The origin of eukaryotes and their relationship with the Archaea: are we at a phylogenomic impasse?

Abstract

The origin of eukaryotes and their evolutionary relationship with the Archaea is a major biological question and the subject of intense debate. In the context of the classical view of the universal tree of life, the Archaea and the Eukarya have a common ancestor, the nature of which remains undetermined. Alternative views propose instead that the Eukarya evolved directly from a bona fide archaeal lineage. Several recent large-scale phylogenomic studies using an array of approaches are divided in supporting either one or the other scenario, despite analysing largely overlapping data sets of universal genes. We examine the reasons for such a lack of consensus and consider how alternative approaches may enable progress in answering this fascinating and as-yet-unresolved question.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Relationship between the Eukarya and the Archaea, as inferred from 'three primary domains' and 'two primary domains' scenarios.
Figure 2: Comparison of the data sets used in five of the phylogenomic analyses.
Figure 3: A two-step phylogenomic approach to investigating the relationship between the Archaea and the Eukarya.

References

  1. 1

    Woese, C. R., Kandler, O. & Wheelis, M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl Acad. Sci. USA 87, 4576–4579 (1990).

  2. 2

    Iwabe, N., Kuma, K., Hasegawa, M., Osawa, S. & Miyata, T. Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc. Natl Acad. Sci. USA 86, 9355–9359 (1989).

  3. 3

    Gogarten, J. P. et al. Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. Proc. Natl Acad. Sci. USA 86, 6661–6665 (1989).

  4. 4

    Embley, T. M. & Martin, W. Eukaryotic evolution, changes and challenges. Nature 440, 623–630 (2006).

  5. 5

    Lopez-Garcia, P. & Moreira, D. Metabolic symbiosis at the origin of eukaryotes. Trends Biochem. Sci. 24, 88–93 (1999).

  6. 6

    Martin, W., Hoffmeister, M., Rotte, C. & Henze, K. An overview of endosymbiotic models for the origins of eukaryotes, their ATP-producing organelles (mitochondria and hydrogenosomes), and their heterotrophic lifestyle. Biol. Chem. 382, 1521–1539 (2001).

  7. 7

    Schleper, C., Jurgens, G. & Jonuscheit, M. Genomic studies of uncultivated archaea. Nature Rev. Microbiol. 3, 479–488 (2005).

  8. 8

    Woese, C. R. Bacterial evolution. Microbiol. Rev. 51, 221–271 (1987).

  9. 9

    Lake, J. A., Henderson, E., Oakes, M. & Clark, M. W. Eocytes: a new ribosome structure indicates a kingdom with a close relationship to eukaryotes. Proc. Natl Acad. Sci. USA 81, 3786–3790 (1984).

  10. 10

    Rivera, M. C. & Lake, J. A. Evidence that eukaryotes and eocyte prokaryotes are immediate relatives. Science 257, 74–76 (1992).

  11. 11

    Margulis, L. Origin of Eukaryotic Cells (Yale Univ. Press, New Haven, 1970).

  12. 12

    Margulis, L. Archaeal-eubacterial mergers in the origin of Eukarya: phylogenetic classification of life. Proc. Natl Acad. Sci. USA 93, 1071–1076 (1996).

  13. 13

    Searcy, D. G., Stein, D. B. & Green, G. R. Phylogenetic affinities between eukaryotic cells and a thermophilic mycoplasma. Biosystems 10, 19–28 (1978).

  14. 14

    Searcy, D. G. Metabolic integration during the evolutionary origin of mitochondria. Cell Res. 13, 229–238 (2003).

  15. 15

    Martin, W. & Müller, M. The hydrogen hypothesis for the first eukaryote. Nature 392, 37–41 (1998).

  16. 16

    Moreira, D. & López-García, P. Symbiosis between methanogenic archaea and δ-Proteobacteria as the origin of eukaryotes: the syntrophic hypothesis. J. Mol. Evol. 47, 517–530 (1998).

  17. 17

    Dagan, T. & Martin, W. Testing hypotheses without considering predictions. Bioessays 29, 500–503 (2007).

  18. 18

    Davidov, Y. & Jurkevitch, E. Comments of Poole and Penny's essay “Evaluating hypotheses for the origin of eukaryotes”, BioEssays 29: 74–84. Bioessays 29, 615–616 (2007).

  19. 19

    Poole, A. & Penny, D. Eukaryote evolution: engulfed by speculation. Nature 447, 913 (2007).

  20. 20

    Poole, A. M. & Penny, D. Evaluating hypotheses for the origin of eukaryotes. Bioessays 29, 74–84 (2007).

  21. 21

    Poole, A. M. & Penny, D. Response to Dagan and Martin. Bioessays 29, 611–614 (2007).

  22. 22

    Gribaldo, S. & Philippe, H. Ancient phylogenetic relationships. Theor. Popul. Biol. 61, 391–408 (2002).

  23. 23

    Cox, C. J., Foster, P. G., Hirt, R. P., Harris, S. R. & Embley, T. M. The archaebacterial origin of eukaryotes. Proc. Natl Acad. Sci. USA 105, 20356–20361 (2008).

  24. 24

    Foster, P. G., Cox, C. J. & Embley, T. M. The primary divisions of life: a phylogenomic approach employing composition-heterogeneous methods. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 2197–2207 (2009).

  25. 25

    Rivera, M. C. & Lake, J. A. The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 431, 152–155 (2004).

  26. 26

    Lake, J. A. Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences. Nature 331, 184–186 (1988).

  27. 27

    Tourasse, N. J. & Gouy, M. Accounting for evolutionary rate variation among sequence sites consistently changes universal phylogenies deduced from rRNA and protein-coding genes. Mol. Phylogenet. Evol. 13, 159–168 (1999).

  28. 28

    Yutin, N., Makarova, K. S., Mekhedov, S. L., Wolf, Y. I. & Koonin, E. V. The deep archaeal roots of eukaryotes. Mol. Biol. Evol. 25, 1619–1630 (2008).

  29. 29

    Pisani, D., Cotton, J. A. & McInerney, J. O. Supertrees disentangle the chimerical origin of eukaryotic genomes. Mol. Biol. Evol. 24, 1752–1760 (2007).

  30. 30

    Ciccarelli, F. D. et al. Toward automatic reconstruction of a highly resolved tree of life. Science 311, 1283–1287 (2006).

  31. 31

    Harris, J. K., Kelley, S. T., Spiegelman, G. B. & Pace, N. R. The genetic core of the universal ancestor. Genome Res. 13, 407–412 (2003).

  32. 32

    Wu, D. et al. A phylogeny-driven genomic encyclopaedia of bacteria and archaea. Nature 462, 1056–1060 (2009).

  33. 33

    Tatusov, R. L. et al. The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res. 29, 22–28 (2001).

  34. 34

    Delsuc, F., Brinkmann, H. & Philippe, H. Phylogenomics and the reconstruction of the tree of life. Nature Rev. Genet. 6, 361–375 (2005).

  35. 35

    Snel, B., Huynen, M. A. & Dutilh, B. E. Genome trees and the nature of genome evolution. Annu. Rev. Microbiol. 59, 191–209 (2005).

  36. 36

    Tatusov, R. L., Koonin, E. V. & Lipman, D. J. A genomic perspective on protein families. Science 278, 631–637 (1997).

  37. 37

    Tatusov, R. L. et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4, 41 (2003).

  38. 38

    Makarova, K. S., Wolf, Y. I., Sorokin, A. V. & Koonin, E. V. Clusters of orthologous genes for 41 archaeal genomes and implications for evolutionary genomics of archaea. Biol. Direct, 2, 33 (2007).

  39. 39

    Snel, B., Bork, P. & Huynen, M. A. Genome phylogeny based on gene content. Nature Genet. 21, 108–110 (1999).

  40. 40

    Fitz-Gibbon, S. T. & House, C. H. Whole genome-based phylogenetic analysis of free-living microorganisms. Nucleic Acids Res. 27, 4218–4222 (1999).

  41. 41

    Lake, J. A. & Rivera, M. C. Deriving the genomic tree of life in the presence of horizontal gene transfer: conditioned reconstruction. Mol. Biol. Evol. 21, 681–690 (2004).

  42. 42

    Deppenmeier, U. et al. The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. J. Mol. Microbiol. Biotechnol. 4, 453–461 (2002).

  43. 43

    Ng, W. V. et al. Genome sequence of Halobacterium species NRC-1. Proc. Natl Acad. Sci. USA 97, 12176–12181 (2000).

  44. 44

    Daubin, V. & Gouy, M. Bacterial molecular phylogeny using supertree approach. Genome Inform. 12, 155–164 (2001).

  45. 45

    Dagan, T. & Martin, W. The tree of one percent. Genome Biol. 7, 118 (2006).

  46. 46

    Gribaldo, S. & Brochier-Armanet, C. The origin and evolution of Archaea: a state of the art. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361, 1007–1022 (2006).

  47. 47

    Boone, D. R. & Castenholz, R. W. Bergey's Manual of Systematic Bacteriology (Springer, New York, 2001).

  48. 48

    Fuhrman, J. A., McCallum, K. & Davis, A. A. Novel major archaebacterial group from marine plankton. Nature 356, 148–149 (1992).

  49. 49

    Brochier-Armanet, C., Boussau, B., Gribaldo, S. & Forterre, P. Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nature Rev. Microbiol. 6, 245–252 (2008).

  50. 50

    DeLong, E. F. Archaea in coastal marine environments. Proc. Natl Acad. Sci. USA 89, 5685–5689 (1992).

  51. 51

    Hallam, S. J. et al. Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum. Proc. Natl Acad. Sci. USA 103, 18296–18301 (2006).

  52. 52

    Zimmer, C. Origins. On the origin of eukaryotes. Science 325, 666–668 (2009).

  53. 53

    Robertson, C. E., Harris, J. K., Spear, J. R. & Pace, N. R. Phylogenetic diversity and ecology of environmental archaea. Curr. Opin. Microbiol. 8, 638–642 (2005).

  54. 54

    Matte-Tailliez, O., Brochier, C., Forterre, P. & Philippe, H. Archaeal phylogeny based on ribosomal proteins. Mol. Biol. Evol. 19, 631–639 (2002).

  55. 55

    Brochier, C., Forterre, P. & Gribaldo, S. An emerging phylogenetic core of Archaea: phylogenies of transcription and translation machineries converge following addition of new genome sequences. BMC Evol. Biol. 5, 36 (2005).

  56. 56

    Barns, S. M., Delwiche, C. F., Palmer, J. D. & Pace, N. R. Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc. Natl Acad. Sci. USA 93, 9188–9193 (1996).

  57. 57

    Elkins, J. G. et al. A korarchaeal genome reveals insights into the evolution of the archaea. Proc. Natl Acad. Sci. USA 105, 8102–8107 (2008).

  58. 58

    Cavalier-Smith, T. The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. Int. J. Syst. Evol. Microbiol. 52, 7–76 (2002).

  59. 59

    Martin, W. Archaebacteria (Archaea) and the origin of the eukaryotic nucleus. Curr. Opin. Microbiol. 8, 630–637 (2005).

  60. 60

    Lopez-Garcia, P. & Moreira, D. Selective forces for the origin of the eukaryotic nucleus. Bioessays 28, 525–533 (2006).

  61. 61

    Lopez-Garcia, P. & Moreira, D. On hydrogen transfer and a chimeric origin of eukaryotes. Trends Biochem. Sci. 24, 424 (1999).

  62. 62

    Bapteste, E., Charlebois, R. L., MacLeod, D. & Brochier, C. The two tempos of nuclear pore complex evolution: highly adapting proteins in an ancient frozen structure. Genome Biol. 6, R85 (2005).

  63. 63

    Mans, B. J., Anantharaman, V., Aravind, L. & Koonin, E. V. Comparative genomics, evolution and origins of the nuclear envelope and nuclear pore complex. Cell Cycle 3, 1612–1637 (2004).

  64. 64

    Field, M. C. & Dacks, J. B. First and last ancestors: reconstructing evolution of the endomembrane system with ESCRTs, vesicle coat proteins, and nuclear pore complexes. Curr. Opin. Cell Biol. 21, 4–13 (2009).

  65. 65

    Embley, T. M. Multiple secondary origins of the anaerobic lifestyle in eukaryotes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361, 1055–1067 (2006).

  66. 66

    van der Giezen, M. & Tovar, J. Degenerate mitochondria. EMBO Rep. 6, 525–530 (2005).

  67. 67

    Collins, L. & Penny, D. Complex spliceosomal organization ancestral to extant eukaryotes. Mol. Biol. Evol. 22, 1053–1066 (2005).

  68. 68

    Roy, S. W. & Gilbert, W. The evolution of spliceosomal introns: patterns, puzzles and progress. Nature Rev. Genet. 7, 211–221 (2006).

  69. 69

    Nakamura, T. M. & Cech, T. R. Reversing time: origin of telomerase. Cell 92, 587–590 (1998).

  70. 70

    Ramesh, M. A., Malik, S. B. & Logsdon, J. M. Jr. A phylogenomic inventory of meiotic genes; evidence for sex in Giardia and an early eukaryotic origin of meiosis. Curr. Biol. 15, 185–191 (2005).

  71. 71

    Desmond, E. & Gribaldo, S. Phylogenomics of sterol synthesis: insights into the origin, evolution, and diversity of a key eukaryotic feature. Genome Biol. Evol. 2009, 364–381 (2009).

  72. 72

    Eme, L., Moreira, D., Talla, E. & Brochier-Armanet, C. A complex cell division machinery was present in the last common ancestor of eukaryotes. PLoS ONE 4, e5021 (2009).

  73. 73

    Cavalier-Smith, T. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int. J. Syst. Evol. Microbiol. 52, 297–354 (2002).

  74. 74

    Jekely, G. Small GTPases and the evolution of the eukaryotic cell. Bioessays 25, 1129–1138 (2003).

  75. 75

    Brown, J. R. & Doolittle, W. F. Archaea and the prokaryote-to-eukaryote transition. Microbiol. Mol. Biol. Rev. 61, 456–502 (1997).

  76. 76

    Lecompte, O., Ripp, R., Thierry, J. C., Moras, D. & Poch, O. Comparative analysis of ribosomal proteins in complete genomes: an example of reductive evolution at the domain scale. Nucleic Acids Res. 30, 5382–5390 (2002).

  77. 77

    Londei, P. Evolution of translational initiation: new insights from the archaea. FEMS Microbiol. Rev. 29, 185–200 (2005).

  78. 78

    Werner, F. Structural evolution of multisubunit RNA polymerases. Trends Microbiol. 16, 247–250 (2008).

  79. 79

    Bell, S. D. & Jackson, S. P. Mechanism and regulation of transcription in archaea. Curr. Opin. Microbiol. 4, 208–213 (2001).

  80. 80

    Edgell, D. R. & Doolittle, W. F. Archaea and the origin(s) of DNA replication proteins. Cell 89, 995–998 (1997).

  81. 81

    Leipe, D. D., Aravind, L. & Koonin, E. V. Did DNA replication evolve twice independently? Nucleic Acids Res. 27, 3389–3401 (1999).

  82. 82

    Dennis, P. P. & Omer, A. Small non-coding RNAs in Archaea. Curr. Opin. Microbiol. 8, 685–694 (2005).

  83. 83

    Gaspin, C., Cavaille, J., Erauso, G. & Bachellerie, J. P. Archaeal homologs of eukaryotic methylation guide small nucleolar RNAs: lessons from the Pyrococcus genomes. J. Mol. Biol. 297, 895–906 (2000).

  84. 84

    Omer, A. D. et al. Homologs of small nucleolar RNAs in archaea. Science 288, 517–522 (2000).

  85. 85

    Hartung, S. & Hopfner, K. P. Lessons from structural and biochemical studies on the archaeal exosome. Biochem. Soc. Trans. 37, 83–87 (2009).

  86. 86

    Cubonova, L., Sandman, K., Hallam, S. J., Delong, E. F. & Reeve, J. N. Histones in crenarchaea. J. Bacteriol. 187, 5482–5485 (2005).

  87. 87

    Reeve, J. N., Sandman, K. & Daniels, C. J. Archaeal histones, nucleosomes, and transcription initiation. Cell 89, 999–1002 (1997).

  88. 88

    Gribaldo, S. & Cammarano, P. The root of the universal tree of life inferred from anciently duplicated genes encoding components of the protein-targeting machinery. J. Mol. Evol. 47, 508–516 (1998).

  89. 89

    Samson, R. Y., Obita, T., Freund, S. M., Williams, R. L. & Bell, S. D. A role for the ESCRT system in cell division in archaea. Science 322, 1710–1713 (2008).

  90. 90

    Lindas, A. C., Karlsson, E. A., Lindgren, M. T., Ettema, T. J. & Bernander, R. A unique cell division machinery in the archaea. Proc. Natl Acad. Sci. USA 105, 18942–18946 (2008).

  91. 91

    Armengaud, J. et al. Identification, purification, and characterization of an eukaryotic-like phosphopantetheine adenylyltransferase (coenzyme A biosynthetic pathway) in the hyperthermophilic archaeon Pyrococcus abyssi. J. Biol. Chem. 278, 31078–31087 (2003).

  92. 92

    Lawson, F. S., Charlebois, R. L. & Dillon, J. A. Phylogenetic analysis of carbamoylphosphate synthetase genes: complex evolutionary history includes an internal duplication within a gene which can root the tree of life. Mol. Biol. Evol. 13, 970–977 (1996).

  93. 93

    Pereto, J., Lopez-Garcia, P. & Moreira, D. Ancestral lipid biosynthesis and early membrane evolution. Trends Biochem. Sci. 29, 469–477 (2004).

  94. 94

    Bapteste, E., Brochier, C. & Boucher, Y. Higher-level classification of the Archaea: evolution of methanogenesis and methanogens. Archaea 1, 353–363 (2005).

  95. 95

    Forterre, P., Gribaldo, S., Gadelle, D. & Serre, M. C. Origin and evolution of DNA topoisomerases. Biochimie 89, 427–446 (2007).

  96. 96

    Ishino, Y., Komori, K., Cann, I. K. & Koga, Y. A novel DNA polymerase family found in Archaea. J. Bacteriol. 180, 2232–2236 (1998).

  97. 97

    Desmond, E., Brochier-Armanet, C. & Gribaldo, S. Phylogenomics of the archaeal flagellum: rare horizontal gene transfer in a unique motility structure. BMC Evol. Biol. 7, 106 (2007).

  98. 98

    Ng, S. Y., Zolghadr, B., Driessen, A. J., Albers, S. V. & Jarrell, K. F. Cell surface structures of archaea. J. Bacteriol. 190, 6039–6047 (2008).

  99. 99

    Volff, J. N. & Altenbuchner, J. A new beginning with new ends: linearisation of circular chromosomes during bacterial evolution. FEMS Microbiol. Lett. 186, 143–150 (2000).

  100. 100

    French, S. L., Santangelo, T. J., Beyer, A. L. & Reeve, J. N. Transcription and translation are coupled in Archaea. Mol. Biol. Evol. 24, 893–895 (2007).

  101. 101

    von Dohlen, C. D., Kohler, S., Alsop, S. T. & McManus, W. R. Mealybug β-proteobacterial endosymbionts contain γ-proteobacterial symbionts. Nature 412, 433–436 (2001).

  102. 102

    Brinkmann, H. & Philippe, H. Archaea sister group of bacteria? Indications from tree reconstruction artifacts in ancient phylogenies. Mol. Biol. Evol. 16, 817–825 (1999).

  103. 103

    Forterre, P. & Philippe, H. Where is the root of the universal tree of life? Bioessays 21, 871–879 (1999).

  104. 104

    Lopez, P., Forterre, P. & Philippe, H. The root of the tree of life in the light of the covarion model. J. Mol. Evol. 49, 496–508 (1999).

  105. 105

    Skophammer, R. G., Servin, J. A., Herbold, C. W. & Lake, J. A. Evidence for a Gram-positive, eubacterial root of the tree of life. Mol. Biol. Evol. 24, 1761–1768 (2007).

  106. 106

    de Crecy-Lagard, V. et al. Biosynthesis of wyosine derivatives in tRNA: an ancient and highly diverse pathway in archaea. Mol. Biol. Evol. 27, 2062–2077 (2010).

  107. 107

    Csuros, M. & Miklos, I. Streamlining and large ancestral genomes in Archaea inferred with a phylogenetic birth-and-death model. Mol. Biol. Evol. 26, 2087–2095 (2009).

Download references

Acknowledgements

The authors thank the Fondation des Treilles for support, along with the four anonymous referees for their valuable comments. A.M.P. is a Royal Swedish Academy of Sciences Research Fellow supported by a grant from the Knut and Alice Wallenberg Foundation. V.D. is supported by the grants 'Phylariane', 'Ecogenome' and 'Living Deep' from the French ANR (National Agency for Research). C.B.A. is supported by an Action Thématique et Incitative sur Programme (ATIP) of the French Centre National de la Recherche Scientifique (CNRS).

Author information

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Simonetta Gribaldo and Patrick Forterre's homepage

Anthony M. Poole's homepages

Anthony M. Poole's homepages

Vincent Daubin's homepage

Céline Brochier-Armanet's homepage

Glossary

COG

Family of homologous proteins constructed by comparing predicted proteins from complete genome sequences.

Distance method

Parametric phylogenetic method that aims to find the tree that minimizes the distance among sequences in a model of sequence evolution.

Domain

One of the three main divisions of life: the Archaea, the Bacteria and the Eukarya.

Horizontal gene transfer

The integration of an exogenous gene into the genome of an organism.

LECA

The most recent ancestor of all present-day eukaryotic lineages.

LUCA

The most recent ancestor of all present-day organisms.

Maximum-likelihood method

Parametric phylogenetic method that aims to maximize thelikelihood of a tree; that is, the probability of observing the studied alignment according to the tree topology and to a model of sequence evolution.

Maximum-parsimony method

A non-parametric phylogenetic method that aims to find the set of trees which minimizes the number of evolutionary changes.

Monophyletic group

A group of organisms consisting of an ancestor and its descendants.

Orthologous

Derived from a speciation event.

Paralogous

Derived from a gene duplication event.

Single-gene phylogenetic analysis

Reconstruction of a phylogenetic tree based on the comparison of homologous sequences representing a single gene.

Taxonomic sampling

Sampling of homologous sequences chosen for a phylogenetic analysis from all available sequences.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gribaldo, S., Poole, A., Daubin, V. et al. The origin of eukaryotes and their relationship with the Archaea: are we at a phylogenomic impasse?. Nat Rev Microbiol 8, 743–752 (2010). https://doi.org/10.1038/nrmicro2426

Download citation

Further reading