Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The evolutionary conundrum of pathogen mimicry

Key Points

  • A wide range of pathogens use the strategy of mimicking host factors to gain selective advantages at host–pathogen interfaces.

  • Pathogen-encoded mimics can arise by horizontal gene transfer and divergence or independently, by convergent evolution. Some mimics mirror host functions (known as perfect mimicry), whereas others perform different functions (known as imperfect mimicry) to subvert host cellular processes.

  • Mimics impinge on key cellular processes, including the cell cycle, apoptosis, cytoskeletal dynamics, membrane traffic and immunity.

  • Mimicry presents a conundrum to host systems, which must discriminate self from mimics, and also to pathogens, which pay a fitness cost to deploy mimics. Similar trade-offs can influence the evolution of mimicry in ecological settings (for example, insect mimics).

  • Hosts can evolve to counteract mimicry in molecular arms races of adaptations. For example, the antiviral protein kinase R, which is the target of virus-encoded substrate mimics, has a highly flexible interaction interface and adapts on multiple surfaces to disfavour mimics.

  • The extent to which highly conserved cellular factors evolve to counteract mimics is an open question. Several routes seem to be available, including gene duplications followed by functional diversification.

Abstract

Evolutionary conflicts involving mimicry are found throughout nature. Diverse pathogens produce a range of 'mimics' that resemble host components in both form and function. Such mimics subvert crucial cellular processes, including the cell cycle, apoptosis, cytoskeletal dynamics and immunity. Here, we review the mounting evidence that mimicry of host processes is a highly successful strategy for pathogens. Discriminating mimics can be crucial for host survival, and host factors exist that effectively counteract mimics, using strategies that combine rapid evolution and an unexpected degree of flexibility in protein–protein interactions. Even in these instances, mimicry may alter the evolutionary course of fundamental cellular processes in host organisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The evolutionary origins of mimics encoded by pathogens.
Figure 2: Mimics commandeer the cell.
Figure 3: Mimicry rings in ecological and molecular settings.
Figure 4: Mimics interfere with immunity factors.
Figure 5: PKR versusK3L: evolution of a host factor to defeat a mimic.

Similar content being viewed by others

References

  1. Greenbaum, B. D., Levine, A. J., Bhanot, G. & Rabadan, R. Patterns of evolution and host gene mimicry in influenza and other RNA viruses. PLoS Pathog. 4, e1000079 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Mercer, J. & Helenius, A. Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science 320, 531–535 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Ochman, H., Lawrence, J. G. & Groisman, E. A. Lateral gene transfer and the nature of bacterial innovation. Nature 405, 299–304 (2000).

    CAS  PubMed  Google Scholar 

  4. Koonin, E. V., Makarova, K. S. & Aravind, L. Horizontal gene transfer in prokaryotes: quantification and classification. Annu. Rev. Microbiol. 55, 709–742 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Doolittle, R. F. Convergent evolution: the need to be explicit. Trends Biochem. Sci. 19, 15–18 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Webber, C. & Ponting, C. P. Genes and homology. Curr. Biol. 14, R332–333 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Stebbins, C. E. & Galan, J. E. Structural mimicry in bacterial virulence. Nature 412, 701–705 (2001). A comprehensive review that highlights groundbreaking work that identified bacterial mimics, many of which were revealed by structural studies.

    Article  CAS  PubMed  Google Scholar 

  8. Johnstone, R. A. The evolution of inaccurate mimics. Nature 418, 524–526 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Holen, O. H. & Johnstone, R. A. The evolution of mimicry under constraints. Am. Nat. 164, 598–613 (2004).

    Article  PubMed  Google Scholar 

  10. McKean, K. A., Yourth, C. P., Lazzaro, B. P. & Clark, A. G. The evolutionary costs of immunological maintenance and deployment. BMC Evol. Biol. 8, 76 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. van Boven, M. & Weissing, F. J. The evolutionary economics of immunity. Am. Nat. 163, 277–294 (2004).

    Article  PubMed  Google Scholar 

  12. OhAinle, M., Kerns, J. A., Li, M. M., Malik, H. S. & Emerman, M. Antiretroelement activity of APOBEC3H was lost twice in recent human evolution. Cell Host Microbe 4, 249–259 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dyer, M. D., Murali, T. M. & Sobral, B. W. The landscape of human proteins interacting with viruses and other pathogens. PLoS Pathog. 4, e32 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Cuconati, A. & White, E. Viral homologs of BCL-2: role of apoptosis in the regulation of virus infection. Genes Dev. 16, 2465–2478 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Shackelton, L. A. & Holmes, E. C. The evolution of large DNA viruses: combining genomic information of viruses and their hosts. Trends Microbiol. 12, 458–465 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Gangappa, S., van Dyk, L. F., Jewett, T. J., Speck, S. H. & Virgin, H. W. Identification of the in vivo role of a viral Bcl-2. J. Exp. Med. 195, 931–940 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang, Q., Petros, A. M., Virgin, H. W., Fesik, S. W. & Olejniczak, E. T. Solution structure of the BHRF1 protein from Epstein-Barr virus, a homolog of human Bcl-2. J. Mol. Biol. 332, 1123–1130 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Loh, J. et al. A surface groove essential for viral Bcl-2 function during chronic infection in vivo. PLoS Pathog. 1, e10 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Galindo, I., Hernaez, B., Diaz-Gil, G., Escribano, J. M. & Alonso, C. A179L, a viral Bcl-2 homologue, targets the core Bcl-2 apoptotic machinery and its upstream BH3 activators with selective binding restrictions for Bid and Noxa. Virology 375, 561–72 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Cooray, S. et al. Functional and structural studies of the vaccinia virus virulence factor N1 reveal a Bcl-2-like anti-apoptotic protein. J. Gen. Virol. 88, 1656–1666 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Graham, S. C. et al. Vaccinia virus proteins A52 and B14 share a Bcl-2–like fold but have evolved to inhibit NF-κB rather than apoptosis. PLoS Pathog. 4, e1000128 (2008). An important paper showing that mimics may not act as would be predicted by homology alone.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Ku, B. et al. Structural and biochemical bases for the inhibition of autophagy and apoptosis by viral BCL-2 of murine Îł-herpesvirus 68. PLoS Pathog. 4, e25 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Westphal, D. et al. A novel Bcl-2-like inhibitor of apoptosis is encoded by the parapoxvirus ORF virus. J. Virol. 81, 7178–7188 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kvansakul, M. et al. A structural viral mimic of prosurvival Bcl-2: a pivotal role for sequestering proapoptotic Bax and Bak. Mol. Cell 25, 933–942 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Gubser, C. et al. A new inhibitor of apoptosis from vaccinia virus and eukaryotes. PLoS Pathog. 3, e17 (2007). A good example of how an observation of evolutionary mimicry led to the identification of a new host function.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Laman, H., Mann, D. J. & Jones, N. C. Viral-encoded cyclins. Curr. Opin. Genet. Dev. 10, 70–74 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Moore, P. S. & Chang, Y. Antiviral activity of tumor-suppressor pathways: clues from molecular piracy by KSHV. Trends Genet. 14, 144–150 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Tarakanova, V. L., Kreisel, F., White, D. W. & Virgin, H. W. Murine gammaherpesvirus 68 genes both induce and suppress lymphoproliferative disease. J. Virol. 82, 1034–1039 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Verschuren, E. W., Jones, N. & Evan, G. I. The cell cycle and how it is steered by Kaposi's sarcoma-associated herpesvirus cyclin. J. Gen. Virol. 85, 1347–1361 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Upton, J. W., van Dyk, L. F. & Speck, S. H. Characterization of murine gammaherpesvirus 68 v-cyclin interactions with cellular cdks. Virology 341, 271–283 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Swanton, C., Card, G. L., Mann, D., McDonald, N. & Jones, N. Overcoming inhibitions: subversion of CKI function by viral cyclins. Trends Biochem. Sci. 24, 116–120 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Koopal, S. et al. Viral oncogene-induced DNA damage response is activated in Kaposi sarcoma tumorigenesis. PLoS Pathog. 3, 1348–1360 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Wenner, M. Virus in the brain. Sci. Am. 300, 18–21 (2009).

    Article  PubMed  Google Scholar 

  34. Hume, A. J. et al. Phosphorylation of retinoblastoma protein by viral protein with cyclin-dependent kinase function. Science 320, 797–799 (2008). An exciting case of mimicry being used to subvert cell cycle regulation.

    Article  CAS  PubMed  Google Scholar 

  35. Romaker, D. et al. Analysis of the structure-activity relationship of four herpesviral UL97 subfamily protein kinases reveals partial but not full functional conservation. J. Med. Chem. 49, 7044–7053 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Hamirally, S. et al. Viral mimicry of Cdc2/cyclin-dependent kinase 1 mediates disruption of nuclear lamina during human cytomegalovirus nuclear egress. PLoS Pathog. 5, e1000275 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Fischer, S. F. et al. Chlamydia inhibit host cell apoptosis by degradation of proapoptotic BH3-only proteins. J. Exp. Med. 200, 905–916 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lambrechts, A., Gevaert, K., Cossart, P., Vandekerckhove, J. & Van Troys, M. Listeria comet tails: the actin-based motility machinery at work. Trends Cell Biol. 18, 220–227 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Jeng, R. L. et al. A Rickettsia WASP-like protein activates the Arp2/3 complex and mediates actin-based motility. Cell. Microbiol. 6, 761–769 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Gouin, E. et al. The RickA protein of Rickettsia conorii activates the Arp2/3 complex. Nature 427, 457–461 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Sallee, N. A. et al. The pathogen protein EspFU hijacks actin polymerization using mimicry and multivalency. Nature 454, 1005–1008 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cheng, H. C., Skehan, B. M., Campellone, K. G., Leong, J. M. & Rosen, M. K. Structural mechanism of WASP activation by the enterohaemorrhagic E. coli effector EspFU . Nature 454, 1009–1013 (2008). This report and reference 41 describe a surprising example of WASP mimicry being used to tailor the cytoskeleton for an extracellular pathogen.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stebbins, C. E. & Galan, J. E. Modulation of host signalling by a bacterial mimic: structure of the Salmonella effector SptP bound to Rac1. Mol. Cell 6, 1449–1460 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Buchwald, G. et al. Structural basis for the reversible activation of a Rho protein by the bacterial toxin SopE. EMBO J. 21, 3286–3295 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Alto, N. M. et al. Identification of a bacterial type III effector family with G protein mimicry functions. Cell 124, 133–145 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Alto, N. M. & Dixon, J. E. Analysis of Rho-GTPase mimicry by a family of bacterial type III effector proteins. Methods Enzymol. 439, 131–143 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Ohlson, M. B. et al. Structure and function of Salmonella SifA indicate that its interactions with SKIP, SseJ, and RhoA family GTPases induce endosomal tubulation. Cell Host Microbe 4, 434–446 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jackson, L. K., Nawabi, P., Hentea, C., Roark, E. A. & Haldar, K. The Salmonella virulence protein SifA is a G protein antagonist. Proc. Natl Acad. Sci. USA 105, 14141–14146 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Frischknecht, F. & Way, M. Surfing pathogens and the lessons learned for actin polymerization. Trends Cell Biol. 11, 30–38 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Valderrama, F., Cordeiro, J. V., Schleich, S., Frischknecht, F. & Way, M. Vaccinia virus-induced cell motility requires F11L-mediated inhibition of RhoA signalling. Science 311, 377–381 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Arakawa, Y., Cordeiro, J. V., Schleich, S., Newsome, T. P. & Way, M. The release of vaccinia virus from infected cells requires RhoA-mDia modulation of cortical actin. Cell Host Microbe 1, 227–240 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Arakawa, Y., Cordeiro, J. V. & Way, M. F11L-mediated inhibition of RhoA-mDia signalling stimulates microtubule dynamics during vaccinia virus infection. Cell Host Microbe 1, 213–226 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Favoreel, H. W., Enquist, L. W. & Feierbach, B. Actin and Rho GTPases in herpesvirus biology. Trends Microbiol. 15, 426–433 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Goley, E. D. et al. Dynamic nuclear actin assembly by Arp2/3 complex and a baculovirus WASP-like protein. Science 314, 464–467 (2006). A fascinating paper that describes the extension of WASP mimicry to viruses in addition to bacteria.

    Article  CAS  PubMed  Google Scholar 

  55. Delevoye, C. et al. SNARE protein mimicry by an intra-cellular bacterium. PLoS Pathog. 4, e1000022 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Rockey, D. D., Viratyosin, W., Bannantine, J. P., Suchland, R. J. & Stamm, W. E. Diversity within inc genes of clinical Chlamydia trachomatis variant isolates that occupy non-fusogenic inclusions. Microbiology 148, 2497–2505 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Ingmundson, A., Delprato, A., Lambright, D. G. & Roy, C. R. Legionella pneumophila proteins that regulate Rab1 membrane cycling. Nature 450, 365–369 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Murata, T. et al. The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor. Nature Cell Biol. 8, 971–977 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Grosshans, B. L., Ortiz, D. & Novick, P. Rabs and their effectors: achieving specificity in membrane traffic. Proc. Natl Acad. Sci. USA 103, 11821–11827 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shin, S. & Roy, C. R. Host cell processes that influence the intracellular survival of Legionella pneumophila. Cell. Microbiol. 10, 1209–1220 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Shah, A. H., Cianciola, N. L., Mills, J. L., Sonnichsen, F. D. & Carlin, C. Adenovirus RIDα regulates endosome maturation by mimicking GTP-Rab7. J. Cell Biol. 179, 965–980 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Alto, N. M. Mimicking small G-proteins: an emerging theme from the bacterial virulence arsenal. Cell. Microbiol. 10, 566–575 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Finlay, B. B. & McFadden, G. Anti-immunology: evasion of the host immune system by bacterial and viral pathogens. Cell 124, 767–782 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Alcami, A. Viral mimicry of cytokines, chemokines and their receptors. Nature Rev. Immunol. 3, 36–50 (2003).

    Article  CAS  Google Scholar 

  65. Alcami, A., Symons, J. A. & Smith, G. L. The vaccinia virus soluble alpha/beta interferon (IFN) receptor binds to the cell surface and protects cells from the antiviral effects of IFN. J. Virol. 74, 11230–11239 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nazarian, S. H. et al. Yaba monkey tumor virus encodes a functional inhibitor of interleukin-18. J. Virol. 82, 522–528 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Cameron, C. M., Barrett, J. W., Mann, M., Lucas, A. & McFadden, G. Myxoma virus M128L is expressed as a cell surface CD47-like virulence factor that contributes to the downregulation of macrophage activation in vivo. Virology 337, 155–167 (2005).

    Article  CAS  Google Scholar 

  68. Ruiz-Arguello, M. B. et al. An ectromelia virus protein that interacts with chemokines through their glycosaminoglycan binding domain. J. Virol. 82, 917–926 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Seet, B. T. et al. Poxviruses and immune evasion. Annu. Rev. Immunol. 21, 377–423 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Barrett, J. W. et al. M135R is a novel cell surface virulence factor of myxoma virus. J. Virol. 81, 106–114 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Cirl, C. et al. Subversion of Toll-like receptor signalling by a unique family of bacterial Toll/interleukin-1 receptor domain-containing proteins. Nature Med. 14, 399–406 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Newman, R. M., Salunkhe, P., Godzik, A. & Reed, J. C. Identification and characterization of a novel bacterial virulence factor that shares homology with mammalian Toll/interleukin-1 receptor family proteins. Infect. Immun. 74, 594–601 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ha, S. C. et al. A poxvirus protein forms a complex with left-handed Z-DNA: crystal structure of a Yatapoxvirus Zα bound to DNA. Proc. Natl Acad. Sci. USA 101, 14367–14372 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kwon, J. A. & Rich, A. Biological function of the vaccinia virus Z-DNA-binding protein E3L: gene transactivation and antiapoptotic activity in HeLa cells. Proc. Natl Acad. Sci. USA 102, 12759–12764 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Quyen, D. V. et al. Characterization of DNA-binding activity of Zα domains from poxviruses and the importance of the β-wing regions in converting B-DNA to Z-DNA. Nucleic Acids Res. 35, 7714–7720 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Romano, P. R. et al. Inhibition of double-stranded RNA-dependent protein kinase PKR by vaccinia virus E3: role of complex formation and the E3 N-terminal domain. Mol. Cell Biol. 18, 7304–7316 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kawagishi-Kobayashi, M., Silverman, J. B., Ung, T. L. & Dever, T. E. Regulation of the protein kinase PKR by the vaccinia virus pseudosubstrate inhibitor K3L is dependent on residues conserved between the K3L protein and the PKR substrate eIF2α. Mol. Cell Biol. 17, 4146–4158 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kawagishi-Kobayashi, M., Cao, C., Lu, J., Ozato, K. & Dever, T. E. Pseudosubstrate inhibition of protein kinase PKR by swine pox virus C8L gene product. Virology 276, 424–34 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Dar, A. C., Dever, T. E. & Sicheri, F. Higher-order substrate recognition of eIF2α by the RNA-dependent protein kinase PKR. Cell 122, 887–900 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Dar, A. C. & Sicheri, F. X-ray crystal structure and functional analysis of vaccinia virus K3L reveals molecular determinants for PKR subversion and substrate recognition. Mol. Cell 10, 295–305 (2002). An excellent structural and biochemical study of a virus mimic of a kinase substrate.

    Article  CAS  PubMed  Google Scholar 

  81. Essbauer, S., Bremont, M. & Ahne, W. Comparison of the eIF-2α homologous proteins of seven ranaviruses (Iridoviridae). Virus Genes 23, 347–359 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Dever, T. E. et al. Disruption of cellular translational control by a viral truncated eukaryotic translation initiation factor 2α kinase homolog. Proc. Natl Acad. Sci. USA 95, 4164–4169 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Elde, N. C., Child., S. J., Geballe, A. P. & Malik, H. S. Protein kinase R reveals an evolutionary model for defeating viral mimicry. Nature 457, 485–489 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Rothenburg, S., Seo, E. J., Gibbs, J. S., Dever, T. E. & Dittmar, K. Rapid evolution of protein kinase PKR alters sensitivity to viral inhibitors. Nature Struct. Mol. Biol. 16, 63–70 (2009). This article and reference 83 provide examinations of the evolutionary dynamics between virus mimics and primate hosts.

    Article  CAS  Google Scholar 

  85. Ochs, H. D., Filipovich, A. H., Veys, P., Cowan, M. J. & Kapoor, N. Wiskott-Aldrich syndrome: diagnosis, clinical and laboratory manifestations, and treatment. Biol. Blood Marrow Transplant. 15, 84–90 (2008).

    Article  Google Scholar 

  86. Notarangelo, L. D., Notarangelo, L. D. & Ochs, H. D. WASP and the phenotypic range associated with deficiency. Curr. Opin. Allergy Clin. Immunol. 5, 485–490 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Kwiatkowski, D. Genetic susceptibility to malaria getting complex. Curr. Opin. Genet. Dev. 10, 320–324 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Rothenburg, S., Deigendesch, N., Dey, M., Dever, T. E. & Tazi, L. Double-stranded RNA-activated protein kinase PKR of fishes and amphibians: varying the number of double-stranded RNA binding domains and lineage-specific duplications. BMC Biol. 6, 12 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Nielsen, R. et al. A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol. 3, e170 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Gibbs, R. A. et al. Evolutionary and biomedical insights from the rhesus macaque genome. Science 316, 222–234 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Bustamante, C. D. et al. Natural selection on protein-coding genes in the human genome. Nature 437, 1153–1157 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Clark, A. G. et al. Positive selection in the human genome inferred from human-chimp-mouse orthologous gene alignments. Cold Spring Harb. Symp. Quant. Biol. 68, 471–477 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Kaiser, S. M., Malik, H. S. & Emerman, M. Restriction of an extinct retrovirus by the human TRIM5α antiviral protein. Science 316, 1756–1758 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Dean, A. M. & Thornton, J. W. Mechanistic approaches to the study of evolution: the functional synthesis. Nature Rev. Genet. 8, 675–688 (2007).

    CAS  PubMed  Google Scholar 

  95. Johnson, W. E. & Sawyer, S. L. Molecular evolution of the antiretroviral TRIM5 gene. Immunogenetics 61, 163–176 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Huthoff, H. & Towers, G. J. Restriction of retroviral replication by APOBEC3G/F and TRIM5α. Trends Microbiol. 16, 612–619 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ruxton, G. D., Sherratt, T. N. & Speed, M. P. Avoiding Attack: the Evolutionary Ecology of Crypsis, Warning Signals and Mimicry (Oxford University Press, New York, 2004).

    Book  Google Scholar 

  98. Barber, J. R. & Conner, W. E. Acoustic mimicry in a predator-prey interaction. Proc. Natl Acad. Sci. USA 104, 9331–9334 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Van Valen, L. A new evolutionary law. Evolutionary Theory 1, 1–30 (1973).

    Google Scholar 

  100. Goff, S. P. Retrovirus restriction factors. Mol. Cell 16, 849–859 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Yan, Y., Buckler-White, A., Wollenberg, K. & Kozak, C. A. Origin, antiviral function and evidence for positive selection of the gammaretrovirus restriction gene Fv1 in the genus Mus. Proc. Natl Acad. Sci. USA, 106, 3259–3263 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. Arnaud, F. et al. A paradigm for virus-host coevolution: sequential counter-adaptations between endogenous and exogenous retroviruses. PLoS Pathog. 3, e170 (2007). An intriguing paper examining cases of 'reverse mimicry', in which hosts mimic pathogens.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Malik, H. S. & Henikoff, S. Positive selection of Iris, a retroviral envelope-derived host gene in Drosophila melanogaster. PLoS Genet. 1, e44 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Rawn, S. M. & Cross, J. C. The evolution, regulation, and function of placenta-specific genes. Annu. Rev. Cell Dev. Biol. 24, 159–181 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Stoltz, D. B. & Whitfield, J. B. Virology. Making nice with viruses. Science 323, 884–885 (2009).

    Article  PubMed  Google Scholar 

  106. Bezier, A. et al. Polydnaviruses of braconid wasps derive from an ancestral nudivirus. Science 323, 926–930 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Wurtele, M. et al. How the Pseudomonas aeruginosa ExoS toxin downregulates Rac. Nature Struct. Biol. 8, 23–26 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Colinet, D., Schmitz, A., Depoix, D., Crochard, D. & Poirie, M. Convergent use of RhoGAP toxins by eukaryotic parasites and bacterial pathogens. PLoS Pathog. 3, e203 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Rittinger, K., Walker, P. A., Eccleston, J. F., Smerdon, S. J. & Gamblin, S. J. Structure at 1.65 Å of RhoA and its GTPase-activating protein in complex with a transition-state analogue. Nature 389, 758–762 (1997).

    Article  CAS  PubMed  Google Scholar 

  110. Stack, J. et al. Vaccinia virus protein A46R targets multiple Toll-like-interleukin-1 receptor adaptors and contributes to virulence. J. Exp. Med. 201, 1007–1018 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank E. Goley, J. Kerns and A. Mercer for comments and suggestions and P. Wilkins for providing the images of insect mimics. We are supported by a Burroughs Wellcome Investigator in Pathogenesis Award and a National Science Foundation CAREER grant (H.S.M.), as well as an Ellison Medical Foundation Fellowship of the Life Sciences Research Foundation (N.C.E.). H.S.M. is a Howard Hughes Medical Institute early career scientist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nels C. Elde.

Related links

Supplementary information

Glossary

Divergent evolution

The appearance of increasing differences in features between different lineages.

Convergent evolution

Independent acquisition of similar features in different lineages.

Perfect mimic

A pathogen factor that takes on the exact characteristics of a host factor and confers an advantage to the pathogen from the resemblance.

Fitness

The replicative or reproductive success of an entity.

Imperfect mimic

A pathogen factor with some characteristics of a host factor but also one or more distinct functions that confer additional advantages to the pathogen.

Adaptation

A feature that becomes prevalent in a population because of a selective advantage that it conveys.

Natural selection

The differential survival or reproduction of classes of entities that differ by one or more characteristics.

SNARE protein

Soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein (SNAP) receptor protein.

Positive selection

Selection for an allele that increases fitness.

Duplication

Production of another copy of a gene (or other sequence), which is incorporated into the genome and inherited.

Neofunctionalization

Divergence of duplicate genes such that one copy acquires a new function.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elde, N., Malik, H. The evolutionary conundrum of pathogen mimicry. Nat Rev Microbiol 7, 787–797 (2009). https://doi.org/10.1038/nrmicro2222

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2222

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing