Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

On the rocks: the microbiology of Antarctic Dry Valley soils

Key Points

  • Approximately 0.3% of Antarctica is perpetually ice free, with the largest single area being the McMurdo Dry Valleys in Victoria Land. These glacially carved valleys are thought to be some of the coldest, driest places on earth and analogues of Martian terrestrial environments.

  • The valleys are dominated by glacially derived mineral soils, which are characterized by large annual and daily temperature fluctuations, sever aridity, extreme oligotrophy and, often, high salinity.

  • Eukaryotic and prokaryotic diversity analyses in the Dry Valleys suggests that these soils constitute one of the simplest trophic structures in the terrestrial biosphere.

  • Modern molecular tools have recently revealed that the Dry Valley soils harbour an extraordinary diversity of taxonomically unique bacteria, the communities of which seem to be structured primarily by abiotic forces. In addition, these studies are finding that the environment, which outwardly seems to be mundane and homogeneous, supports highly heterogeneous microbial communities.

  • The extreme nature of the Dry Valley environment has led to the development of microbial communities in protected niches. The most substantial of these are the lithic environments, where well-developed microbial communities have colonized cracks in rocks (these communities are known as chasmoliths), the undersides of translucent rocks (hypoliths) and the subsurface interstices of coarse crystalline rock types (endoliths).

  • Climate warming and cooling have both contributed to substantial changes in the structure and function of ecosystems in the Dry Valleys, in particular of soils that seem to be especially sensitive to climate change and variability. A decadal-scale cooling between 1986 and 2001 was associated with a 60% decline in the dominant invertebrate species, and a summer warming and melting event in January 2002 stimulated soil diversity and microbial biomass.

Abstract

The arid soils of the Antarctic Dry Valleys constitute some of the oldest, coldest, driest and most oligotrophic soils on Earth. Early studies suggested that the Dry Valley soils contained, at best, very low levels of viable microbiota. However, recent applications of molecular methods have revealed a dramatically contrasting picture — a very wide diversity of microbial taxa, many of which are uncultured and taxonomically unique, and a community that seems to be structured solely by abiotic processes. Here we review our understanding of these extreme Antarctic terrestrial microbial communities, with particular emphasis on the factors that are involved in their development, distribution and maintenance in these cold desert environments.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Phylogenetic diversity of bacterial 16S ribosomal RNA gene sequences from the McMurdo Dry Valleys, Antarctica, and comparison with bacterial diversity in clone libraries from the Antarctic Peninsula, a hot desert and temperate surface soils.
Figure 2: Schematic comparisons of unique Antarctic desert soil habitats.

References

  1. Boyd, W. L., Staley, J. T. & Boyd, J. W. in Antarctic Soils and Soil Forming Processes. Antarctic Research Series 125–159 (American Geophysical Union, Washington DC, 1966).

    Google Scholar 

  2. Bockheim, J. G. Functional diversity of soils along environmental gradients in the Ross Sea region, Antarctica. Geoderma 144, 32–42 (2008).

    CAS  Article  Google Scholar 

  3. Vincent, W. F. Microbial Ecosystems of Antarctica (Cambridge Univ. Press, Cambridge, UK, 1988).

    Google Scholar 

  4. Doran, P. T. et al. Antarctic climate cooling and terrestrial ecosystem response. Nature 415, 517–520 (2002).

    CAS  PubMed  Article  Google Scholar 

  5. Aislabie, J. et al. Dominant bacteria in soils of Marble Point and Wright Valley, Victoria Land, Antarctica. Soil Biol. Biochem. 38, 3041–3056 (2006).

    CAS  Article  Google Scholar 

  6. Dana, G. L., Wharton, R. A. & Dubayah, R. in Ecosystem Dynamics in A Polar Desert: the Mcmurdo Dry Valleys, Antarctica. Antarctic Research Series 39–64 (American Geophysical Union, Washington DC, 1998).

    Google Scholar 

  7. Poage, M. A., Barrettt, J. E., Virginia, R. A. & Wall, D. H. The influence of soil geochemistry on nematode distribution, McMurdo Dry Valleys, Antarctica. Arct. Antarct. Alp. Res. 40, 119–128 (2008).

    Article  Google Scholar 

  8. Smith, R. C. et al. Ozone depletion — ultraviolet-radiation and phytoplankton biology in Antarctic waters. Science 255, 952–959 (1992).

    CAS  PubMed  Article  Google Scholar 

  9. Tosi, S., Onofri, S., Brusoni, M., Zucconi, L. & Vishniac, H. Response of Antarctic soil fungal assemblages to experimental warming and reduction of UV radiation. Polar Biol. 28, 470–482 (2005).

    Article  Google Scholar 

  10. Vishniac, H. S. in Antarctic Microbiology 297–341 (Wiley-Liss, New York, 1993).

    Google Scholar 

  11. Claridge, G. G. C. & Campbell, I. B. The salts in Antarctic soils, their distribution and relationship to soil processes. Soil Sci. 123, 377–384 (1977).

    CAS  Article  Google Scholar 

  12. Bockheim, J. G. Properties and classification of cold desert soils from Antarctica. Soil Sci. Soc. Am. J. 61, 224–231 (1997).

    CAS  Article  Google Scholar 

  13. Treonis, A. M., Wall, D. H. & Virginia, R. A. The use of anhydrobiosis by soil nematodes in the Antarctic Dry Valleys. Funct. Ecol. 14, 460–467 (2000).

    Article  Google Scholar 

  14. Scott, R. F. The Voyage of the Discovery Vol. 1 (Smith, Elder & Co., London, UK, 1905).

    Google Scholar 

  15. Horowitz, N. H., Cameron, R. E. & Hubbard, J. S. Microbiology of the Dry Valleys of Antarctica. Science 176, 242–245 (1972).

    CAS  PubMed  Article  Google Scholar 

  16. Smith, J. J., Ah Tow, L., Stafford, W., Cary, C. & Cowan, D. A. Bacterial diversity in three different Antarctic cold desert mineral soils. Microb. Ecol. 51, 413–421 (2006). The first application of molecular tools to demonstrate that the microbial diversity in Dry Valley soils is higher than was expected.

    PubMed  Article  Google Scholar 

  17. Barrett, J. E. et al. Co-variation in soil biodiversity and biogeochemistry in northern and southern Victoria Land, Antarctica. Antarct. Sci. 18, 535–548 (2006).

    Article  Google Scholar 

  18. Yergeau, E., Newsham, K. K., Pearce, D. A. & Kowalchuk, G. A. Patterns of bacterial diversity across a range of Antarctic terrestrial habitats. Environ. Microbiol. 9, 2670–2682 (2007). An excellent paper looking at the diversity of soil bacteria across a broad latitudinal gradient of Antarctic Peninsula environments.

    CAS  PubMed  Article  Google Scholar 

  19. Niederberger, T. D. et al. Microbial community composition in soils of Northern Victoria Land, Antarctica. Environ. Microbiol. 10, 1713–1724 (2008).

    CAS  PubMed  Article  Google Scholar 

  20. Cowan, D., Russell, N., Mamais, A. & Sheppard, D. Antarctic Dry Valley mineral soils contain unexpectedly high levels of microbial biomass. Extremophiles 6, 431–436 (2002).

    CAS  PubMed  Article  Google Scholar 

  21. Barrett, J. E. et al. Persistent effects of a discrete warming event on a polar desert ecosystem. Glob. Chang. Biol. 14, 2249–2261 (2008).

    Article  Google Scholar 

  22. Barrett, J. E., Virginia, R. A., Wall, D. H. & Adams, B. J. Decline in a dominant invertebrate species contributes to altered carbon cycling in a low-diversity soil ecosystem. Glob. Chang. Biol. 14, 1734–1744 (2008).

    Article  Google Scholar 

  23. Witherow, R. A. et al. The aeolian flux of calcium, chloride and nitrate to the McMurdo Dry Valleys landscape: evidence from snow pit analysis. Antarct. Sci. 18, 497–505 (2006).

    Article  Google Scholar 

  24. Chinn, T. H. in Physical and Biogeochemical Processes in Antarctic Lakes 1–51 (American Geophysical Union, Washington DC, 1993).

    Book  Google Scholar 

  25. Nylen, T. H., Fountain, A. G. & Doran, P. T. Climatology of katabatic winds in the McMurdo dry valleys, southern Victoria Land, Antarctica. J. Geophys. Res. 109, D03114 (2004).

    Article  Google Scholar 

  26. Bockheim, J. G. Landform and soil development in the McMurdo Dry Valleys, Antarctica: a regional synthesis. Arct. Antarct. Alp. Res. 34, 308–317 (2002).

    Article  Google Scholar 

  27. Hagedorn, B., Sletten, R. S. & Hallet, B. Sublimation and ice condensation in hyperarid soils: modeling results using field data from Victoria Valley, Antarctica. J. Geophys. Res. 112, F03017 (2007).

    Article  Google Scholar 

  28. Dickinson, W. W. & Rosen, M. R. Antarctic permafrost: An analogue for water and diagenetic minerals on Mars. Geology 31, 199–202 (2003).

    CAS  Article  Google Scholar 

  29. Nkem, J. N. et al. Salt tolerance and survival thresholds for two species of Antarctic soil nematodes. Polar Biol. 29, 643–651 (2006).

    Article  Google Scholar 

  30. Adams, B. J. et al. Diversity and distribution of Victoria Land biota. Soil Biol. Biochem. 38, 3003–3018 (2006).

    CAS  Article  Google Scholar 

  31. Freckman, D. W. & Virginia, R. A. Low-diversity Antarctic soil nematode communities: distribution and response to disturbance. Ecology 78, 363–369 (1997). This work established a conceptual model for delineating suitable and unsuitable soil habitats for invertebrates in the McMurdo Dry Valleys on the basis of abiotic properties.

    Article  Google Scholar 

  32. Thomas, D. N. Photosynthetic microbes in freezing deserts. Trends Microbiol. 13, 87–88 (2005).

    CAS  PubMed  Article  Google Scholar 

  33. Friedmann, E. I. (ed.) Antarctic Microbiology (Wiley-Liss, New York, 1993). Although now somewhat out of date, this text still stands as a benchmark survey of the biology of Antarctic terrestrial and marine microbial ecology.

    Google Scholar 

  34. Novis, P. M. et al. Annual carbon fixation in terrestrial populations of Nostoc commune (Cyanobacteria) from an Antarctic dry valley is driven by temperature regime. Glob. Chang. Biol. 13, 1224–1237 (2007).

    Article  Google Scholar 

  35. Matsumoto, G. I., Hirai, A., Hirota, K. & Watanuki, K. Organic geochemistry of the Mcmurdo Dry Valleys soil, Antarctica. Org. Geochem. 16, 781–791 (1990).

    CAS  Article  Google Scholar 

  36. Burkins, M. B., Virginia, R. A., Chamberlain, C. P. & Wall, D. H. Origin and distribution of soil organic matter in Taylor Valley, Antarctica. Ecology 81, 2377–2391 (2000). This study shows that some Dry Valley soil food webs are heterotrophic, deriving their energy from external and, in some cases, ancient inputs of organic matter, whereas other food webs seem to have autotrophic bases.

    Article  Google Scholar 

  37. Elberling, B. et al. Distribution and dynamics of soil organic matter in an Antarctic dry valley. Soil Biol. Biochem. 38, 3095–3106 (2006).

    CAS  Article  Google Scholar 

  38. Hopkins, D. W. et al. Isotopic evidence for the provenance and turnover of organic carbon by soil microorganisms in the Antarctic dry valleys. Environ. Microbiol. 11, 597–608 (2009).

    CAS  PubMed  Article  Google Scholar 

  39. Hopkins, D. W. et al. Controls on the distribution of productivity and organic resources in Antarctic Dry Valley soils. Proc. Biol. Sci. 273, 2687–2695 (2006). An exceptional review of the effects of the abiotic factors that influence microbial activity in Dry Valley soils.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Cameron, R. E., King, J. & David, C. N. Soil toxocity in Antarctic Dry Valleys. Antarct. J. US 3, 164–166 (1968).

    Google Scholar 

  41. Horowitz, N. H. et al. Sterile soil from Antarctic organic analysis. Science 164, 1054–1056 (1969).

    CAS  PubMed  Article  Google Scholar 

  42. Benoit, R. E. & Hall, C. L. in Antarctic Ecology 697–701 (Academic, London, UK, 1970).

    Google Scholar 

  43. Cameron, R. E. in Antarctic Terrestrial Biology. Antarctic Research Series 195–260 (American Geophysical Union, Washington DC, 1972).

    Book  Google Scholar 

  44. Cameron, R. E. & Ford, A. B. Baseline analysis of soils from the Pensacola Mountains. Antarct. J. US 9, 116–119 (1974).

    Google Scholar 

  45. Cameron, R. E., King, J. & David, C. N. in Antarctic Ecology 702–716 (Academic, London, UK, 1970).

    Google Scholar 

  46. Vishniac, W. V. & Mainzer, S. E. Soil microbiology studied in situ in the Dry Valleys of Antarctica. Antarct. J. US 7, 88–89 (1972).

    Google Scholar 

  47. Wynn-Williams, D. D. Ecological aspects of Antarctic microbiology. Adv. Microbial. Ecol. 11, 71–146 (1990).

    Article  Google Scholar 

  48. Sjöling, S. & Cowan, D. A. High 16S rDNA bacterial diversity in glacial meltwater lake sediment, Bratina Island, Antarctica. Extremophiles 7, 275–282 (2003).

    PubMed  Article  CAS  Google Scholar 

  49. Ramsey, A. J. & Stannard, R. E. Numbers and viability of bacteria in ornothogenic soils of Antarctica. Polar Biol. 5, 195–198 (1986).

    Article  Google Scholar 

  50. Buckley, D. H. & Schmidt, T. M. in Biodiversity of Microbial Life: Foundation of Earths Biosphere 183–208 (Wiley-Liss, New York, 2001).

    Google Scholar 

  51. DeLong, E. F. Microbial seascapes revisited. Curr. Opin. Microbiol. 4, 290–295 (2001).

    CAS  PubMed  Article  Google Scholar 

  52. Rappé, M. S. & Giovannoni, S. J. The uncultured microbial majority. Annu. Rev. Microbiol. 57, 369–394 (2003).

    PubMed  Article  CAS  Google Scholar 

  53. Johnson, R. M., Madden, J. M. & Swafford, J. R. in Terrestrial Biology III. Antarctic Research Series 35–64 (American Geophysical Union, Washington DC, 1978).

    Book  Google Scholar 

  54. de la Torre, J. R., Goebel, B. M., Friedmann, E. I. & Pace, N. R. Microbial diversity of cryptoendolithic communities from the McMurdo Dry Valleys, Antarctica. Appl. Environ. Microbiol. 69, 3858–3867 (2003). One of the first reports of the application of molecular phylogenetic methods to the study of microbial diversity in an Antarctic terrestrial system.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. Aislabie, J. M., Jordan, S. & Barker, G. M. Relation between soil classification and bacterial diversity in soils of the Ross Sea region, Antarctica. Geoderma 144, 9–20 (2008).

    CAS  Article  Google Scholar 

  56. Khan, N. Hypolithic Communities in the Miers Valley, Eastern Antarctica. Thesis, Univ. Western Cape, South Africa (2008).

    Google Scholar 

  57. Janssen, P. H. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol. 72, 1719–1728 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. Chanal, A. et al. The desert of Tataouine: an extreme environment that hosts a wide diversity of microorganisms and radiotolerant bacteria. Environ. Microbiol. 8, 514–525 (2006).

    CAS  PubMed  Article  Google Scholar 

  59. Babalola, O. O. et al. Phylogenetic analysis of actinobacterial populations associated with Antarctic Dry Valley mineral soils. Environ. Microbiol. 11, 566–576 (2009).

    CAS  PubMed  Article  Google Scholar 

  60. Yergeau, E. et al. Size and structure of bacterial, fungal and nematode communities along an Antarctic environmental gradient. FEMS Microbiol. Ecol. 59, 436–451 (2007).

    CAS  PubMed  Article  Google Scholar 

  61. Vestal, J. R. Carbon metabolism of the cryptoendolithic microbiota from the Antarctic desert. Appl. Environ. Microbiol. 54, 960–965 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Burkins, M. B., Virginia, R. A. & Wall, D. H. Organic carbon cycling in Taylor Valley, Antarctica: quantifying soil reservoirs and soil respiration. Glob. Chang. Biol. 7, 113–125 (2001). This is the first study to report estimates of soil respiration in the Dry Valleys and to consider ecosystem processes in the context of trophic dynamics.

    Article  Google Scholar 

  63. Parsons, A. N., Barrett, J. E., Wall, D. H. & Virginia, R. A. Soil carbon dioxide flux in Antarctic dry valley ecosystems. Ecosystems 7, 286–295 (2004).

    CAS  Article  Google Scholar 

  64. Hopkins, D. W. et al. Carbon, nitrogen and temperature controls on microbial activity in soils from an Antarctic dry valley. Soil Biol. Biochem. 38, 3130–3140 (2006). This paper provides insights into the environmental controls of microbial activity in Dry Valley soils.

    CAS  Article  Google Scholar 

  65. Friedmann, E. I., Kappen, L., Meyer, M. A. & Nienow, J. A. Long-term productivity in the cryptoendolithic microbial community of the Ross Desert, Antarctica. Microb. Ecol. 25, 51–69 (1993). The most comprehensive contemporary paper that takes a functional approach to microbial communities in the Dry Valleys, with the first quantitative assessment of carbon cycling.

    CAS  PubMed  Article  Google Scholar 

  66. Howard-Williams, C., Hawes, I., Schwarz, A. M. & Hall, J. A. in Ecosystem Processes in Antarctic Ice-Free Landscapes (eds Lyons, W. B., Howard Williams, C. & Hawes, I.) 155–170 (Balkema, Rotterdam, 1997).

    Google Scholar 

  67. Raich, J. W. & Schlesinger, W. H. The global carbon-dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B Chem. Phys. Meteorol. 44, 81–99 (1992).

    Article  Google Scholar 

  68. Brinkmann, M., Pearce, D. A., Convey, P. & Ott, S. The cyanobacterial community of polygon soils at an inland nunatuk. Polar Biol. 30, 1505–1511 (2007).

    Article  Google Scholar 

  69. Wood, S. A., Rueckert, A., Cowan, D. A. & Cary, S. C. Sources of edaphic cyanobacterial diversity in the Dry Valleys of Eastern Antarctica. ISME J. 2, 308–320 (2008).

    CAS  PubMed  Article  Google Scholar 

  70. Arenz, B. E., Held, B. W., Jurgens, J. A., Farrell, R. L. & Blanchette, R. A. Fungal diversity in soils and historic wood from the Ross Sea Region of Antarctica. Soil Biol. Biochem. 38, 3057–3064 (2006).

    CAS  Article  Google Scholar 

  71. Cowan, D. A. & Ah Tow, L. Endangered Antarctic environments. Annu. Rev. Microbiol. 58, 649–690 (2004).

    CAS  PubMed  Article  Google Scholar 

  72. Schwarz, A. M. J., Green, J. D., Green, T. G. A. & Seppelt, R. D. Invertebrates associated with moss communities at Canada Glacier, Southern Victoria-Land, Antarctica. Polar Biol. 13, 157–162 (1993).

    Article  Google Scholar 

  73. Lawley, B., Ripley, S., Bridge, P. & Convey, P. Molecular analysis of geographic patterns of eukaryotic diversity in Antarctic soils. Appl. Environ. Microbiol. 70, 5963–5972 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. Vincent, W. F. Evolutionary origins of Antarctic microbiota: invasion, selection and endemism. Antarct. Sci. 12, 374–385 (2000).

    Article  Google Scholar 

  75. Marshall, W. A. Biological particles over Antarctica. Nature 383, 680 (1996).

    CAS  Article  Google Scholar 

  76. Russell, N. J. & Cowan, D. A. Handling of psychrophilic microorganisms. Extremophiles 35, 371–393 (2006).

    Google Scholar 

  77. Smith, M. C., Bowman, J. P., Scott, F. J. & Line, M. A. Sublithic bacteria associated with Antarctic quartz stones. Antarct. Sci. 12, 177–184 (2000).

    Article  Google Scholar 

  78. Friedmann, E. I. Endolithic microorganisms in the Antarctic cold desert. Science 215, 1045–1053 (1982).

    CAS  PubMed  Article  Google Scholar 

  79. Solomon, S. Stratospheric ozone depletion: A review of concepts and history. Rev. Geophys. 37, 275–316 (1999).

    CAS  Article  Google Scholar 

  80. Wynn-Williams, D. D., Edwards, H. G. M. & Garcia-Pichel, F. Functional biomolecules of Antarctic stromatolitic and endolithic cyanobacterial communities. Eur. J. Phycol. 34, 381–391 (1999).

    Article  Google Scholar 

  81. Cockell, C. S. & Stokes, M. D. Ecology: widespread colonization by polar hypoliths. Nature 431, 414 (2004).

    CAS  PubMed  Article  Google Scholar 

  82. Friedmann, E. I., Hua, M. & Ocampo-Friedmann, R. Cryptoendolithic lichen and cyanobacterial communities in the Ross desert, Antarctica. Polarforschung 58, 251–259 (1988).

    CAS  PubMed  Google Scholar 

  83. Siebert, J. et al. Cryptoendolithic microorganisms from Antarctic sandstone of linnaeus terrace (Asgard range): diversity, properties and interactions. Biodivers. Conserv. 5, 1337–1363 (1996).

    Article  Google Scholar 

  84. Schlesinger, W. H. et al. Community composition and photosynthesis by photoautotrophs under quartz pebbles, southern Mojave Desert. Ecology 84, 3222–3231 (2003).

    Article  Google Scholar 

  85. Dort, W. in Terrestrial Biology III. Antarctic research series 123–154 (American Geophysical Union, Washington DC, 1982).

    Google Scholar 

  86. Barwick, R. E. & Balham, R. W. Mummified seal carcasses in a deglaciated region of South Victoria Land, Antarctica. Tuatara 15, 165–180 (1967).

    Google Scholar 

  87. Dort, W. Mummified Seals of Southern Victoria Land. Antarct. J. US 5, 210–211 (1971).

    Google Scholar 

  88. Broeckert, W. A. & Olson, E. A. Lamont radiocarbon measurements VIII. Radiocarbon 3, 176–204 (1961).

    Article  Google Scholar 

  89. Smith, C. R. & Baco, A. R. Ecology of whale falls at the deep-sea floor. Oceanogr. Mar. Biol. 41, 311–354 (2003).

    Google Scholar 

  90. Turner, J. et al. Antarctic climate change during the last 50 years. Int. J. Climatol. 25, 279–294 (2005).

    Article  Google Scholar 

  91. Chapman, W. L. & Walsh, J. E. A synthesis of Antarctic temperatures. J. Clim. 20, 4096–4117 (2007).

    Article  Google Scholar 

  92. Steig, E. J. et al. Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature 457, 459–462 (2009); corrigendum 460, 766 (2009).

    CAS  PubMed  Article  Google Scholar 

  93. Doran, P. T. et al. Hydrologic response to extreme warm and cold summers in the McMurdo Dry Valleys, East Antarctica. Antarct. Sci. 20, 499–509 (2008).

    Article  Google Scholar 

  94. Foreman, C., Wolf, C. F. & Priscu, J. C. Impact of episodic warming events on the physical, chemical and biological relationships of lakes in the McMurdo Dry Valleys, Antarctica. Aquatic Geochemistry 10, 239–268 (2004).

    CAS  Article  Google Scholar 

  95. Esposito, R. M. M. et al. Antarctic climate cooling and response of diatoms in glacial meltwater streams. Geophys. Res. Lett. 33, L07406 (2006). This paper is an elegant analysis of the influence of climate variation on the relative abundance of endemic and cosmopolitan diatom species.

    Article  Google Scholar 

  96. Ah Tow, L. & Cowan, D. A. Dissemination and survival of non-indigenous bacterial genomes in pristine Antarctic environments. Extremophiles 9, 385–389 (2005).

    PubMed  Article  Google Scholar 

  97. Hogg, I. D. et al. Biotic interactions in Antarctic terrestrial ecosystems: are they a factor? Soil Biol. Biochem. 38, 3035–3040 (2006).

    CAS  Article  Google Scholar 

  98. Yergeau, E. et al. Environmental microarray analyses of Antarctic soil microbial communities. ISME J. 3, 340–351 (2009). An exciting contribution using cutting-edge microarray techniques to survey microbial communities in Antarctic soils.

    CAS  PubMed  Article  Google Scholar 

  99. Barrett, J. E. et al. Variation in biogeochemistry and soil biodiversity across spatial scales in a polar desert ecosystem. Ecology 85, 3105–3118 (2004).

    Article  Google Scholar 

  100. Barrett, J. E. et al. Terrestrial ecosystem processes of Victoria Land, Antarctica. Soil Biol. Biochem. 38, 3019–3034 (2006).

    CAS  Article  Google Scholar 

  101. Kennedy, A. D. Water as a limiting factor in the Antarctic terrestrial environment — a biogeographical synthesis. Arct. Alp. Res. 25, 308–315 (1993).

    Article  Google Scholar 

  102. Treonis, A. M., Wall, D. H. & Virginia, R. A. Invertebrate biodiversity in Antarctic dry valley soils and sediments. Ecosystems 2, 482–492 (1999).

    Article  Google Scholar 

  103. Ludwig, W. et al. ARB: a software environment for sequence data. Nucleic Acids Res. 32, 1363–1371 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. Liles, M. R., Manske, B. F., Bintrim, S. B., Handelsman, J. & Goodman, R. M. A census of rRNA genes and linked genomic sequences within a soil metagenomic library. Appl. Environ. Microbiol. 69, 2684–2691 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  105. Lipson, D. A. & Schmidt, S. K. Seasonal changes in an alpine soil bacterial community in the Colorado Rocky Mountains. Appl. Environ. Microbiol. 70, 2867–2879 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  106. McCaig, A. E. et al. Nitrogen cycling and community structure of proteobacterial β-subgroup ammonia-oxidizing bacteria within polluted marine fish farm sediments. Appl. Environ. Microbiol. 65, 213–220 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Sun, H. Y., Deng, S. P. & Raun, W. R. Bacterial community structure and diversity in a century-old manure-treated agroecosystem. Appl. Environ. Microbiol. 70, 5868–5874 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  108. Bate, D. B., Barrett, J. E., Poage, M. A. & Virginia, R. A. Soil phosphorus cycling in an Antarctic polar desert. Geoderma 144, 21–31 (2008).

    CAS  Article  Google Scholar 

  109. Schade, J. D. & Hobbie, S. E. Spatial and temporal variation in islands of fertility in the Sonoran Desert. Biogeochemistry 73, 541–553 (2005).

    Article  Google Scholar 

  110. Illeris, L., Michelsen, A. & Jonasson, S. Soil plus root respiration and microbial biomass following water, nitrogen, and phosphorus application at a high arctic semi desert. Biogeochemistry 65, 15–29 (2003).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support from Antarctica New Zealand to S.C.C, I.R.M and D.A.C., from the Marsden Fund, New Zealand, to S.C.C. and I.R.M., from the Foundation of Research Science and Technology, New Zealand, to S.C.C., from the National Science Foundation, USA, to S.C.C. and J.E.B., and from the National Research Foundation, South Africa, to D.A.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Craig Cary.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

S. Craig Cary's homepage #1

S. Craig Cary's homepage #2

Glossary

Last glacial maximum

The time of maximum extent of the ice sheets during the last glaciation approximately 20,000 years ago.

Biota

The total collection of organisms in a geographic region.

Trophic level

An organism's position in the food chain.

Nanutuks

Localized rocky, exposed, ice-free regions in terrestrial ice fields.

Austral

Of the Southern Hemisphere.

Sublime

Transition from the solid state to the gaseous phase with no intermediate liquid stage.

Katabatic wind

A wind that carries high-density air from a higher elevation down a slope under the force of gravity. In the Antarctic, the build-up of high-density, cold air over the ice sheets and the elevation of the ice sheets bring into play enormous gravitational energy, propelling the winds at well over hurricane force.

Permafrost layer

Soil that is at or below the freezing point of water (0 °C or 32 °F) for ≥2 years.

Lithic environment

An environment that relates to or is composed of stone.

Lacustrine sediments

Lake sediments

Aeolian redistribution

Wind dispersal

Ornithogenic

Derived from the deposition of the faecal matter of various bird species; ornithogenic material is a major source of nutrient input in the maritime Antarctic.

Fell-field soil

Soil in an environment, usually alpine or tundra, where the dynamics of frost (freeze and thaw cycles) and of wind give rise to characteristic plant forms in scree interstices. In addition, the high porosity of the soil makes a fell-field a difficult place for plants to grow.

Psychrophilic

Pertaining to an organism that prefers cold temperatures.

Hypolithic

Pertaining to an organism that lives underneath rocks in climatically extreme deserts.

Cryptoendolithic

Pertaining to an organism that colonizes structural cavities within porous rock.

Photoautotrophic

Pertaining to an organism that is capable of synthesizing its own food using light.

Heterotrophic

Pertaining to an organism that is capable of synthesizing its own food using chemical energy from inorganic substances.

Mesic soil

Soil with a moderate or well-balanced supply of moisture.

Psychrotrophic

Pertaining to an organism that is capable of surviving or even thriving in a cold environment.

Mesophilic

Pertaining to an organism that grows best in moderate temperatures, typically between 15 °C and 40 °C (77 °F and 104 °F).

Chasmolithic

Pertaining to an organism that colonizes fissures and cracks in the rock.

Endolithic

Pertaining to an organism (archaeum, bacterium, fungus, lichen, alga or amoeba) that lives inside rock, coral or animal shells or in the pores between the mineral grains of a rock.

Abiotic

Not associated with or derived from living organisms.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cary, S., McDonald, I., Barrett, J. et al. On the rocks: the microbiology of Antarctic Dry Valley soils. Nat Rev Microbiol 8, 129–138 (2010). https://doi.org/10.1038/nrmicro2281

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2281

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing