Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The legacy of Carl Woese and Wolfram Zillig: from phylogeny to landmark discoveries

Abstract

Two pioneers of twentieth century biology passed away during the past decade, Wolfram Zillig in April 2005 and Carl Woese in December 2012. Among several other accomplishments, Woese has been celebrated for the discovery of the domain Archaea and for establishing rRNA as the 'Rosetta Stone' of evolutionary and environmental microbiology. His work inspired many scientists in various fields of biology, and among them was Wolfram Zillig, who is credited with the discovery of several unique molecular features of archaea. In this Essay, we highlight the remarkable achievements of Woese and Zillig and consider how they have shaped the archaeal research landscape.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The late Carl Woese and the late Wolfram Zillig, two pioneers of the archaeal field.
Figure 2: RNA polymerase structure in the three domains of life.
Figure 3

References

  1. 1

    Woese, C. R. & Fox, G. E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl Acad. Sci. USA 74, 5088–5090 (1977).

    CAS  Article  PubMed  Google Scholar 

  2. 2

    Fox, G. E., Magrum, L. J., Balch, W. E., Wolfe, R. S. & Woese, C. R. Classification of methanogenic bacteria by 16S ribosomal RNA characterization. Proc. Natl Acad. Sci. USA 74, 4537–4541 (1977).

    CAS  Article  PubMed  Google Scholar 

  3. 3

    Pace, N. R., Sapp, J. & Goldenfeld, N. Phylogeny and beyond: scientific, historical, and conceptual significance of the first tree of life. Proc. Natl Acad. Sci. USA 109, 1011–1018 (2012).

    CAS  Article  PubMed  Google Scholar 

  4. 4

    Woese, C. R., Kandler, O. & Wheelis, M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl Acad. Sci. USA 87, 4576–4579 (1990).

    CAS  Article  PubMed  Google Scholar 

  5. 5

    Kandler, O. & Konig, H. Chemical composition of the peptidoglycan-free cell walls of methanogenic bacteria. Arch. Microbiol. 118, 141–152 (1978).

    CAS  Article  PubMed  Google Scholar 

  6. 6

    Schleper, C. et al. Picrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0. J. Bacteriol. 177, 7050–7059 (1995).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  7. 7

    Woese, C. R., Gupta, R., Hahn, C. M., Zillig, W. & Tu, J. The phylogenetic relationships of three sulfur dependent archaebacteria. Syst. Appl. Microbiol. 5, 97–105 (1984).

    CAS  Article  PubMed  Google Scholar 

  8. 8

    Zillig, W. et al. The archaebacterium Thermofilum pendens represents, a novel genus of the thermophilic, anaerobic sulfur respiring Thermoproteales. Syst. Appl. Microbiol. 4, 79–87 (1983).

    CAS  Article  PubMed  Google Scholar 

  9. 9

    Zillig, W. et al. Hyperthermus butylicus, a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. J. Bacteriol. 172, 3959–3965 (1990).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  10. 10

    Zillig, W., Holz, I., Janekovic, D., Schafer, W. & Reiter, W. D. The archaebacterium Thermococcus celer represents, a novel genus within the thermophilic branch of the archaebacteria. Syst. Appl. Microbiol. 4, 88–94 (1983).

    CAS  Article  PubMed  Google Scholar 

  11. 11

    Zillig, W., Tu, J. & Holz, I. Thermoproteales—a third order of thermoacidophilic archaebacteria. Nature 293, 85–86 (1981).

    CAS  Article  PubMed  Google Scholar 

  12. 12

    Stetter, K. O. A brief history of the discovery of hyperthermophilic life. Biochem. Soc. Trans. 41, 416–420 (2013).

    CAS  Article  PubMed  Google Scholar 

  13. 13

    Huet, J., Schnabel, R., Sentenac, A. & Zillig, W. Archaebacteria and eukaryotes possess DNA-dependent RNA polymerases of a common type. EMBO J. 2, 1291–1294 (1983).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  14. 14

    Martin, A. et al. SAV 1, a temperate u.v.-inducible DNA virus-like particle from the archaebacterium Sulfolobus acidocaldarius isolate B12. EMBO J. 3, 2165–2168 (1984).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  15. 15

    Zillig, W., Stetter, K. O. & Tobien, M. DNA-dependent RNA polymerase from Halobacterium halobium. Eur. J. Biochem. 91, 193–199 (1978).

    CAS  Article  PubMed  Google Scholar 

  16. 16

    Zillig, W., Stetter, K. O. & Janekovic, D. DNA-dependent RNA polymerase from the archaebacterium Sulfolobus acidocaldarius. Eur. J. Biochem. 96, 597–604 (1979).

    CAS  Article  PubMed  Google Scholar 

  17. 17

    Pisani, F. M., De Martino, C. & Rossi, M. A. DNA polymerase from the archaeon Sulfolobus solfataricus shows sequence similarity to family B DNA polymerases. Nucleic Acids Res. 20, 2711–2716 (1992).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  18. 18

    Langer, D., Hain, J., Thuriaux, P. & Zillig, W. Transcription in archaea: similarity to that in eucarya. Proc. Natl Acad. Sci. USA 92, 5768–5772 (1995).

    CAS  Article  PubMed  Google Scholar 

  19. 19

    Prangishvili, D. A. Molecular biology of archaebacteria. Mol. Biol. 17, 234–248 (1983) (in Russian).

    CAS  Google Scholar 

  20. 20

    Forterre, P., Squali, F. Z., Hughes, P. & Kohiyama, M. Studies on the role of dam methylation at the Escherichia coli chromosome replication origin (oriC). Adv. Exp. Med. Biol. 179, 543–549 (1984).

    CAS  Article  PubMed  Google Scholar 

  21. 21

    Forterre, P., Elie, C. & Kohiyama, M. Aphidicolin inhibits growth and DNA synthesis in halophilic arachaebacteria. J. Bacteriol. 159, 800–802 (1984).

    PubMed  PubMed Central  CAS  Google Scholar 

  22. 22

    Ishino, Y., Komori, K., Cann, I. K. & Koga, Y. A novel DNA polymerase family found in Archaea. J. Bacteriol. 180, 2232–2236 (1998).

    PubMed  PubMed Central  CAS  Google Scholar 

  23. 23

    Forterre, P., Mirambeau, G., Jaxel, C., Nadal, M. & Duguet, M. High positive supercoiling in vitro catalyzed by an ATP and polyethylene glycol-stimulated topoisomerase from Sulfolobus acidocaldarius. EMBO J. 4, 2123–2128 (1985).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  24. 24

    Kikuchi, A. & Asai, K. Reverse gyrase—a topoisomerase which introduces positive superhelical turns into DNA. Nature 309, 677–681 (1984).

    CAS  Article  PubMed  Google Scholar 

  25. 25

    Nadal, M., Mirambeau, G., Forterre, P., Reiter, W. D. & Duguet, M. Positively supercoiled DNA in a virus-like particle of an archaebacterium. Nature 321, 256–258 (1986).

    CAS  Article  Google Scholar 

  26. 26

    Jaxel, C. et al. Reverse gyrase binding to DNA alters the double helix structure and produces single-strand cleavage in the absence of ATP. EMBO J. 8, 3135–3139 (1989).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  27. 27

    Brochier-Armanet, C. & Forterre, P. Widespread distribution of archaeal reverse gyrase in thermophilic bacteria suggests a complex history of vertical inheritance and lateral gene transfers. Archaea 2, 83–93 (2007).

    CAS  Article  PubMed  Google Scholar 

  28. 28

    Forterre, P. A hot story from comparative genomics: reverse gyrase is the only hyperthermophile-specific protein. Trends Genet. 18, 236–237 (2002).

    CAS  Article  PubMed  Google Scholar 

  29. 29

    Bergerat, A. et al. An atypical topoisomerase II from Archaea with implications for meiotic recombination. Nature 386, 414–417 (1997).

    CAS  Article  PubMed  Google Scholar 

  30. 30

    Yin, Y. et al. A crucial role for the putative Arabidopsis topoisomerase VI in plant growth and development. Proc. Natl Acad. Sci. USA 99, 10191–10196 (2002).

    CAS  Article  PubMed  Google Scholar 

  31. 31

    Robbins, J. B. et al. The euryarchaeota, nature's medium for engineering of single-stranded DNA-binding proteins. J. Biol. Chem. 280, 15325–15339 (2005).

    CAS  Article  PubMed  Google Scholar 

  32. 32

    Richard, D. J. et al. Single-stranded DNA-binding protein hSSB1 is critical for genomic stability. Nature 453, 677–681 (2008).

    CAS  Article  PubMed  Google Scholar 

  33. 33

    Skaar, J. R. et al. INTS3 controls the hSSB1-mediated DNA damage response. J. Cell Biol. 187, 25–32 (2009).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  34. 34

    Yang, S. H. et al. The SOSS1 single-stranded DNA binding complex promotes DNA end resection in concert with Exo1. EMBO J. 32, 126–139 (2013).

    CAS  Article  PubMed  Google Scholar 

  35. 35

    Brochier-Armanet, C., Boussau, B., Gribaldo, S. & Forterre, P. Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nature Rev. Microbiol. 6, 245–252 (2008).

    CAS  Article  Google Scholar 

  36. 36

    Brochier-Armanet, C., Gribaldo, S. & Forterre, P. A. DNA topoisomerase IB in Thaumarchaeota testifies for the presence of this enzyme in the last common ancestor of Archaea and Eucarya. Biol. Direct 3, 54 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  37. 37

    Makarova, K. S., Yutin, N., Bell, S. D. & Koonin, E. V. Evolution of diverse cell division and vesicle formation systems in Archaea. Nature Rev. Microbiol. 8, 731–741 (2010).

    CAS  Article  Google Scholar 

  38. 38

    Makarova, K. S. & Koonin, E. V. Two new families of the FtsZ-tubulin protein superfamily implicated in membrane remodeling in diverse bacteria and archaea. Biol. Direct 5, 33 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  39. 39

    Yutin, N. & Koonin, E. V. Archaeal origin of tubulin. Biol. Direct 7, 10 (2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  40. 40

    Yutin, N., Wolf, M. Y., Wolf, Y. I. & Koonin, E. V. The origins of phagocytosis and eukaryogenesis. Biol. Direct 4, 9 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  41. 41

    Nunoura, T. et al. Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group. Nucleic Acids Res. 39, 3204–3223 (2011).

    CAS  Article  PubMed  Google Scholar 

  42. 42

    Jarrell, K. F. & Albers, S. V. The archaellum: an old motility structure with a new name. Trends Microbiol. 20, 307–312 (2012).

    CAS  Article  PubMed  Google Scholar 

  43. 43

    Reindl, S. et al. Insights into FlaI functions in archaeal motor assembly and motility from structures, conformations, and genetics. Mol. Cell 49, 1069–1082 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  44. 44

    Streif, S., Staudinger, W. F., Marwan, W. & Oesterhelt, D. Flagellar rotation in the archaeon Halobacterium salinarum depends on ATP. J. Mol. Biol. 384, 1–8 (2008).

    CAS  Article  PubMed  Google Scholar 

  45. 45

    Albers, S. V. & Meyer, B. H. The archaeal cell envelope. Nature Rev. Microbiol. 9, 414–426 (2011).

    CAS  Article  Google Scholar 

  46. 46

    Lassak, K., Ghosh, A. & Albers, S. V. Diversity, assembly and regulation of archaeal type IV pili-like and non-type-IV pili-like surface structures. Res. Microbiol. 163, 630–644 (2012).

    CAS  Article  PubMed  Google Scholar 

  47. 47

    Pohlschroder, M., Ghosh, A., Tripepi, M. & Albers, S. V. Archaeal type IV pilus-like structures—evolutionarily conserved prokaryotic surface organelles. Curr. Opin. Microbiol. 14, 357–363 (2011).

    CAS  Article  PubMed  Google Scholar 

  48. 48

    Zillig, W. et al. Genetic elements in the extremely thermophilic archaeon Sulfolobus. Extremophiles 2, 131–140 (1998).

    CAS  Article  PubMed  Google Scholar 

  49. 49

    Bize, A. et al. A unique virus release mechanism in the Archaea. Proc. Natl Acad. Sci. USA 106, 11306–11311 (2009).

    CAS  Article  PubMed  Google Scholar 

  50. 50

    Brumfield, S. K. et al. Particle assembly and ultrastructural features associated with replication of the lytic archaeal virus Sulfolobus turreted icosahedral virus. J. Virol. 83, 5964–5970 (2009).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  51. 51

    Reiter, W. D., Hudepohl, U. & Zillig, W. Mutational analysis of an archaebacterial promoter: essential role of a TATA box for transcription efficiency and start-site selection in vitro. Proc. Natl Acad. Sci. USA 87, 9509–9513 (1990).

    CAS  Article  PubMed  Google Scholar 

  52. 52

    Reiter, W. D. et al. Putative promoter elements for the ribosomal RNA genes of the thermoacidophilic archaebacterium Sulfolobus sp. strain B12. Nucleic Acids Res. 15, 5581–5595 (1987).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  53. 53

    Reiter, W. D., Palm, P., Yeats, S. & Zillig, W. Gene expression in archaebacteria: physical mapping of constitutive and UV-inducible transcripts from the Sulfolobus virus-like particle SSV1. Mol. Gen. Genet. 209, 270–275 (1987).

    CAS  Article  PubMed  Google Scholar 

  54. 54

    Reiter, W. D., Palm, P. & Zillig, W. Transcription termination in the archaebacterium Sulfolobus: signal structures and linkage to transcription initiation. Nucleic Acids Res. 16, 2445–2459 (1988).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  55. 55

    Reiter, W. D., Palm, P. & Zillig, W. Analysis of transcription in the archaebacterium Sulfolobus indicates that archaebacterial promoters are homologous to eukaryotic pol II promoters. Nucleic Acids Res. 16, 1–19 (1988).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  56. 56

    Hudepohl, U., Reiter, W. D. & Zillig, W. In vitro transcription of two rRNA genes of the archaebacterium Sulfolobus sp. B12 indicates a factor requirement for specific initiation. Proc. Natl Acad. Sci. USA 87, 5851–5855 (1990).

    CAS  Article  PubMed  Google Scholar 

  57. 57

    Schleper, C., Kubo, K. & Zillig, W. The particle SSV1 from the extremely thermophilic archaeon Sulfolobus is a virus: demonstration of infectivity and of transfection with viral DNA. Proc. Natl Acad. Sci. USA 89, 7645–7649 (1992).

    CAS  Article  PubMed  Google Scholar 

  58. 58

    Jonuscheit, M., Martusewitsch, E., Stedman, K. M. & Schleper, C. A reporter gene system for the hyperthermophilic archaeon Sulfolobus solfataricus based on a selectable and integrative shuttle vector. Mol. Microbiol. 48, 1241–1252 (2003).

    CAS  Article  PubMed  Google Scholar 

  59. 59

    Prangishvili, D. The wonderful world of archaeal viruses. Annu. Rev. Microbiol. 67, 565–585 (2013).

    CAS  Article  PubMed  Google Scholar 

  60. 60

    Prangishvili, D., Forterre, P. & Garrett, R. A. Viruses of the Archaea: a unifying view. Nature Rev. Microbiol. 4, 837–848 (2006).

    CAS  Article  Google Scholar 

  61. 61

    Prangishvili, D., Garrett, R. A. & Koonin, E. V. Evolutionary genomics of archaeal viruses: unique viral genomes in the third domain of life. Virus Res. 117, 52–67 (2006).

    CAS  Article  PubMed  Google Scholar 

  62. 62

    Pina, M., Bize, A., Forterre, P. & Prangishvili, D. The archeoviruses. FEMS Microbiol. Rev. 35, 1035–1054 (2011).

    CAS  Article  PubMed  Google Scholar 

  63. 63

    La Scola, B. et al. A giant virus in amoebae. Science 299, 2033 (2003).

    CAS  Article  PubMed  Google Scholar 

  64. 64

    Forterre, P. & Prangishvili, D. The major role of viruses in cellular evolution: facts and hypotheses. Curr. Opin. Virol. http://dx.doi.org/10.1016/j.coviro.2013.06.013 (2013).

  65. 65

    Koonin, E. V. & Dolja, V. V. A virocentric perspective on the evolution of life. Curr. Opin. Virol. http://dx.doi.org/10.1016/j.coviro.2013.06.008 (2013).

  66. 66

    Stetter, K. O., Konig, H. & Stackebrandt, E. Pyrodictium gen. nov., a new genus of submarine disc-shaped sulphur reducing archaebacteria growing optimally at 105 °C. Syst. Appl. Microbiol. 4, 535–551 (1983).

    CAS  Article  PubMed  Google Scholar 

  67. 67

    Pace, N. R. A molecular view of microbial diversity and the biosphere. Science 276, 734–740 (1997).

    CAS  Article  PubMed  Google Scholar 

  68. 68

    Probst, A. J., Auerbach, A. K. & Moissl-Eichinger, C. Archaea on human skin. PLoS ONE 8, e65388 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  69. 69

    Schleper, C., Jurgens, G. & Jonuscheit, M. Genomic studies of uncultivated archaea. Nature Rev. Microbiol. 3, 479–488 (2005).

    CAS  Article  Google Scholar 

  70. 70

    Tourna, M. et al. Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proc. Natl Acad. Sci. USA 108, 8420–8425 (2011).

    CAS  Article  PubMed  Google Scholar 

  71. 71

    Konneke, M. et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437, 543–546 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. 72

    Wuchter, C. et al. Archaeal nitrification in the ocean. Proc. Natl Acad. Sci. USA 103, 12317–12322 (2006).

    CAS  Article  PubMed  Google Scholar 

  73. 73

    Leininger, S. et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442, 806–809 (2006).

    CAS  Article  PubMed  Google Scholar 

  74. 74

    Boetius, A. et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623–626 (2000).

    CAS  Article  PubMed  Google Scholar 

  75. 75

    Angelakis, E., Armougom, F., Million, M. & Raoult, D. The relationship between gut microbiota and weight gain in humans. Future Microbiol. 7, 91–109 (2012).

    Article  PubMed  Google Scholar 

  76. 76

    Offre, P., Spang, A. & Schleper, C. Archaea in biogeochemical cycles. Annu. Rev. Microbiol. http://dx.doi.org/10.1146/annurev-micro-092412-155614 (2013).

  77. 77

    Iwabe, N., Kuma, K., Hasegawa, M., Osawa, S. & Miyata, T. Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc. Natl Acad. Sci. USA 86, 9355–9359 (1989).

    CAS  Article  PubMed  Google Scholar 

  78. 78

    Gogarten, J. P. et al. Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. Proc. Natl Acad. Sci. USA 86, 6661–6665 (1989).

    CAS  Article  PubMed  Google Scholar 

  79. 79

    Puhler, G. et al. Archaebacterial DNA-dependent RNA polymerases testify to the evolution of the eukaryotic nuclear genome. Proc. Natl Acad. Sci. USA 86, 4569–4573 (1989).

    CAS  Article  PubMed  Google Scholar 

  80. 80

    Zillig, W. Comparative biochemistry of Archaea and Bacteria. Curr. Opin. Genet. Dev. 1, 544–551 (1991).

    CAS  Article  PubMed  Google Scholar 

  81. 81

    Woese, C. R. Interpreting the universal phylogenetic tree. Proc. Natl Acad. Sci. USA 97, 8392–8396 (2000).

    CAS  Article  PubMed  Google Scholar 

  82. 82

    Gribaldo, S., Poole, A. M., Daubin, V., Forterre, P. & Brochier-Armanet, C. The origin of eukaryotes and their relationship with the Archaea: are we at a phylogenomic impasse? Nature Rev. Microbiol. 8, 743–752 (2010).

    CAS  Article  Google Scholar 

  83. 83

    Forterre, P. Giant viruses: conflicts in revisiting the virus concept. Intervirology 53, 362–378 (2010).

    Article  PubMed  Google Scholar 

  84. 84

    Martijn, J. & Ettema, T. J. From archaeon to eukaryote: the evolutionary dark ages of the eukaryotic cell. Biochem. Soc. Trans. 41, 451–457 (2013).

    CAS  Article  PubMed  Google Scholar 

  85. 85

    Boyer, M., Madoui, M. A., Gimenez, G., La Scola, B. & Raoult, D. Phylogenetic and phyletic studies of informational genes in genomes highlight existence of a 4 domain of life including giant viruses. PLoS ONE 5, e15530 (2010).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  86. 86

    Philippe, N. et al. Pandoraviruses: amoeba viruses with genomes up to 2.5 Mb reaching that of parasitic eukaryotes. Science 341, 281–286 (2013).

    CAS  Article  PubMed  Google Scholar 

  87. 87

    Werner, F. Structural evolution of multisubunit RNA polymerases. Trends Microbiol. 16, 247–250 (2008).

    CAS  Article  PubMed  Google Scholar 

  88. 88

    Oesterhelt, D. & Stoeckenius, W. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nature New Biol. 233, 149–152 (1971).

    CAS  Article  PubMed  Google Scholar 

  89. 89

    Brock, T. D., Brock, K. M., Belly, R. T. & Weiss, R. L. Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch. Microbiol. 84, 54–68 (1972).

    CAS  Google Scholar 

  90. 90

    Langworthy, T. A., Smith, P. F. & Mayberry, W. R. Lipids of Thermoplasma acidophilum. J. Bacteriol. 112, 1193–1200 (1972).

    PubMed  PubMed Central  CAS  Google Scholar 

  91. 91

    Yeats, S., McWilliam, P. & Zillig, W. A plasmid in the archaebacterium Sulfolobus acidocaldarius. EMBO J. 1, 1035–1038 (1982).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  92. 92

    Fiala, G. & Stetter, K. O. Pyrococcus furiosus sp. nov. represents anovel genus of marine heterotrophic archaebacteria growing optimally at 100°C. Arch. Microbiol., 56–61 (1986).

  93. 93

    Bertani, G. & Baresi, L. Genetic transformation in the methanogen Methanococcus voltae PS. J. Bacteriol. 169, 2730–2738 (1987).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  94. 94

    Thomm, M. & Wich, G. An archaebacterial promoter element for stable RNA genes with homology to the TATA box of higher eukaryotes. Nucleic Acids Res. 16, 151–163 (1988).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  95. 95

    Rosenshine, I., Tchelet, R. & Mevarech, M. The mechanism of DNA transfer in the mating system of an archaebacterium. Science 245, 1387–1389 (1989).

    CAS  Article  PubMed  Google Scholar 

  96. 96

    Cline, S. W. & Doolittle, W. F. Transformation of members of the genus Haloarcula with shuttle vectors based on Halobacterium halobium and Haloferax volcanii plasmid replicons. J. Bacteriol. 174, 1076–1080 (1992).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  97. 97

    DeLong, E. F. Archaea in coastal marine environments. Proc. Natl Acad. Sci. USA 89, 5685–5689 (1992).

    CAS  Article  PubMed  Google Scholar 

  98. 98

    Evers, U., Franceschi, F., Boddeker, N. & Yonath, A. Crystallography of halophilic ribosome: the isolation of an internal ribonucleoprotein complex. Biophys. Chem. 50, 3–16 (1994).

    CAS  Article  PubMed  Google Scholar 

  99. 99

    Omer, A. D. et al. Homologs of small nucleolar RNAs in Archaea. Science 288, 517–522 (2000).

    CAS  Article  PubMed  Google Scholar 

  100. 100

    Schleper, C., Puhler, G., Kuhlmorgen, B. & Zillig, W. Life at extremely low pH. Nature 375, 741–742 (1995).

    CAS  Article  PubMed  Google Scholar 

  101. 101

    Bult, C. J. et al. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273, 1058–1073 (1996).

    CAS  Article  PubMed  Google Scholar 

  102. 102

    Myllykallio, H. et al. Bacterial mode of replication with eukaryotic-like machinery in a hyperthermophilic archaeon. Science 288, 2212–2215 (2000).

    CAS  Article  PubMed  Google Scholar 

  103. 103

    Papke, R. T., Koenig, J. E., Rodriguez-Valera, F. & Doolittle, W. F. Frequent recombination in a saltern population of Halorubrum. Science 306, 1928–1929 (2004).

    CAS  PubMed  Google Scholar 

  104. 104

    Robinson, N. P. et al. Identification of two origins of replication in the single chromosome of the archaeon Sulfolobus solfataricus. Cell 116, 25–38 (2004).

    CAS  Article  PubMed  Google Scholar 

  105. 105

    French, S. L., Santangelo, T. J., Beyer, A. L. & Reeve, J. N. Transcription and translation are coupled in Archaea. Mol. Biol. Evol. 24, 893–895 (2007).

    CAS  Article  PubMed  Google Scholar 

  106. 106

    Hirata, A., Klein, B. J. & Murakami, K. S. The X-ray crystal structure of RNA polymerase from Archaea. Nature 451, 851–854 (2008).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  107. 107

    Samson, R. Y., Obita, T., Freund, S. M., Williams, R. L. & Bell, S. D. A role for the ESCRT system in cell division in archaea. Science 322, 1710–1713 (2008).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  108. 108

    Humbard, M. A. et al. Ubiquitin-like small archaeal modifier proteins (SAMPs) in Haloferax volcanii. Nature 463, 54–60 (2010).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank P. Dennis for valuable input to this article, and they apologize to all the scientists working on archaea whose work could not be cited owing to space restrictions, and for all the important findings that could not be included in the timeline. S.V.A. was funded by intramural funds from the Max Planck Society.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Sonja-Verena Albers or Patrick Forterre or David Prangishvili or Christa Schleper.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Albers, SV., Forterre, P., Prangishvili, D. et al. The legacy of Carl Woese and Wolfram Zillig: from phylogeny to landmark discoveries. Nat Rev Microbiol 11, 713–719 (2013). https://doi.org/10.1038/nrmicro3124

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing