Scholar 

  65. Vredenburg, J. et al. Quinolone-resistant Escherichia coli isolated from birds of prey in Portugal are genetically distinct from those isolated from water environments and gulls in Portugal, Spain and Sweden. Environ. Microbiol. 16, 995–1004 (2014).

    Article  CAS  Google Scholar 

  66. Jechalke, S. et al. Increased abundance and transferability of resistance genes after field application of manure from sulfadiazine-treated pigs. Appl. Environ. Microbiol. 79, 1704–1711 (2013).

    Article  CAS  Google Scholar 

  67. Udikovic-Kolic, N., Wichmann, F., Broderick, N. A. & Handelsman, J. Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization. Proc. Natl Acad. Sci. USA 111, 15202–15207 (2014).

    Article  CAS  Google Scholar 

  68. Baquero, F., Coque, T. M. & de la Cruz, F. Ecology and evolution as targets: the need for novel eco–evo drugs and strategies to fight antibiotic resistance. Antimicrob. Agents Chemother. 55, 3649–3660 (2011).

    Article  CAS  Google Scholar 

  69. Soonthornchaikul, N. et al. Resistance to three antimicrobial agents of Campylobacter isolated from organically- and intensively-reared chickens purchased from retail outlets. Int. J. Antimicrob. Agents 27, 125–130 (2006).

    Article  CAS  Google Scholar 

  70. Silbergeld, E. K., Graham, J. & Price, L. B. Industrial food animal production, antimicrobial resistance, and human health. Annu. Rev. Publ. Health 29, 151–169 (2008).

    Article  Google Scholar 

  71. Li, D. et al. Antibiotic-resistance profile in environmental bacteria isolated from penicillin production wastewater treatment plant and the receiving river. Environ. Microbiol. 11, 1506–1517 (2009).

    Article  CAS  Google Scholar 

  72. Kristiansson, E. et al. Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements. PLoS ONE 6, e17038 (2011).

    Article  CAS  Google Scholar 

  73. Jechalke, S., Heuer, H., Siemens, J., Amelung, W. & Smalla, K. Fate and effects of veterinary antibiotics in soil. Trends Microbiol. 22, 536–545 (2014).

    Article  CAS  Google Scholar 

  74. Shade, A. et al. Streptomycin application has no detectable effect on bacterial community structure in apple orchard soil. Appl. Environ. Microbiol. 79, 6617–6625 (2013).

    Article  CAS  Google Scholar 

  75. Kühn, I. et al. Occurrence and relatedness of vancomycin-resistant enterococci in animals, humans, and the environment in different European regions. Appl. Environ. Microbiol. 71, 5383–5390 (2005).

    Article  Google Scholar 

  76. World Health Organization. Tackling antibiotic resistance from a food safety perspective in Europe (WHO, 2011).

  77. Brooks, J. P., Adeli, A. & McLaughlin, M. R. Microbial ecology, bacterial pathogens, and antibiotic resistant genes in swine manure wastewater as influenced by three swine management systems. Water Res. 57, 96–103 (2014).

    Article  CAS  Google Scholar 

  78. Garcia-Migura, L., Hendriksen, R. S., Fraile, L. & Aarestrup, F. M. Antimicrobial resistance of zoonotic and commensal bacteria in Europe: the missing link between consumption and resistance in veterinary medicine. Vet. Microbiol. 170, 1–9 (2014).

    Article  CAS  Google Scholar 

  79. Moura, A., Henriques, I., Ribeiro, R. & Correia, A. Prevalence and characterization of integrons from bacteria isolated from a slaughterhouse wastewater treatment plant. J. Antimicrob. Chemother. 60, 1243–1250 (2007).

    Article  CAS  Google Scholar 

  80. Pei, R., Cha, J., Carlson, K. H. & Pruden, A. Response of antibiotic resistance genes (ARG) to biological treatment in dairy lagoon water. Environ. Sci. Technol. 41, 5108–5113 (2007).

    Article  CAS  Google Scholar 

  81. Resende, J. A. et al. Prevalence and persistence of potentially pathogenic and antibiotic resistant bacteria during anaerobic digestion treatment of cattle manure. Bioresour. Technol. 153, 284–291 (2014).

    Article  CAS  Google Scholar 

  82. Michael, I. et al. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review. Water Res. 47, 957–995 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the EU for support provided through COST Action TD0803: DARE, and the contributions of A. Tello, A. von Haeseler, H.-P. Grossart, H. Garelick, L. Rizzo, I. Henriques, M. Caniça, M. Coci, M. Wögerbauer and T. Tenson. C.M.M., T.U.B., T.S. and D.F.K. thank the National Funding Agencies through the WATER JPI project StARE (WaterJPI/0001/2013). Acknowledged funding: T.U.B. is funded by ANTI-Resist (02WRS1272A; Bundesministerium für Bildung und Forschung (BMBF)) and the 'support the best' programme of the Technische Universität Dresden and Deutsch Forschung Gründung; T.S. is funded by TransRisk (BMBF); C.M. is funded by the Agence Nationale de la Recherche, Programmes ECOTECH and BIOADAPT, and the Zone Atelier Moselle (ZAM); E.C. is funded by grant #821014213 from the Israeli Ministry of Agriculture; V.K. is funded by a European Regional Development Fund through the Centre of Excellence in Chemical Biology, Estonia; and C.M.M. is funded by the Fundação para a Ciência e a Tecnologia, Portugal, projects PEst-OE/EQB/LA0016/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Célia M. Manaia.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berendonk, T., Manaia, C., Merlin, C. et al. Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol 13, 310–317 (2015). https://doi.org/10.1038/nrmicro3439

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3439

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing