Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Recombinational DNA repair in a cellular context: a search for the homology search

Abstract

Double-strand DNA breaks (DSBs) are the most detrimental lesion that can be sustained by the genetic complement, and their inaccurate mending can be just as damaging. According to the consensual view, precise DSB repair relies on homologous recombination. Here, we review studies on DNA repair, chromatin diffusion and chromosome confinement, which collectively imply that a genome-wide search for a homologous template, generally thought to be a pivotal stage in all homologous DSB repair pathways, is improbable. The implications of this assertion for the scope and constraints of DSB repair pathways and for the ability of diverse organisms to cope with DNA damage are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Homologous repair and homology searching.
Figure 2: Double-strand break repair in a cellular context.
Figure 3: Phylogenetic distribution of the non-homologous end-joining Ku protein in bacteria.

Similar content being viewed by others

References

  1. Kuzminov, A. & Stahl, F. W. in The Bacterial Chromosome (ed. Higgins, N. P.) 349–367 (ASM, Washington DC, 2005).

    Book  Google Scholar 

  2. Kuzminov, A. Recombinational repair of DNA damage in Escherichia coli and bacteriophage l. Microbiol. Mol. Biol. Rev. 63, 751–813 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Cox, M. M. Recombinational DNA repair of damaged replication forks in Escherichia coli: questions. Annu. Rev. Genet. 35, 53–82 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Friedbey, E. C. et al. in DNA Repair and Mutagenesis (eds Friedbey, E. C. et al.) 569–612 (ASM, Washington DC, 2006).

    Google Scholar 

  5. Pennington, J. M. & Rosenberg, S. M. Spontaneous DNA breakage in single living Escherichia coli cells. Nature Genet. 39, 797–802 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Szostak, J. W., Orrweaver, T. L., Rothstein, R. J. & Stahl, F. W. The double-strand-break repair model for recombination. Cell 33, 25–35 (1983).

    Article  CAS  PubMed  Google Scholar 

  7. Kowalczykowski, S. C., Dixon, D. A., Eggleston, A. K., Lauder, S. D. & Rehrauer, W. M. Biochemistry of homologous recombination in Escherichia coli. Microbiol. Rev. 58, 401–465 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Paques, F. & Haber, J. E. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 63, 349–404 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Zahradka, K. et al. Reassembly of shattered chromosomes in D. radiodurans. Nature 443, 569–573 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Aylon, Y. & Kupiec, M. DSB repair: the yeast paradigm. DNA Repair 3, 797–815 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Krogh, B. O. & Symington, L. S. Recombination proteins in yeast. Annu. Rev. Genet. 38, 233–271 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Wyman, C. & Kanaar, R. DNA double-strand break repair: all's well that ends well. Annu. Rev. Genet. 40, 363–383 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Barzel, A. & Kupiec, M. Finding a match: how do homologous sequences get together for recombination? Nature Rev. Genet. 9, 27–37 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Misteli, T. & Soutoglou, E. The emerging role of nuclear architecture in DNA repair and genome maintenance. Nature Rev. Mol. Cell Biol. 10, 243–254 (2009).

    Article  CAS  Google Scholar 

  15. Gonda, D. K. & Radding, C. M. By searching processively RecA protein pairs DNA molecules that share a limited stretch of homology. Cell 34, 647–654 (1983).

    Article  CAS  PubMed  Google Scholar 

  16. Yancey-Wrona, J. E. & Camerini-Otero, R. D. The search for DNA homology does not limit stable homologous pairing promoted by RecA protein. Curr. Biol. 5, 1149–1158 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Tatarkova, S. A. & Berk, D. A. Probing single DNA mobility with fluorescence correlation microscopy. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71, 041913 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Phair, R. D. & Misteli, T. High mobility of proteins in the mammalian cell nucleus. Nature 404, 604–609 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Marshall, W. F. et al. Interphase chromosomes undergo constrained diffusional motion in living cells. Curr. Biol. 7, 930–939 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Dauty, E. & Verkman, A. S. Actin cytoskeleton as the principal determinant of size-dependent DNA mobility in cytoplasm. J. Biol. Chem. 280, 7823–7828 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Chubb, J. R., Boyle, S., Perry, P. & Bickmore, W. A. Chromatin motion is constrained by association with nuclear compartments in human cells. Curr. Biol. 12, 439–445 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Elf, J., Li, G. W. & Xie, X. S. Probing transcription factor dynamics at the single-molecule level in a living cell. Science 316, 1191–1194 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kowalczykowski, S. C. Initiation of genetic recombination and recombination-dependent replication. Trends Biochem. Sci. 25, 156–165 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Lusetti, S. L. & Cox, M. M. The bacterial RecA protein and the recombinational DNA repair of stalled replication forks. Annu. Rev. Biochem. 71, 71–100 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Cox, M. M. in The Bacterial Chromosome (ed. Higgins, N. P.) 369–388 (ASM, Washington DC, 2005).

    Book  Google Scholar 

  26. Cox, M. M. Regulation of bacterial RecA protein function. Crit. Rev. Biochem. Mol. Biol. 42, 41–63 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Cromie, G. A., Connelly, J. C. & Leach, D. R. F. Recombination at double-strand breaks and DNA ends: conserved mechanisms from phage to humans. Mol. Cell 8, 1163–1174 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Sjogren, C. & Nasmyth, K. Sister chromatid cohesion is required for postreplicative double-strand break repair in Saccharomyces cerevisiae. Curr. Biol. 11, 991–995 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Shrivastav, M., De Haro, L. P. & Nickoloff, J. A. Regulation of DNA double-strand break repair pathway choice. Cell Res. 18, 134–147 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Branzei, D. & Foiani, M. Regulation of DNA repair throughout the cell cycle. Nature Rev. Mol. Cell Biol. 9, 297–308 (2008).

    Article  CAS  Google Scholar 

  31. Burma, S., Chen, B. P. C. & Chen, D. J. Role of non-homologous end joining (NHEJ) in maintaining genomic integrity. DNA Repair 5, 1042–1048 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Kadyk, L. C. & Hartwell, L. H. Sister chromatids are preferred over homologs as substrates for recombinational repair in S. cerevisiae. Genetics 132, 387–402 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lisby, M. & Rothstein, R. DNA repair: keeping it together. Curr. Biol. 14, R994–R996 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Watrin, E. & Peters, J. M. Cohesin and DNA damage repair. Exp. Cell Res. 312, 2687–2693 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Watrin, E. & Peters, J. M. How and when the genome sticks together. Science 317, 209–210 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Strom, L., Lindroos, H. B., Shirahige, K. & Sjogren, C. Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. Mol. Cell 16, 1003–1015 (2004).

    Article  PubMed  Google Scholar 

  37. de Jager, M. et al. Human Rad50/Mre11 is a flexible complex that can tether DNA ends. Mol. Cell 8, 1129–1135 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Lobachev, K., Vitriol, E., Stemple, J., Resnick, M. A. & Bloom, K. Chromosome fragmentation after induction of a double-strand break is an active process prevented by the RMX repair complex. Curr. Biol. 14, 2107–2112 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Moreno-Herrero, F. et al. Mesoscale conformational changes in the DNA-repair complex Rad50/Mre11/Nbs1 upon binding DNA. Nature 437, 440–443 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Bressan, D. A., Vazquez, J. & Haber, J. E. Mating type-dependent constraints on the mobility of the left arm of yeast chromosome III. J. Cell Biol. 164, 361–371 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nelms, B. E., Maser, R. S., MacKay, J. F., Lagally, M. G. & Petrini, J. H. J. In situ visualization of DNA double-strand break repair in human fibroblasts. Science 280, 590–592 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Nikiforova, M. N. et al. Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cells. Science 290, 138–141 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Kruhlak, M. J. et al. Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks. J. Cell Biol. 172, 823–834 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Soutoglou, E. & Misteli, T. Mobility and immobility of chromatin in transcription and genome stability. Curr. Opin. Genet. Dev. 17, 435–442 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Soutoglou, E. et al. Positional stability of single double-strand breaks in mammalian cells. Nature Cell Biol. 9, 675–686 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Zickler, D. From early homologue recognition to synaptonemal complex formation. Chromosoma 115, 158–174 (2006).

    Article  PubMed  Google Scholar 

  47. Woldringh, C. L. The role of co-transcriptional translation and protein translocation (transertion) in bacterial chromosome segregation. Mol. Microbiol. 45, 17–29 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Saier, M. H. The bacterial chromosome. Crit. Rev. Biochem. Mol. Biol. 43, 89–134 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Errington, J., Bath, J. & Wu, L. J. DNA transport in bacteria. Nature Rev. Mol. Cell Biol. 2, 538–544 (2001).

    Article  CAS  Google Scholar 

  50. Gerdes, K., Moller-Jensen, J., Ebersbach, G., Kruse, T. & Nordstrom, K. Bacterial mitotic machineries. Cell 116, 359–366 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Thanbichler, M. & Shapiro, L. Chromosome organization and segregation in bacteria. J. Struct. Biol. 156, 292–303 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Halford, S. E. & Marko, J. F. How do site-specific DNA-binding proteins find their targets? Nucleic Acids Res. 32, 3040–3052 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gowers, D. M., Wilson, G. G. & Halford, S. E. Measurement of the contributions of 1D and 3D pathways to the translocation of a protein along DNA. Proc. Natl Acad. Sci. USA 102, 15883–15888 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Klapstein, K., Chou, T. & Bruinsma, R. Physics of RecA-mediated homologous recognition. Biophys. J. 87, 1466–1477 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lisby, M., Mortensen, U. H. & Rothstein, R. Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre. Nature Cell Biol. 5, 572–577 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Burgess, S. M. Homologous chromosome associations and nuclear order in meiotic and mitotically dividing cells of budding yeast. Adv. Genet. 46, 49–90 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Lorenz, A., Fuchs, J., Burger, R. & Loidl, J. Chromosome pairing does not contribute to nuclear architecture in vegetative yeast cells. Eukaryotic Cell 2, 856–866 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lau, I. F. et al. Spatial and temporal organization of replicating E. coli chromosomes. Mol. Microbiol. 49, 731–743 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Wang, X. D., Liu, X., Possoz, C. & Sherratt, D. J. The two Escherichia coli chromosome arms locate to separate cell halves. Genes Dev. 20, 1727–1731 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Spies, M. & Kowalczykowski, S. C. in The Bacterial Chromosome (ed. Higgins, N. P.) 389–403 (ASM, Washington DC, 2005).

    Book  Google Scholar 

  61. Cox, M. M. et al. The importance of repairing stalled replication forks. Nature 404, 37–41 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Kuzminov, A. Collapse and repair of replication forks in Escherichia coli. Mol. Microbiol. 16, 373–384 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Kogoma, T. Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription. Microbiol. Mol. Biol. Rev. 61, 212–238 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Cox, M. M. The nonmutagenic repair of broken replication forks via recombination. Mutat. Res. 510, 107–120 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Levin-Zaidman, S. et al. Ordered intracellular RecA-DNA assemblies: a potential site of in vivo RecA-mediated activities. Proc. Natl Acad. Sci. USA 97, 6791–6796 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Minsky, A. Structural aspects of DNA repair: the role of restricted diffusion. Mol. Microbiol. 50, 367–376 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Makarova, K. S. et al. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol. Mol. Biol. Rev. 65, 44–79 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Daly, M. J. et al. Protein oxidation implicated as the primary determinant of bacterial radioresistance. PLoS Biol. 5, 769–779 (2007).

    Article  CAS  Google Scholar 

  69. Makarova, K. et al. Deinococcus geothermalis. The pool of extreme radiation resistance genes shrinks. PLoS ONE 2, e955 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gutman, P. D., Fuchs, P. & Minton, K. W. Restoration of the DNA-damage resistance of D. radiodurans DNA-polymerase mutants by E. coli DNA-polymerase-I and Klenow fragment. Mutat. Res. 314, 87–97 (1994).

    Article  CAS  PubMed  Google Scholar 

  71. Schlesinger, D. J. Role of RecA in DNA damage repair in Deinococcus radiodurans. FEMS Microbiol. Lett. 274, 342–347 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Gupta, R. C. et al. Rapid exchange of A:T base pairs is essential for recognition of DNA homology by human Rad51 recombination protein. Mol. Cell 4, 705–714 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Folta-Stogniew, E. et al. Exchange of DNA base pairs that coincides with recognition of homology promoted by E. coli RecA protein. Mol. Cell 15, 965–975 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Bagwell, C. E. et al. Survival in nuclear waste, extreme resistance, and potential applications gleaned from the genome sequence of Kineococcus radiotolerans SRS30216. PLoS ONE 3, e3878 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lieber, A., Leis, A., Kushmaro, A., Minsky, A. & Medalia, O. Chromatin organization and radio-resistance in the bacterium Gemmata obscuriglobus. J. Bacteriol. 191, 1439–1445 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Levin-Zaidman, S. et al. Ringlike structure of the Deinococcus radiodurans genome: a key to radioresistance? Science 299, 254–256 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Englander, J. et al. DNA toroids: framework for DNA repair in D. radiodurans and in germinating spores. J. Bacteriol. 186, 5973–5977 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Frenkiel-Krispin, D. et al. Structure of the DNA-SspC complex: implications for DNA packaging, protection, and repair in bacterial spores. J. Bacteriol. 186, 3525–3530 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pogliano, K., Harry, E. & Losick, R. Visualization of the subcellular location of sporulation proteins in Bacillus subtilis using immunofluorescence microscopy. Mol. Microbiol. 18, 459–470 (1995).

    Article  CAS  PubMed  Google Scholar 

  80. Ragkousi, K., Cowan, A. E., Ross, M. A. & Setlow, P. Analysis of nucleoid morphology during germination and outgrowth of spores of Bacillus species. J. Bacteriol. 182, 5556–5562 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Iliakis, G. et al. Mechanisms of DNA double strand break repair and chromosome aberration formation. Cytogenet. Genome Res. 104, 14–20 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Moeller, R. et al. Roles of the major, small, acid-soluble spore proteins and spore-specific and universal DNA repair mechanisms in resistance of Bacillus subtilis spores to ionizing radiation from X rays and high-energy charged-particle bombardment. J. Bacteriol. 190, 1134–1140 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Levin-Zaidman, S., Reich, Z., Wachtel, E. J. & Minsky, A. Flow of structural information between four DNA conformational levels. Biochemistry 35, 2985–2991 (1996).

    Article  CAS  PubMed  Google Scholar 

  84. Rau, D. C. & Parsegian, V. A. Direct measurement of temperature-dependent solvation forces between DNA double helices. Biophys. J. 61, 260–271 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kornyshev, A. A. & Leikin, S. Electrostatic zipper motif for DNA aggregation. Phys. Rev. Lett. 82, 4138–4141 (1999).

    Article  CAS  Google Scholar 

  86. Cherstvy, A. G., Kornyshev, A. A. & Leikin, S. Temperature-dependent DNA condensation triggered by rearrangement of adsorbed cations. J. Phys. Chem. B 106, 13362–13369 (2002).

    Article  CAS  Google Scholar 

  87. Bowater, R. & Doherty, A. J. Making ends meet: repairing breaks in bacterial DNA by non-homologous end-joining. PLoS Genet. 2, 93–99 (2006).

    Article  CAS  Google Scholar 

  88. Aravind, L. & Koonin, E. V. Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system. Genome Res. 11, 1365–1374 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Della, M. et al. Mycobacterial Ku and ligase proteins constitute a two-component NHEJ repair machine. Science 306, 683–685 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Karathanasis, E. & Wilson, T. E. Enhancement of Saccharomyces cerevisiae end joining efficiency by cell growth stage but not by impairment of recombination. Genetics 161, 1015–1027 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Daley, J. M., Palmbos, P. L., Wu, D. L. & Wilson, T. E. Nonhomologous end joining in yeast. Annu. Rev. Genet. 39, 431–451 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Narumi, I. et al. PprA: a novel protein from Deinococcus radiodurans that stimulates DNA ligation. Mol. Microbiol. 54, 278–285 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Blasius, M., Buob, R., Shevelev, I. V. & Hubscher, U. Enzymes involved in DNA ligation and end-healing in the radioresistant bacterium D. radiodurans. BMC Mol. Biol. 8, 69 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang, S. T. et al. The forespore line of gene expression in B. subtilis. J. Mol. Biol. 358, 16–37 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Weller, G. R. et al. Identification of a DNA nonhomologous end-joining complex in bacteria. Science 297, 1686–1689 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Wilson, T. E., Topper, L. M. & Palmbos, P. L. Non-homologous end-joining: bacteria join the chromosome breakdance. Trends Biochem. Sci. 28, 62–66 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Pitcher, R. S. et al. NHEJ protects mycobacteria in stationary phase against the harmful effects of desiccation. DNA Repair 6, 1271–1276 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Moeller, R. et al. Role of DNA repair by nonhomologous-end joining in Bacillus subtilis spore resistance to extreme dryness, mono- and polychromatic UV, and ionizing radiation. J. Bacteriol. 189, 3306–3311 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Stephanou, N. C. et al. Mycobacterial nonhomologous end joining mediates mutagenic repair of chromosomal double-strand DNA breaks. J. Bacteriol. 189, 5237–5246 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gu, J. F. & Lieber, M. R. Mechanistic flexibility as a conserved theme across 3 billion years of nonhomologous DNA end-joining. Genes Dev. 22, 411–415 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Daly, M. J. & Minton, K. W. Resistance to radiation. Science 270, 1318 (1995).

    Article  CAS  PubMed  Google Scholar 

  102. Nielsen, H. J., Youngren, B., Hansen, F. G. & Austin, S. Dynamics of Escherichia coli chromosome segregation during multifork replication. J. Bacteriol. 189, 8660–8666 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Reyes-Larnothe, R., Wang, X. D. & Sherratt, D. Escherichia coli and its chromosome. Trends Microbiol. 16, 238–245 (2008).

    Article  CAS  Google Scholar 

  104. Minsky, A., Shimoni, E. & Frenkiel-Krispin, D. Stress, order and survival. Nature Rev. Mol. Cell Biol. 3, 50–60 (2002).

    Article  CAS  Google Scholar 

  105. Minsky, A. Information content and complexity in the high-order organization of DNA. Annu. Rev. Biophys. Biomol. Struct. 33, 317–342 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Minsky, A., Ghirlando, R. & Reich, Z. Nucleosomes: a solution to a crowded intracellular environment? J. Theor. Biol. 188, 379–385 (1997).

    Article  CAS  PubMed  Google Scholar 

  107. Cremer, T. & Cremer, C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nature Rev. Genet. 2, 292–301 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Habermann, F. A. et al. Arrangement of macro- and microchromosomes in chicken cells. Chromosome Res. 9, 569–584 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Nasmyth, K. Segregating sister genomes: the molecular biology of chromosome separation. Science 297, 559–565 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Strom, L. & Sjogren, C. DNA damage-induced cohesion. Cell Cycle 4, 536–539 (2005).

    Article  PubMed  Google Scholar 

  111. Strom, L. et al. Postreplicative formation of cohesion is required for repair and induced by a single DNA break. Science 317, 242–245 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Unal, E., Heidinger-Pauli, J. M. & Koshland, D. DNA double-strand breaks trigger genome-wide sister-chromatid cohesion through Eco1 (Ctf7). Science 317, 245–248 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Hildebrandt, E. R. & Cozzarelli, N. R. Comparison of recombination in-vitro and in Escherichia coli cells: measure of the effective concentration of DNA in-vivo. Cell 81, 331–340 (1995).

    Article  CAS  PubMed  Google Scholar 

  114. Garcia-Russell, N. et al. Unequal access of chromosomal regions to each other in Salmonella: probing chromosome structure with phage lambda integrase-mediated long-range rearrangements. Mol. Microbiol. 52, 329–344 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Valens, M., Penaud, S., Rossignol, M., Cornet, F. & Boccard, F. Macrodomain organization of the Escherichia coli chromosome. EMBO J. 23, 4330–4341 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Boccard, F., Esnault, E. & Valens, M. Spatial arrangement and macrodomain organization of bacterial chromosomes. Mol. Microbiol. 57, 9–16 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Espeli, O., Mercier, R. & Boccard, F. DNA dynamics vary according to macrodomain topography in the E. coli chromosome. Mol. Microbiol. 68, 1418–1427 (2008).

    Article  CAS  PubMed  Google Scholar 

  118. Postow, L., Hardy, C. D., Arsuaga, J. & Cozzarelli, N. R. Topological domain structure of the Escherichia coli chromosome. Genes Dev. 18, 1766–1779 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Teleman, A. A., Graumann, P. L., Lin, D. C. H., Grossman, A. D. & Losick, R. Chromosome arrangement within a bacterium. Curr. Biol. 8, 1102–1109 (1998).

    Article  CAS  PubMed  Google Scholar 

  120. Niki, H. & Hiraga, S. Polar localization of the replication origin and terminus in Escherichia coli nucleoids during chromosome partitioning. Genes Dev. 12, 1036–1045 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Niki, H., Yamaichi, Y. & Hiraga, S. Dynamic organization of chromosomal DNA in Escherichia coli. Genes Dev. 14, 212–223 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Viollier, P. H. et al. Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. Proc. Natl Acad. Sci. USA 101, 9257–9262 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Thanbichler, M., Wang, S. C. & Shapiro, L. The bacterial nucleoid: a highly organized and dynamic structure. J. Cell. Biochem. 96, 506–521 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Espeli, O. & Boccard, F. Organization of the Escherichia coli chromosome into macrodomains and its possible functional implications. J. Struct. Biol. 156, 304–310 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Kuzminov, A. & Stahl, F. W. Double-strand end repair via the RecBC pathway in Escherichia coli primes DNA replication. Genes Dev. 13, 345–356 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Campo, N. et al. Subcellular sites for bacterial protein export. Mol. Microbiol. 53, 1583–1599 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to S. Rosenberg, A. J. Doherty, M. Cox, F. Boccard, A. Levy and T. Misteli for suggestions, comments and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraham Minsky.

Related links

Related links

DATABASES

Entrez Genome Project

Bacillus subtilis

Caulobacter crescentus

Deinococcus radiodurans

Escherichia coli

Gemmata obscuriglobus

Kineococcus radiotolerans

Mycobacterium smegmatis

Mycobacterium tuberculosis

Sinorhizobium meliloti

Streptomyces coelicolor

FURTHER INFORMATION

Abraham Minsky's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiner, A., Zauberman, N. & Minsky, A. Recombinational DNA repair in a cellular context: a search for the homology search. Nat Rev Microbiol 7, 748–755 (2009). https://doi.org/10.1038/nrmicro2206

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2206

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing