Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Microbial colonization and controls in dryland systems

An Erratum to this article was published on 16 July 2012

This article has been updated

Key Points

  • Drylands constitute the most extensive terrestrial biome, covering more than one-third of the Earth's continental surface. An increase in dryland areas as a result of desertification is one of the most pressing environmental concerns of the twenty-first century.

  • Microbial life in and on rocks and soils forms a near-contiguous surface veneer of cryptic biological cover and assumes the foremost role in ecosystem processes. The communities are dominated by specialized cyanobacteria, fungi, lichens and mosses.

  • Microbial communities mediate inputs and outputs of gases, nutrients and water from dryland surfaces. These inputs and outputs, in turn, exert feedbacks on nutrient and hydrological cycles.

  • The stability and weathering of soils and rocks is regulated by dryland microbial communities and may have been crucial in the evolution of the terrestrial biosphere.

  • Dust mobilization in drylands causes regional and global dryland-related environmental impacts, the magnitude of which is affected by the surface microbial communities. These impacts can be on hydrological regimens, oceanic productivity and public health.

  • We propose a new definition of the critical zone in drylands that highlights this thin surface veneer of microbial colonization and activity. It is this critical zone that requires increased attention in the management of dryland environments.

Abstract

Drylands constitute the most extensive terrestrial biome, covering more than one-third of the Earth's continental surface. In these environments, stress limits animal and plant life, so life forms that can survive desiccation and then resume growth following subsequent wetting assume the foremost role in ecosystem processes. In this Review, we describe how these organisms assemble in unique soil- and rock-surface communities to form a thin veneer of mostly microbial biomass across hot and cold deserts. These communities mediate inputs and outputs of gases, nutrients and water from desert surfaces, as well as regulating weathering, soil stability, and hydrological and nutrient cycles. The magnitude of regional and global desert-related environmental impacts is affected by these surface communities; here, we also discuss the challenges for incorporating the consideration of these communities and their effects into the management of dryland resources.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The global distribution of drylands.
Figure 2: Microbial colonization in arid landscapes.
Figure 3: Microbial niches in arid landscapes.
Figure 4: Bioweathering of mineral rocks by microorganisms.
Figure 5: Biological soil crusts mediate the movement of materials and are responsible for energy entering and leaving the soil.

Change history

  • 16 July 2012

    In the original article, the wrong image was mistakenly introduced for Fig. 2h. The correct image has now been included. We apologize to the authors and to readers for this error and for any confusion caused.

References

  1. Thomas, D. S. G. in Arid Zone Geomorphology: Process, Form and Change in Drylands (ed. Thomas, D. S. G.) 3–16 (Wiley-Blackwell, 2011).

    Google Scholar 

  2. Barrow, C. J. World Atlas of Desertification (United Nations Environment Program) (Edward Arnold, 1992).

    Google Scholar 

  3. Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Koppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644 (2007).

    Article  Google Scholar 

  4. Millenium Ecosystem Assessment, 2005. Ecosystems and Human Well-being: Desertification Synthesis (World Resources Institute, 2005).

  5. Laity, J. in Deserts and Desert Environments (Wiley-Blackwell, 2008).

    Google Scholar 

  6. Belnap, J., Budel, B. & Lange, O. L. in Biological Soil Crusts: Structure, Function, and Management (eds Belnap, J. & Lange, O. L.) 3–30 (Springer-Verlag, 2003). An excellent introduction to the importance of desert surface communities, in a book that is recognized as the most comprehensive treatment of BSC ecology.

    Book  Google Scholar 

  7. Warren-Rhodes, K. A. et al. Hypolithic bacteria, dry limit of photosynthesis and microbial ecology in the hyperarid Atacama Desert. Microb. Ecol. 52, 389–398 (2006). This study ascertains the dry limit for life in the most arid desert on Earth, as well as the positive correlation between aridity and the age of SRSCs.

    Article  PubMed  Google Scholar 

  8. Pointing, S. B., et al. Highly specialized microbial diversity in hyper-arid polar desert. Proc. Natl Acad. Sci. USA 106, 19964–19969 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wong, K. Y., et al. Endolithic microbial colonization of limestone in a high altitude arid environment. Microb. Ecol. 59, 689–699 (2010).

    Article  PubMed  Google Scholar 

  10. Caruso, T., Chan, Y., Lacap, D. C., McKay, C. P. & Pointing, S. B. Stochastic and deterministic processes interact to determine global biogeography of arid soil bacteria. ISME J. 5, 1406–1413 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Davila, A., et al. Facilitation of endolithic microbial survival in the hyperarid core of the Atacama Desert by mineral deliquescence. J. Geophys. Res. 113, G01028 (2008).

    Article  Google Scholar 

  12. Azúa-Bustos, A. et al. Hypolithic cyanobacteria supported mainly by fog in the coastal range of the Atacama Desert. Microb. Ecol. 61, 568–581 (2011).

    Article  PubMed  Google Scholar 

  13. Lange, O. L. in Biological Soil Crusts: Structure, Function, and Management (eds Belnap, J. & Lange, O. L.) 217–240 (Springer-Verlag, 2003).

    Google Scholar 

  14. Warren-Rhodes, K. A., et al. Lithic cyanobacterial ecology across environmental gradients and spatial scales in China's hot and cold deserts. FEMS Microbiol. Ecol. 61, 470–482 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Schlesinger, W. H., et al. Community composition and photosynthesis by photoautotophs under quartz pebbles, southern Mojave Desert. Ecology 84, 3222–3231 (2003).

    Article  Google Scholar 

  16. Tracy, C. R., et al. Microclimate and limits to photosynthesis in a diverse community of hypolithic cyanobacteria in northern Australia. Environ. Microbiol. 12, 592–607 (2010).

    Article  PubMed  Google Scholar 

  17. Wendler, G. & Eaton, F. On the desertification of the Sahel Zone part 1: ground observations. Clim. Change 5, 365–380 (1983).

    Article  Google Scholar 

  18. Belnap, J. in Biological Soil Crusts: Structure, Function, and Management (eds Belnap, J. & Lange, O. L.) 177–192 (Springer-Verlag, 2003).

    Book  Google Scholar 

  19. Bahl, J. et al. Ancient origins determine global biogeography of hot and cold desert cyanobacteria. Nature Commun. 2, 163 (2011). This article reveals the ubiquity of the cyanobacterial Chroococcidiopsis spp. in deserts worldwide and uncovers climate-related patterns in biogeography.

    Article  CAS  Google Scholar 

  20. Wong, K. Y., et al. Hypolithic colonization of quartz pavement in the high altitude tundra of central Tibet. Microb. Ecol. 60, 730–739 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Nash, T. H. I. I. I., White, S. L. & Marsh, J. E. Lichen and moss distribution and biomass in hot desert ecosystems. Bryologist 80, 470–479 (1977).

    Article  Google Scholar 

  22. Staley, J. T., Palmer, F. & Adams, J. B. Microcolonial fungi: common inhabitants on desert rocks? Science 215, 1093–1095 (1982).

    Article  CAS  PubMed  Google Scholar 

  23. Gorbushina, A. A. Life on the rocks. Environ. Microbiol. 9, 1613–1631 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Dorn, R. I. & Oberlander, T. M. Microbial origin of desert varnishes. Science 213, 1245–1247 (1981).

    Article  CAS  PubMed  Google Scholar 

  25. Kuhlman, K. R., et al. Diversity of microorganisms within rock varnish in the Whipple Mountains, California. Appl. Environ. Microbiol. 72, 1708–1715 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Friedmann, E. I. Endolithic microbial life in hot and cold deserts. Orig. Life 10, 223–235 (1980). A classic paper by one of the great pioneers of desert microbiology, identifying the nature of endolithic colonization in hot and cold deserts.

    Article  CAS  PubMed  Google Scholar 

  27. Buedel, B. & Wessels, D. C. J. Rock inhabiting blue-green algae cyanobacteria from hot arid regions. Archiv. Hydrobiol. 92, 385–398 (1991).

    Google Scholar 

  28. Kellog, C. A. & Griffin, D. W. Aerobiology and the global transport of desert dust. Trends Ecol. Evol. 21, 638–644 (2006).

    Article  Google Scholar 

  29. Griffin, D. W. Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clin. Microbiol. Rev. 20, 459–477 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Pointing, S. B., Warren-Rhodes, K. A., Lacap, D. C., Rhodes, K. L. & McKay, C. P. Hypolithic community shifts occur as a result of liquid water availability along environmental gradients in China's hot and cold hyperarid deserts. Environ. Microbiol. 9, 414–424 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Bowker, M. A., Belnap, J., Davidson, D. W. & Goldstein, H. P. Correlates of biological soil crust abundance across a continuum of spatial scales: support for a hierarchical conceptual model. J. Ecol. 43, 152–163 (2006).

    Google Scholar 

  32. Liu, Y., et al. Control of lunar and martian dust—experimental insights from artificial and natural cyanobacterial and algal crusts in the desert of inner Mongolia, China. Astrobiology 8, 75–86 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Lange, O. L. Twenty-three years of growth measurements on the crustose lichen Caloplaca aurantia in the central Negev Desert, Israel. J. Bot. 39, 883–894 (1990).

    Google Scholar 

  34. Quade, J. Desert pavements and associated rock varnishes in the Mojave Desert: how old can they be? Geology 29, 855–858 (2001).

    Article  Google Scholar 

  35. Gao, Q. & Garcia-Pichel, F. Microbial ultraviolet sunscreens. Nature Rev. Microbiol. 9, 791–802 (2011).

    Article  CAS  Google Scholar 

  36. Daly, M. J. A new perspective on radiation resistance based on Deinococcus radiodurans. Nature Rev. Microbiol. 7, 237–245 (2009).

    Article  CAS  Google Scholar 

  37. Potts, M. Desiccation tolerance of prokaryotes. Microbiol. Mol. Biol. Rev. 58, 755–805 (1994).

    CAS  Google Scholar 

  38. Yura, T., Kanemori, M. & Morita, M. T. in Bacterial Stress Responses (eds Storz, G. & Hengge-Aronis, R.) 3–18 (American Society for Microbiology Press, 2000).

    Google Scholar 

  39. Oren, A. & Gunde-Cimerman, N. Mycosporines and mycosporine-like amino acids: UV protectants or multipurpose secondary metabolites? FEMS Microbiol. Lett. 269, 1–10 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Billi, D. & Potts, M. Life and death of dried prokaryotes. Res. Microbiol. 153, 7–12 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Cox, M. M. & Battista, J. R. Deinococcus radiodurans — the consummate survivor. Nature Rev. Microbiol. 3, 882–892 (2005).

    Article  CAS  Google Scholar 

  42. Billi, D., Friedmann, I. E., Hofer, K. G., Grilli-Caiola, M. & Ocampo-Friedmann, R. Ionizing-radiation resistance in the desiccation-tolerant cyanobacterium Chroococcidiopsis. Appl. Environ. Microbiol. 66, 1489–1492 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cockell, C. S. & Horneck, G. The history of the UV radiation climate of the earth – theoretical and space-based observations. Photochem. Photobiol. 73, 447–451 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Garcia-Pichel, F. & Pringault, O. Cyanobacteria track water in desert soils. Nature 413, 380–381 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Mazor, G., Kidron, G. J., Vonshak, A. & Abelovich, A. The role of cyanobacterial exopolysaccharides in structuring desert microbial crusts. FEMS Microbiol. Ecol. 21, 121–130 (1996).

    Article  CAS  Google Scholar 

  46. Viles, H. in Arid Zone Geomorphology: Process, Form and Change in Drylands (ed. Thomas, D. S. G.) 131–180 (Wiley-Blackwell, 2011).

    Google Scholar 

  47. Buedel, B. et al. Reshaping of sandstone surfaces by cryptoendolithic cyanbacteria: bioalkination causes chemical weathering in arid landscapes. Geobiology 2, 261–268 (2004).

    Article  Google Scholar 

  48. Viles, H. Ecological perspectives on rock surface weathering: towards a conceptual model. Geomorphology 13, 21–35 (1995).

    Article  Google Scholar 

  49. Bennett, P. C., Rogers, J. R. & Choi, W. J. Silicates, silicate weathering, and microbial ecology. Geomicrobiol. J. 18, 3–19 (2001).

    Article  CAS  Google Scholar 

  50. Banfield, J. F., Barker, W. W., Weelch, S. A. & Taunton, A. Biological impacts of mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere. Proc. Natl Acad. Sci. USA 96, 3404–3411 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gorbushina, A. A. in Fungi in Biogeochemical Cycles (ed. Gadd, G. M.) 267–288 (Cambridge Univ. Press, 2006).

    Book  Google Scholar 

  52. Garcia-Pichel, F., Ramirez-Reinat, E. & Gao, Q. Microbial excavation of solid carbonates powered by P-type ATPase-mediated transcellular Ca2+ transport. Proc. Natl Acad. Sci. USA 50, 21749–21754 (2010).

    Article  Google Scholar 

  53. Fomina, M., Burford, E. P. & Gadd, G. M. in Fungi in Biogeochemical Cycles (ed. Gadd, G. M.) 236–266 (Cambridge Univ. Press, 2006).

    Book  Google Scholar 

  54. Danin, A. & Garty, J. Distribution of cyanobacteria and lichens on hillsides of the Negev Highlands and their impact on biogenic weathering. Zeitschrift Geomorphol. 27, 423–444 (1983).

    Google Scholar 

  55. Schwartzmann, D. W. & Volk, T. Biotic enhancement of weathering and the habitability of Earth. Nature 340, 457–460 (1989). This report describes how SRSCs enhance weathering of mineral substrates by orders of magnitude.

    Article  Google Scholar 

  56. Hopkins, D. W., et al. Isotopic evidence for the provenance and turnover of organic carbon by soil microorganisms in the Antarctic Dry Valleys. Environ. Microbiol. 11, 597–608 (2008).

    Article  CAS  Google Scholar 

  57. Dregne, H. E. Desertification of Arid Lands: Advances in Desert and Arid Land Technology and Development Vol. 3 (Harwood Academic, 1983).

    Google Scholar 

  58. Belnap, J. & Gardner, J. S. Soil microstructure in soils of the Colorado Plateau: the role of the cyanobacterium Microcoleus vaginatus. Great Basin Nat. 53, 40–47 (1993).

    Google Scholar 

  59. Belnap, J. The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrol. Process. 20, 3159–3178 (2006).

    Article  CAS  Google Scholar 

  60. Lange, O. L., Meyer, A., Zellner, H. & Heber, U. Photosynthesis and water relations of lichen soil crusts: field measurements in the coastal fog zone of the Namib Desert. Funct. Ecol. 8, 253–264 (1994).

    Article  Google Scholar 

  61. Rietkirk, M., Dekker, S. C., de Ruiter, P. C. & van de Koppel, J. Self-organized patchiness and catastrophic shifts in ecosystems. Science 305, 1926–1929 (2004).

    Article  CAS  Google Scholar 

  62. Grote, E. E., Belnap, J., Housman, D. C. & Sparks, J. P. Carbon exchange in biological soil crust communities under differential temperatures and soil water contents: implications for global change. Glob. Change Biol. 16, 2763–2774 (2010).

    Article  Google Scholar 

  63. Rao, D. L. N. & Burns, R. G. Use of blue-green algae and bryophyte biomass as a source of nitrogen for oil-seed rape. Biol. Fertil. Soils 10, 61–64 (1990).

    Google Scholar 

  64. Rogers, S. L. & Burns, R. G. Changes in aggregate stability, nutrient status, indigenous microbial populations, and seedling emergence, following inoculation of soil with Nostoc muscorum. Biol. Fert. Soils 18, 209–215 (1994).

    Article  Google Scholar 

  65. Lange, O. L., et al. Taxonomic composition and photosynthetic characteristics of the “biological crusts” covering sand dunes in the Western Negev Desert. Funct. Ecol. 6, 519–527 (1992).

    Article  Google Scholar 

  66. McLendon, T. & Redente, E. F. Effects of nitrogen limitation on species replacement dynamics during early secondary succession on a semi-arid sagebrush site. Oecologia 91, 312–317 (1992).

    Article  PubMed  Google Scholar 

  67. Romney, E. M., Wallace, A. & Hunter, R. B. in Nitrogen in Desert Ecosystems (eds West, N. E. & Skujins, J. J.) (Dowden, Hutchison & Ross, 1978).

    Google Scholar 

  68. Belnap, J. in Biological Soil Crusts: Structure, Function, and Management (eds Belnap, J. & Lange, O. L.) 241–261 (Springer Verlag, 2003).

    Book  Google Scholar 

  69. Johnson, S. L., Neuer, S. & Garcia-Pichel, F. Exports of nitrogenous compounds due to incomplete cycling within biological soil crusts of arid lands. Environ. Microbiol. 9, 680–689 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Harper, K. T. & Belnap, J. The influence of biological soil crusts on mineral uptake by associated vascular plants. J. Arid Environ. 47, 347–357 (2001).

    Article  Google Scholar 

  71. Evans, R. D. & Ehleringer, J. R. A break in the nitrogen cycle in arid lands? Evidence from 15N of soils. Oecologia 94, 314–317 (1993).

    Article  CAS  PubMed  Google Scholar 

  72. Crenshaw, C., Lauber, C., Sinsabaugh, R. L. & Stavely, L. K. Fungal dominance of nitrogen transformation in semi-arid grassland. Biogeochemistry 87, 17–27 (2008).

    Article  CAS  Google Scholar 

  73. Johnson, S. L., Budinoff, C. R., Belnap, J. & Garcia-Pichel, F. Relevance of ammonium oxidation within biological soil crust communities. Environ. Microbiol. 7, 1–12 (2004).

    Article  CAS  Google Scholar 

  74. McCalley, C. K. & Sparks, J. P. Abiotic gas formation drives nitrogen loss from a desert ecosystem. Science 326, 837–840 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Friedmann, I. E. & Kibler, A. P. Nitrogen economy of endolithic microbial communities in hot and cold deserts. Microb. Ecol. 6, 95–108 (1980).

    Article  CAS  PubMed  Google Scholar 

  76. Lange, W. Chelating agents and blue-green algae. Can. J. Microbiol. 20, 1311–1321 (1974).

    Article  CAS  Google Scholar 

  77. Bose, P., Nagpal, U. S., Venkataraman, G. S. & Goyal, S. K. Solubilization of tricalcium phosphate by blue-green algae. Curr. Sci. 40, 165–166 (1971).

    CAS  Google Scholar 

  78. Gadd, G. M. Biosorption. Chem. Industry 13, 421–426 (1990).

    Google Scholar 

  79. Geesey, G. & Jang, L. in Microbial Mineral Recovery (eds Ehrlich, H. L. & Brierly, C. L.) 223–247 (McGraw-Hill, 1990).

    Google Scholar 

  80. Reynolds, R. L., Belnap, J., Reheis, M., Lamothe, P. & Luizers, F. Aoelian dust in Colorado Plateau soils: nutrient inputs and recent change in sources. Proc. Natl Acad. Sci. USA 98, 7123–7127 (2001). This work highlights the role of SRSCs in the capture and retention of desert dust.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bowling, D. R., Grote, E. E. & Belnap, J. Rain pulse response of soil CO2 exchange by biological soil crusts and grasslands of the semiarid Colorado Plateau, United States. J. Geophys. Res. 116, G03028 (2011).

    Google Scholar 

  82. Austin, A. T. et al. Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141, 221–235 (2004).

    Article  PubMed  Google Scholar 

  83. Belnap, J. in Biological Soil Crusts: Structure, Function, and Management (eds Belnap, J. & Lange, O. L.) 167–174 (Springer-Verlag, 2003).

    Book  Google Scholar 

  84. Darby, B. J., Neher, D. A. & Belnap, J. Soil nematode communities are ecologically more mature beneath late- than early-successional stage biological soil crusts. Appl. Soil Ecol. 35, 203–212 (2007).

    Article  Google Scholar 

  85. Johnson, N. C., Wilson, G. W. T., Bowker, M. A., Wilson, J. A. & Miller, R. M. Resource limitation is a driver of local adaptation in mycorrhizal symbioses 2010. Proc. Natl Acad. Sci. USA 107, 2093–2098 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Green, L. E., Porras-Alfaro, A. & Sinsabaugh, R. L. Translocation of nitrogen and carbon integrates biotic crust and grass production in desert grassland. J. Ecol. 96, 1076–1085 (2008). This article demonstrates the crucial role of SRSCs in carbon and nitrogen transfer to plant communities.

    Article  CAS  Google Scholar 

  87. Harper, K. T. & Pendleton, R. L. Cyanobacteria and cyanolichens: can they enhance availability of essential minerals for higher plants? Great Basin Nat. 53, 59–72 (1993).

    Google Scholar 

  88. Porras-Alfaro, A. & Bayman, P. Hidden fungi, emergent properties: endophytes and microbiomes. Annu. Rev. Phytopathol. 49, 291–315 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Egerton-Warburton, L. M., Graham, R. C. & Hubbert, K. R. Spatial variability in mycorrhizal hyphae and nutrient and water availability in a soil-weathered bedrock profile. Plant Soil 249, 331–342 (2003).

    Article  CAS  Google Scholar 

  90. Wiggs, G. F. S. in Arid Zone Geomorphology: Process, Form and Change in Drylands (ed. Thomas, D. S. G.) 583–598 (Wiley-Blackwell, 2011).

    Book  Google Scholar 

  91. Middleton, N. J. in Paleoclimatology and Paleometeorology: Modern and Past Patterns of Global Atmospheric Transport (eds Leinen, M. & Sarnthein, M.) 97–132 (Springer-Verlag, 1989).

    Book  Google Scholar 

  92. Field, J. P. et al. The ecology of dust. Frontiers Ecol. Env. 8, 423–430 (2010).

    Article  Google Scholar 

  93. Neff, J. C., Ballantyne, A. P. & Farmer, G. L. Increasing eolian dust deposition in the western United States linked to human activity. Nature Geosci. 1, 189–195 (2008).

    Article  CAS  Google Scholar 

  94. Painter, T. H., et al. Response of Colorado River runoff to dust radiative forcing in snow. Proc. Natl Acad. Sci. USA 107, 17125–17130 (2010). This report illustrates the fact that disturbance of desert SRSCs can lead to regional-scale disturbances in hydrology.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Sohm, J. A., Webb, E. A. & Capone, D. G. Emerging patterns of marine nitrogen fixation. Nature Rev. Microbiol. 9, 499–508 (2011).

    Article  CAS  Google Scholar 

  96. Jeon, E. M., et al. Impact of Asian dust events on airborne bacterial community assessed by molecular analysis. Atmos. Environ. 45, 4313–4321 (2011).

    Article  CAS  Google Scholar 

  97. Kuske, C. R., Yaeger, C. M., Johnson, S., Ticknor, O. L. & Belnap, J. Response and resilience of soil biocrust bacterial communities to chronic physical disturbance in arid shrublands. ISME J. 6, 886–897 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Belnap, J. & Eldridge, D. in Biological Soil Crusts: Structure, Function, and Management (eds Belnap, J. & Lange, O. L.) 363–384 (Springer-Verlag, 2003).

    Book  Google Scholar 

  99. Belnap, J. Recovery rates of cryptobiotic crusts: Inoculant use and assessment methods. Great Basin Nat. 53, 89–95 (1993).

    Google Scholar 

  100. Buttars, S. A. et al. Pelletized cyanobacterial soil amendments: laboratory testing for survival, escapability, and nitrogen fixation. Arid Soil Res. Rehabil. 12, 165–178 (1998).

    Google Scholar 

  101. Chen, L., et al. Man-made desert algal crusts as affected by environmental factors in Inner Mongolia, China. J. Arid. Environ. 67, 521–527 (2006).

    Article  Google Scholar 

  102. Wang, W., Liu, Y., Li, D., Hu, C. & Rao, B. Feasibility of cyanobacterial inoculation for biological soil crusts formation in desert area. Soil Biol. Biochem. 41, 926–929 (2009).

    Article  CAS  Google Scholar 

  103. US National Research Council. Basic Research Opportunities in the Earth Sciences (The National Academies Press, 2001).

  104. Budel, B., Karsten, U. & Garcia-Pichel, F. Ultraviolet-absorbing scytonemin and mycosporine-like amino acid derivatives in exposed rock-inhabiting cyanobacterial lichens. Oecologia 112, 165–172 (1997).

    Article  CAS  PubMed  Google Scholar 

  105. Rikkinen, J. What's behind the pretty colours? A study on the photobiology of lichens. Bryobrothera 4, 1–239 (1995).

    Google Scholar 

  106. Garvie, L. A. J., Knauth, L. P., Bungartz, F., Klonowski, S. & Nash, T. H. 3rd. Life in extreme environments: survival strategy of the endolithic desert lichen Verrucaria rubrocincta. Naturwissenscaften 95, 705–712 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Stephen B. Pointing's homepage

Jayne Belnap's homepage

Educational material about soil crusts and their conservation

UNCCD

Glossary

Poikilohydric

Pertaining to an organism: relying solely on the environment for water. These organisms have therefore evolved mechanisms to tolerate desiccation.

Soil- and rock-surface communities

Communities containing the microorganisms, lichens and mosses that colonize surface soil and rocks.

Water activity

The vapour pressure of a liquid divided by that for pure water at the same temperature; pure water has a water activity of 1. This is a measure of how biologically available the water molecules are in a solution.

Xeric stress

The challenge that is imposed on a cell, population, community or ecosystem by water limitation.

Biological soil crusts

Biological communities that inhabit soil surface layers to create a coherent structure.

Frost–heave

The movement of soil that is caused by freezing of subsurface moisture during freezing atmospheric conditions.

Hypoliths

Organisms that colonize the ventral surface (underside) of translucent stones and are usually in contact with the soil.

Epiliths

Organisms that colonize the exposed surface of rock or mineral substrates.

Biogenic mineral concentration

A localized increase in a mineral that is directly or indirectly due to biological activity.

Cryptoendoliths

Organisms that colonize the pore spaces of porous rocks or minerals.

Chasmoendoliths

Organisms that colonize existing cracks and fissures that have a connection to the surface in rock or mineral substrates.

Bioweathering

Microorganism-mediated physical or chemical dissolution of mineral substrates.

Endo-edaphic

Pertaining to organisms that colonize the cracks or pore spaces within rocks or that live within (rather than on top of) the soil.

Epi-edaphic

Pertaining to organisms that colonize the exposed surface of rock or soil.

Diazotrophy

The mechanism by which microorganisms fix atmospheric nitrogen into bio-available combined nitrogen.

Critical zone

The physical location at which the major biogeological factors that affect a particular environment interact with each other.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pointing, S., Belnap, J. Microbial colonization and controls in dryland systems. Nat Rev Microbiol 10, 551–562 (2012). https://doi.org/10.1038/nrmicro2831

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2831

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing