Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

A mechanistic theory to explain the efficacy of antiretroviral therapy

Abstract

In the early years of the AIDS epidemic, a diagnosis of HIV-1 infection was equivalent to a death sentence. The development of combination antiretroviral therapy (cART) in the 1990s to combat HIV-1 infection was one of the most impressive achievements of medical science. Today, patients who are treated early with cART can expect a near-normal lifespan. In this Opinion article, we propose a fundamental theory to explain the mechanistic basis of cART and why it works so well, including a model to assess and predict the efficacy of antiretroviral drugs alone or in combination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stages of the HIV-1 life cycle that are targeted by antiretroviral drugs.
Figure 2: Semi-log and median effect dose–response curves.
Figure 3: Empirical in vitro analysis of pairwise interactions between antiretroviral drugs.

Similar content being viewed by others

References

  1. Slutsker, M. D. L. 1993 revised classification system for HIV infection and expanded surveillance case definition for AIDS among adolescents and adults. MMWR Recomm. Rep. 41, 1–19 (1992).

    Google Scholar 

  2. Feng, Y., Broder, C. C., Kennedy, P. E. & Berger, E. A. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272, 872–877 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Choe, H. et al. The β-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 85, 1135–1148 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Arts, E. J. & Hazuda, D. J. HIV-1 antiretroviral drug therapy. Cold Spring Harb. Perspect. Med. 2, a007161 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Finzi, D. et al. Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nature Med. 5, 512–517 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Salgado, M. et al. Prolonged control of replication-competent dual- tropic human immunodeficiency virus-1 following cessation of highly active antiretroviral therapy. Retrovirology 8, 97 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sáez-Cirión, A. et al. Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI Study. PLoS Pathog. 9, e1003211 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Davey, R. T. et al. HIV-1 and T cell dynamics after interruption of highly active antiretroviral therapy (HAART) in patients with a history of sustained viral suppression. Proc. Natl Acad. Sci. USA 96, 15109–15114 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Richman, D. D. et al. The challenge of finding a cure for HIV infection. Science 323, 1304–1307 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Siliciano, J. D. & Siliciano, R. F. Recent trends in HIV-1 drug resistance. Curr. Opin. Virol. 3, 487–494 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Thompson, M. A. et al. Antiretroviral treatment of adult HIV infection: 2012 recommendations of the International Antiviral Society — USA panel. JAMA 308, 387–402 (2012).

    CAS  PubMed  Google Scholar 

  12. Jilek, B. L. et al. A quantitative basis for antiretroviral therapy for HIV-1 infection. Nature Med. 18, 446–451 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Bierman, F. W., van Agtmael, M. A., Nijhuis, M., Danner, S. A. & Boucher, C. A. HIV monotherapy with ritonavir-boosted protease inhibitors: a systematic review. AIDS 23, 279–291 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Mathis, S. et al. Effectiveness of protease inhibitor monotherapy versus combination antiretroviral maintenance therapy: a meta-analysis. PLoS ONE 6, e22003 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shen, L. et al. Dose–response curve slope sets class-specific limits on inhibitory potential of anti-HIV drugs. Nature Med. 14, 762–766 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. World Health Organization. WHO HIV drug resistance report 2012 (WHO Press, 2012).

  17. Broder, S. Twenty-five years of translational medicine in antiretroviral therapy: promises to keep. Sci. Transl. Med. 2, 39ps33 (2010).

    Article  PubMed  Google Scholar 

  18. Broder, S. The development of antiretroviral therapy and its impact on the HIV-1/AIDS pandemic. Antiviral Res. 85, 1–18 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Mitsuya, H. et al. 3′-Azido-3′-deoxythymidine (BW A509U): an antiviral agent that inhibits the infectivity and cytopathic effect of human T-lymphotropic virus type III/lymphadenopathy-associated virus in vitro. Proc. Natl Acad. Sci. USA 82, 7096–7100 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fischl, M. A. et al. The efficacy of azidothymidine (AZT) in the treatment of patients with AIDS and AIDS-related complex. A double-blind, placebo-controlled trial. N. Engl. J. Med. 317, 185–191 (1987).

    Article  CAS  PubMed  Google Scholar 

  21. Larder, B. A., Darby, G. & Richman, D. D. HIV with reduced sensitivity to zidovudine (AZT) isolated during prolonged therapy. Science 243, 1731–1734 (1989).

    Article  CAS  PubMed  Google Scholar 

  22. Hammer, S. M. et al. A trial comparing nucleoside monotherapy with combination therapy in HIV-infected adults with CD4 cell counts from 200 to 500 per cubic millimeter. N. Engl. J. Med. 335, 1081–1090 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Wei, X. et al. Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373, 117–122 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Ho, D. D. et al. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373, 123–126 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Hammer, S. M. et al. A controlled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimeter or less. N. Engl. J. Med. 337, 725–733 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Gulick, R. M. et al. Treatment with indinavir, zidovudine, and lamivudine in adults with human immunodeficiency virus infection and prior antiretroviral therapy. N. Engl. J. Med. 337, 734–739 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Perelson, A. S. et al. Decay characteristics of HIV-1-infected compartments during combination therapy. Nature 387, 188–191 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Palella, F. J. et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. N. Engl. J. Med. 338, 853–860 (1998).

    Article  PubMed  Google Scholar 

  29. Palmer, S. et al. Low-level viremia persists for at least 7 years in patients on suppressive antiretroviral therapy. Proc. Natl Acad. Sci. USA 105, 3879–3884 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Finzi, D. et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 278, 1295–1300 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Wong, J. K. et al. Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science 278, 1291–1295 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Chun, T. et al. Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc. Natl Acad. Sci. USA 94, 13193–13197 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mansky, L. M. & Temin, H. M. Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. J. Virol. 69, 5087–5094 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kieffer, T. L. et al. Genotypic analysis of HIV-1 drug resistance at the limit of detection: virus production without evolution in treated adults with undetectable HIV loads. J. Infect. Dis. 189, 1452–1465 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Bailey, J. R. et al. Residual human immunodeficiency virus type 1 viremia in some patients on antiretroviral therapy is dominated by a small number of invariant clones rarely found in circulating CD4+ T cells. J. Virol. 80, 6441–6457 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sedaghat, A. R., Siliciano, J. D., Brennan, T. P., Wilke, C. O. & Siliciano, R. F. Limits on replenishment of the resting CD4+ T cell reservoir for HIV in patients on HAART. PLoS Pathog. 3, e122 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Evering, T. et al. Absence of HIV-1 evolution in the gut-associated lymphoid tissue from patients on combination antiviral therapy initiated during primary infection. PLoS Pathog. 8, e1002506 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Josefsson, L. et al. The HIV-1 reservoir in eight patients on long-term suppressive antiretroviral therapy is stable with few genetic changes over time. Proc. Natl Acad. Sci. USA 110, E4987–E4996 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Frenkel, L. M. et al. Multiple viral genetic analyses detect low-level human immunodeficiency virus type 1 replication during effective highly active antiretroviral therapy. J. Virol. 77, 5721–5730 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tobin, N. et al. Evidence that low-level viremias during effective highly active antiretroviral therapy result from two processes: expression of archival virus and replication of virus. J. Virol. 79, 9625–9634 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bontell, I., Häggblom, A., Bratt, G., Albert, J. & Sönnerborg, A. Trends in antiretroviral therapy and prevalence of HIV drug resistance mutations in Sweden 1997–2011. PLoS ONE 8, e59337 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. De Luca, A. et al. Declining prevalence of HIV-1 drug resistance in antiretroviral treatment-exposed individuals in Western Europe. J. Infect. Dis. 207, 1216–1220 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Dinoso, J. B. et al. Treatment intensification does not reduce residual HIV-1 viremia in patients on highly active antiretroviral therapy. Proc. Natl Acad. Sci. USA 106, 9403–9408 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yukl, S. A. et al. Effect of raltegravir-containing intensification on HIV burden and T-cell activation in multiple gut sites of HIV-positive adults on suppressive antiretroviral therapy. AIDS 24, 2451–2460 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Gandhi, R. T. et al. The effect of raltegravir intensification on low-level residual viremia in HIV-infected patients on antiretroviral therapy: a randomized controlled trial. PLoS Med. 7, e1000321 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Dahl, V. et al. Raltegravir treatment intensification does not alter cerebrospinal fluid HIV-1 infection or immunoactivation in subjects on suppressive therapy. J. Infect. Dis. 204, 1936–1945 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Buzón, M. J. et al. HIV-1 replication and immune dynamics are affected by raltegravir intensification of HAART-suppressed subjects. Nature Med. 16, 460–465 (2010).

    Article  PubMed  CAS  Google Scholar 

  48. Hatano, et al. Increase in 2-long terminal repeat circles and decrease in D-dimer after raltegravir intensification in patients with treated HIV infection: a randomized, placebo-controlled trial. J. Infect. Dis. 208, 1436–1442 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Henrich, T. J. et al. Antiretroviral-free HIV-1 remission and viral rebound after allogeneic stem cell transplantation: report of 2 cases. Ann. Intern. Med. 161, 319–327 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Persaud, D. et al. Absence of detectable HIV-1 viremia after treatment cessation in an infant. N. Engl. J. Med. 369, 1828–1835 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hill, A. L. et al. Predicting the outcomes of treatment to eradicate the latent reservoir for HIV-1. Proc. Natl Acad. Sci. USA 111, 31475–31480 (2014).

    Article  CAS  Google Scholar 

  52. Flexner, C. in Goodman and Gilman's The Pharmacological Basis of Therapeutics. 12th edn. (ed. Brunton, L. L.) 1623–1664 (McGraw-Hill Professional, 2011).

    Google Scholar 

  53. Chou, T.-C. Derivation and properties of Michaelis–Menten type and Hill type equations for reference ligands. J. Theor. Biol. 59, 253–276 (1976).

    Article  CAS  PubMed  Google Scholar 

  54. Hill, A. V. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J. Physiol. 40, i–vii (1910).

    Article  Google Scholar 

  55. Ellner, P. D. & Neu, H. C. The inhibitory quotient. A method for interpreting minimum inhibitory concentration data. JAMA 246, 1575–1578 (1981).

    Article  CAS  PubMed  Google Scholar 

  56. Valantin, M. A. et al. Long-term efficacy of darunavir/ritonavir monotherapy in patients with HIV-1 viral suppression: week 96 results from the MONOI ANRS 136 study. J. Antimicrob. Chemother. 67, 691–695 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Meynard, J.-L. et al. Lopinavir/ritonavir monotherapy versus current treatment continuation for maintenance therapy of HIV-1 infection: the KALESOLO trial. J. Antimicrob. Chemother. 65, 2436–2444 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Shen, L. et al. A critical subset model provides a conceptual basis for the high antiviral activity of major HIV drugs. Sci. Transl. Med. 3, 91ra63 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lee, S.-K., Potempa, M. & Swanstrom, R. The choreography of HIV-1 proteolytic and virion assembly. J. Biol. Chem. 287, 40867–40874 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rabi, S. A. et al. Multi-step inhibition explains HIV-1 protease inhibitor pharmacodynamics and resistance. J. Clin. Invest. 123, 3848–3860 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kessl, J. J. et al. Multimode, cooperative mechanism of action of allosteric HIV-1 integrase inhibitors. J. Biol. Chem. 287, 16801–16811 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jurado, K. A. et al. Allosteric integrase inhibitor potency is determined through the inhibition of HIV-1 particle maturation. Proc. Natl Acad. Sci. USA 110, 8690–8695 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Perelson, A. S., Neumann, A. U., Markowitz, M., Leonard, J. M. & Ho, D. D. HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 271, 1582–1586 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Wodarz, D. & Nowak, M. A. Mathematical models of HIV pathogenesis and treatment. Bioessays 24, 1178–1187 (2002).

    Article  PubMed  Google Scholar 

  65. Shen, L., Rabi, S. A. & Siliciano, R. F. A novel method for determining the inhibitory potential of anti-HIV drugs. Trends Pharmacol. Sci. 30, 610–616 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sedaghat, A. R., Dinoso, J. B., Shen, L., Wilke, C. O. & Siliciano, R. F. Decay dynamics of HIV-1 depend on the inhibited stages of the viral life cycle. Proc. Natl Acad. Sci. USA 105, 4832–4837 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Stellbrink, H.-J. Raltegravir in the management of HIV-infected patients. Drug Des. Devel. Ther. 2, 281–288 (2008).

    Article  CAS  Google Scholar 

  68. van Lunzen, J. et al. Once daily dolutegravir (S/GSK1349572) in combination therapy in antiretroviral-naive adults with HIV: planned interim 48 week results from SPRING-1, a dose-ranging, randomised, phase 2b trial. Lancet Infect. Dis. 12, 111–118 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Aldous, J. L. & Haubrich, R. Defining treatment failure in resource-rich settings. Curr. Opin. HIV AIDS 4, 459–466 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Clavel, F. & Hance, A. J. HIV drug resistance. N. Engl. J. Med. 350, 1023–1035 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Johnson, V. A. et al. Update of the drug resistance mutations in HIV-1: March 2013. Top. Antivir. Med. 21, 6–14 (2013).

    PubMed  Google Scholar 

  72. Boyer, P. L., Sarafianos, S. G., Arnold, E. & Hughes, S. Selective excision of AZTMP by drug-resistant human immunodeficiency virus reverse transcriptase. J. Virol. 75, 4832–4842 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sampah, M. E. S., Shen, L., Jilek, B. L. & Siliciano, R. F. Dose–response curve slope is a missing dimension in the analysis of HIV-1 drug resistance. Proc. Natl Acad. Sci. USA 108, 7613–7618 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sigal, A. et al. Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy. Nature 477, 95–98 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Titanji, B. K., Aasa-Chapman, M., Pillay, D. & Jolly, C. Protease inhibitors effectively block cell-to-cell spread of HIV-1 between T cells. Retrovirology 10, 161 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Josefsson, L. et al. Majority of CD4+ T cells from peripheral blood of HIV-1-infected individuals contain only one HIV DNA molecule. Proc. Natl Acad. Sci. USA 108, 11199–11204 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Josefsson, L. et al. Single cell analysis of lymph node tissue from HIV-1 infected patients reveals that the majority of CD4+ T-cells contain one HIV-1 DNA molecule. PLoS Pathog. 9, e1003432 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rosenbloom, D. I. S., Hill, A. L., Rabi, S. A., Siliciano, R. F. & Nowak, M. A. Antiretroviral dynamics determines HIV evolution and predicts therapy outcome. Nature Med. 18, 1378–1385 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Kumar, G. N., Rodrigues, A. D., Buko, A. M. & Denissen, J. F. Cytochrome P450-mediated metabolism of the HIV-1 protease inhibitor ritonavir (ABT-538) in human liver microsomes. J. Pharmacol. Exp. Ther. 277, 423–431 (1996).

    CAS  PubMed  Google Scholar 

  80. Merry, C. et al. Saquinavir pharmacokinetics alone and in combination with ritonavir in HIV-infected patients. AIDS 11, F29–F33 (1997).

    Article  CAS  PubMed  Google Scholar 

  81. Havlir, D. V. et al. Drug susceptibility in HIV infection after viral rebound in patients receiving indinavir-containing regimens. JAMA 283, 229–234 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Pulido, F., Arribas, J., Hill, A. & Moecklinghoff, C. No evidence for evolution of protease inhibitor resistance from standard genotyping, after three years of treatment with darunavir/ritonavir, with or without nucleoside analogues. AIDS Res. Hum. Retroviruses 28, 1167–1169 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Chojnacki, J. et al. Maturation-dependent HIV-1 surface protein redistribution revealed by fluorescence nanoscopy. Science 338, 524–528 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Loewe, S. & Muischnek, H. Effect of combinations: mathematical basis of problem. Arch. Exp. Pathol. Pharmakol. 114, 313–326 (1926).

    Article  CAS  Google Scholar 

  85. Bliss, C. I. The toxicity of poisons jointly applied. Ann. Appl. Biol. 26, 585–615 (1939).

    Article  CAS  Google Scholar 

  86. Raboud, J. et al. Once daily dosing improves adherence to antiretroviral therapy. AIDS Behav. 15, 1397–1409 (2011).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institutes of Health (RO1 grant AI081600) and the Howard Hughes Medical Institute, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert F. Siliciano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laskey, S., Siliciano, R. A mechanistic theory to explain the efficacy of antiretroviral therapy. Nat Rev Microbiol 12, 772–780 (2014). https://doi.org/10.1038/nrmicro3351

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3351

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology