Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genome-scale analyses of health-promoting bacteria: probiogenomics

Key Points

  • The human gastrointestinal tract (GIT) is a complex ecosystem, the bacterial components (microbiota) of which are thought to have a significant role in normal gut function and in maintaining host health. The human gut microbiota include health-promoting indigenous species such as Bifidobacterium and Lactobacillus, also referred to as probiotic bacteria. Probiotic bacteria are commonly consumed live as dietary supplements.

  • The molecular mechanisms by which probiotic bacteria exert their health-promoting effects remain largely unclear. However, the advent of a novel scientific discipline, called probiogenomics, has recently provided new insights into the diversity and evolution of probiotic bacteria and has revealed the molecular basis of probiosis.

  • Probiogenomic efforts have shown how the genome content of bifidobacteria and lactobacilli reflect adaptations to the human intestinal niche. Genomic evidence for adaptations to the GIT includes metabolic features, such as the capacity for uptake of macromolecules and breakdown of undigested complex carbohydrates, and the ability to interact with the host through the production of cell-surface proteins that interact with the intestinal mucosa.

  • The interaction of probiotic bacteria with the host, as well as with other components of the human gut microbiota, is considered a key feature of probiosis. Bifidobacteria inducean expansion in the diversity of polysaccharides that are targeted for degradation by common intestinal bacteria (Bacteroides) and also inducethe expression of host genes that play a part in innate immunity.

  • Comparisons among completely sequenced bifidobacterial and lactobacilli genomes revealed that the main force that drives evolution in these genomes is horizontal gene transfer.

  • Probiotic bacteria are diverse and taxonomically heterogeneous groups of microorganisms, so the analysis of phyletic patterns — that is, patterns of gene presence or absence in a particular set of genomes — might be influenced by the evolutionary distance between these distant phyla. Nevertheless, comparative analyses of genomes from probiotic bacteria revealed a core genome (probiogenome), which encodes key functions of this group of microorganisms.

Abstract

The human body is colonized by an enormous population of bacteria (microbiota) that provides the host with coding capacity and metabolic activities. Among the human gut microbiota are health-promoting indigenous species (probiotic bacteria) that are commonly consumed as live dietary supplements. Recent genomics-based studies (probiogenomics) are starting to provide insights into how probiotic bacteria sense and adapt to the gastrointestinal tract environment. In this Review, we discuss the application of probiogenomics in the elucidation of the molecular basis of probiosis using the well-recognized model probiotic bacteria genera Bifidobacterium and Lactobacillus as examples.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evolutionary relationships between the main gastrointestinal tract commensal bacterial groups.
Figure 2: Acquisition of sugars by bifidobacteria.
Figure 3: Comparative analysis of Bifidobacterium genomes.
Figure 4: Comparative analysis of Lactobacillus genomes.

Similar content being viewed by others

References

  1. Backhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A. & Gordon, J. I. Host-bacterial mutualism in the human intestine. Science 307, 1915–1920 (2005).

    PubMed  Google Scholar 

  2. Eckburg, P. B. et al. Diversity of the human intestinal microbial flora. Science 308, 1635–1638 (2005). This article describes the bacterial diversity that occurs in the human gut, assessed using 16S rRNA gene-based libraries.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Seksik, P. et al. Alterations of the dominant faecal bacterial groups in patients with Crohn's disease of the colon. Gut 52, 237–242 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Turroni, F., Ribbera, A., Foroni, E., van Sinderen, D. & Ventura, M. Human gut microbiota and bifidobacteria: from composition to functionality. Antonie Van Leeuwenhoek 94, 35–50 (2008).

    Article  PubMed  Google Scholar 

  5. Rajilic-Stojanovic, M., Smidt, H. & de Vos, W. M. Diversity of the human gastrointestinal tract microbiota revisited. Environ. Microbiol. 9, 2125–2136 (2007). This review provides an integrated summary of data from culture-independent studies of the human gut microbiota.

    Article  PubMed  Google Scholar 

  6. Ley, R. E., Peterson, D. A. & Gordon, J. I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124, 837–848 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Guarner, F. & Malagelada, J. R. Gut flora in health and disease. Lancet 361, 512–519 (2003).

    Article  PubMed  Google Scholar 

  8. Hooper, L. V. & Gordon, J. I. Commensal host-bacterial relationships in the gut. Science 292, 1115–1118 (2001).

    CAS  PubMed  Google Scholar 

  9. Backhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl Acad. Sci. USA 101, 15718–15723 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Samuel, B. S. & Gordon, J. I. A humanized gnotobiotic mouse model of host–archaeal–bacterial mutualism. Proc. Natl Acad. Sci. USA 103, 10011–10016 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    PubMed  Google Scholar 

  12. Frank, D. N. et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl Acad. Sci. USA 104, 13780–13785 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kassinen, A. et al. The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. Gastroenterology 133, 24–33 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Manichanh, C. et al. Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut 55, 205–211 (2006). References 13 and 14 provide evidence for significant microbiota alterations in functional bowel disorders.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Food and Agriculture Organization of the United Nations and World Health Organization. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. (FAO/WHO, Cordoba, Argentina, 2001).

  16. Marco, M. L., Pavan, S. & Kleerebezem, M. Towards understanding molecular modes of probiotic action. Curr. Opin. Biotechnol. 17, 204–210 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. O'Hara, A. M. & Shanahan, F. Mechanisms of action of probiotics in intestinal diseases. Scientific World J. 7, 31–46 (2007).

    Article  CAS  Google Scholar 

  18. Saxelin, M., Tynkkynen, S., Mattila-Sandholm, T. & de Vos, W. M. Probiotic and other functional microbes: from markets to mechanisms. Curr. Opin. Biotechnol. 16, 204–211 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Ventura, M. et al. Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol. Mol. Biol. Rev. 71, 495–548 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Joyce, A. R. & Palsson, B. O. The model organism as a system: integrating 'omics' data sets. Nature Rev. Mol. Cell Biol. 7, 198–210 (2006).

    Article  CAS  Google Scholar 

  21. Ventura, M. et al. Analysis of bifidobacterial evolution using a multilocus approach. Int. J. Syst. Evol. Microbiol. 56, 2783–2792 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Tissier, M. H. Recherche Sur La Flore Intestinale Des Nourissons (Etat Normal Et Pathologique). Thesis, Univ. Paris, France (1906).

    Google Scholar 

  23. Ventura, M., Canchaya, C., Fitzgerald, G. F., Gupta, R. S. & van Sinderen, D. Genomics as a means to understand bacterial phylogeny and ecological adaptation: the case of bifidobacteria. Antonie Van Leeuwenhoek 91, 351–372 (2007).

    Article  PubMed  Google Scholar 

  24. Schell, M. A. et al. The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc. Natl Acad. Sci. USA 99, 14422–14427 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gibson, G. R. & Roberfroid, M. B. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr. 125, 1401–1412 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Flint, H. J., Bayer, E. A., Rincon, M. T., Lamed, R. & White, B. A. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nature Rev. Microbiol. 6, 121–131 (2008).

    Article  CAS  Google Scholar 

  27. Sonnenburg, J. L. et al. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307, 1955–1959 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Hooper, L. V., Xu, J., Falk, P. G., Midtvedt, T. & Gordon, J. I. A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc. Natl Acad. Sci. USA 96, 9833–9838 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hinz, S. W., Verhoef, R., Schols, H. A., Vincken, J. P. & Voragen, A. G. Type I arabinogalactan contains β-D-Galp-(1→3)-β-D-Galp structural elements. Carbohydr. Res. 340, 2135–2143 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Ryan, S. M., Fitzgerald, G. F. & van Sinderen, D. Screening for and identification of starch-, amylopectin-, and pullulan-degrading activities in bifidobacterial strains. Appl. Environ. Microbiol. 72, 5289–5296 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Maze, A., O' Connell-Motherway, M., Fitzgerald, G. F., Deutscher, J. & van Sinderen, D. Identification and characterization of a fructose phosphotransferase system in Bifidobacterium breve UCC2003. Appl. Environ. Microbiol. 73, 545–553 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. van den Broek, L. A., Hinz, S. W., Beldman, G., Vincken, J. P. & Voragen, A. G. Bifidobacterium carbohydrases-their role in breakdown and synthesis of (potential) prebiotics. Mol. Nutr. Food Res. 52, 146–163 (2008). This paper provides the most up-to-date description of the enzymes encoded by bifidobacteria that are involved in the hydrolysis of carbohydrates.

    Article  CAS  PubMed  Google Scholar 

  33. Siezen, R. et al. Lactobacillus plantarum gene clusters encoding putative cell-surface protein complexes for carbohydrate utilization are conserved in specific Gram-positive bacteria. BMC Genomics 7, 126 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hooper, L. V., Midtvedt, T. & Gordon, J. I. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu. Rev. Nutr. 22, 283–307 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Hoskins, L. C. et al. Mucin degradation in human colon ecosystems. Isolation and properties of fecal strains that degrade ABH blood group antigens and oligosaccharides from mucin glycoproteins. J. Clin. Invest. 75, 944–953 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ruas-Madiedo, P., Gueimonde, M., Fernandez-Garcia, M., de los Reyes-Gavilan, C. G. & Margolles, A. Mucin degradation by Bifidobacterium strains isolated from the human intestinal microbiota. Appl. Environ. Microbiol. 74, 1936–1940 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ventura, M., van Sinderen, D., Fitzgerald, G. F. & Zink, R. Insights into the taxonomy, genetics and physiology of bifidobacteria. Antonie Van Leeuwenhoek 86, 205–223 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Ehrmann, M. A., Korakli, M. & Vogel, R. F. Identification of the gene for β-fructofuranosidase of Bifidobacterium lactis DSM10140(T) and characterization of the enzyme expressed in Escherichia coli. Curr. Microbiol. 46, 391–397 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Katayama, T. et al. Molecular cloning and characterization of Bifidobacterium bifidum 1,2-α-L-fucosidase (AfcA), a novel inverting glycosidase (glycoside hydrolase family 95). J. Bacteriol. 186, 4885–4893 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ryan, S. M., Fitzgerald, G. F. & van Sinderen, D. Transcriptional regulation and characterization of a novel β-fructofuranosidase-encoding gene from Bifidobacterium breve UCC2003. Appl. Environ. Microbiol. 71, 3475–3482 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gonzalez, R., Klaassens, E. S., Malinen, E., de Vos, W. M. & Vaughan, E. E. Differential transcriptional response of Bifidobacterium longum to human milk, formula milk and galactooligosaccharide. Appl. Environ. Microbiol. 74, 4686–4694 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liepke, C. et al. Human milk provides peptides highly stimulating the growth of bifidobacteria. Eur. J. Biochem. 269, 712–718 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Ivanov, D. et al. A serpin from the gut bacterium Bifidobacterium longum inhibits eukaryotic elastase-like serine proteases. J. Biol. Chem. 281, 17246–17252 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Potempa, J., Korzus, E. & Travis, J. The serpin superfamily of proteinase inhibitors: structure, function, and regulation. J. Biol. Chem. 269, 15957–15960 (1994).

    CAS  PubMed  Google Scholar 

  45. Sonnenburg, J. L., Chen, C. T. & Gordon, J. I. Genomic and metabolic studies of the impact of probiotics on a model gut symbiont and host. PLoS Biol. 4, e413 (2006). This paper describes the crosstalk that exists between bifidobacteria and Bacteroides in the murine intestine as well as between these bacteria and their hosts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kato, S., Haruta, S., Cui, Z. J., Ishii, M. & Igarashi, Y. Stable coexistence of five bacterial strains as a cellulose-degrading community. Appl. Environ. Microbiol. 71, 7099–7106 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Klijn, A., Mercenier, A. & Arigoni, F. Lessons from the genomes of bifidobacteria. FEMS Microbiol. Rev. 29, 491–509 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Aas, J. A. et al. Bacteria of dental caries in primary and permanent teeth in children and young adults. J. Clin. Microbiol. 46, 1407–1417 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Makarova, K. S. & Koonin, E. V. Evolutionary genomics of lactic acid bacteria. J. Bacteriol. 189, 1199–1208 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Claesson, M. J. et al. Multireplicon genome architecture of Lactobacillus salivarius. Proc. Natl Acad. Sci. USA 103, 6718–6723 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pfeiler, E. A. & Klaenhammer, T. R. The genomics of lactic acid bacteria. Trends Microbiol. 15, 546–553 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. van de Guchte, M. et al. The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution. Proc. Natl Acad. Sci. USA 103, 9274–9279 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Callanan, M. et al. Genome sequence of Lactobacillus helveticus, an organism distinguished by selective gene loss and insertion sequence element expansion. J. Bacteriol. 190, 727–735 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Altermann, E. et al. Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc. Natl Acad. Sci. USA 102, 3906–3912 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Walter, J. et al. Identification of Lactobacillus reuteri genes specifically induced in the mouse gastrointestinal tract. Appl. Environ. Microbiol. 69, 2044–2051 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bron, P. A., Grangette, C., Mercenier, A., de Vos, W. M. & Kleerebezem, M. Identification of Lactobacillus plantarum genes that are induced in the gastrointestinal tract of mice. J. Bacteriol. 186, 5721–5729 (2004). This manuscript provides insight into the interactions between a commensal bacterium and its murine host.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Oozeer, R. et al. Differential activities of four Lactobacillus casei promoters during bacterial transit through the gastrointestinal tracts of human-microbiota-associated mice. Appl. Environ. Microbiol. 71, 1356–1363 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Denou, E. et al. Gene expression of commensal Lactobacillus johnsonii strain NCC533 during in vitro growth and in the murine gut. J. Bacteriol. 189, 8109–8119 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Denou, E. et al. Identification of genes associated with the long-gut-persistence phenotype of the probiotic Lactobacillus johnsonii strain NCC533 using a combination of genomics and transcriptome analysis. J. Bacteriol. 190, 3161–3168 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Whitman, W. B., Coleman, D. C. & Wiebe, W. J. Prokaryotes: the unseen majority. Proc. Natl Acad. Sci. USA 95, 6578–6583 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tannock, G. W. et al. Analysis of the fecal microflora of human subjects consuming a probiotic product containing Lactobacillus rhamnosus DR20. Appl. Environ. Microbiol. 66, 2578–2588 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Martin, F. P. et al. Probiotic modulation of symbiotic gut microbial-host metabolic interactions in a humanized microbiome mouse model. Mol. Syst. Biol. 4, 157 (2008).

    PubMed  PubMed Central  Google Scholar 

  64. Hickson, M. et al. Use of probiotic Lactobacillus preparation to prevent diarrhoea associated with antibiotics: randomised double blind placebo controlled trial. Brit. Med. J. 335, 80 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Sullivan, A. & Nord., C. E. Probiotics and gastrointestinal diseases. J. Intern. Med. 257, 78–92 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Kelly, M. C., Mequio, M. J. & Pybus, V. Inhibition of vaginal lactobacilli by a bacteriocin-like inhibitor produced by Enterococcus faecium 62–66: potential significance for bacterial vaginosis. Infect. Dis. Obstet. Gynecol. 11, 147–156 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Corr, S. C. et al. Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc. Natl Acad. Sci. USA 104, 7617–7621 (2007). This study identified the first molecular mechanism by which probiotic bacteria modulate the microbiota in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Casey, P. G. et al. A five-strain probiotic combination reduces pathogen shedding and alleviates disease signs in pigs challenged with Salmonella enterica serovar Typhimurium. Appl. Environ. Microbiol. 73, 1858–1863 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Makarova, K. et al. Comparative genomics of the lactic acid bacteria. Proc. Natl Acad. Sci. USA 103, 15611–15616 (2006). This landmark study provided a large tranche of genomic data to allow studies of genome evolution in lactic acid bacteria.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kleerebezem, M. et al. Complete genome sequence of Lactobacillus plantarum WCFS1. Proc. Natl Acad. Sci. USA 100, 1990–1995 (2003). This is the first article describing the genome sequence of a member of the genus Lactobacillus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pridmore, R. D. et al. The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc. Natl Acad. Sci. USA 101, 2512–2517 (2004). This paper describes the genome of a commonly used probiotic bacterium belonging to the genus Lactobacillus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Talarico, T. L., Casas, I. A., Chung, T. C. & Dobrogosz, W. J. Production and isolation of reuterin, a growth inhibitor produced by Lactobacillus reuteri. Antimicrob. Agents Chemother. 32, 1854–1858 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Santos, F. et al. The complete coenzyme B12 biosynthesis gene cluster of Lactobacillus reuteri CRL1098. Microbiology 154, 81–93 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Sriramulu, D. D. et al. Lactobacillus reuteri DSM 20016 produces cobalamin-dependent diol dehydratase in metabolosomes and metabolizes 1,2-propanediol by disproportionation. J. Bacteriol. 190, 4559–4567 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Morita, H. et al. Comparative genome analysis of Lactobacillus reuteri and Lactobacillus fermentum reveal a genomic island for reuterin and cobalamin production. DNA Res. 15, 151–161 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Euzeby, J. P. List of bacterial names with standing in nomenclature: a folder available on the internet. Int. J. Syst. Bacteriol. 47, 590–592 (1997).

    Article  CAS  PubMed  Google Scholar 

  77. Boekhorst, J. et al. The complete genomes of Lactobacillus plantarum and Lactobacillus johnsonii reveal extensive differences in chromosome organization and gene content. Microbiology 150, 3601–3611 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Berger, B. et al. Similarity and differences in the Lactobacillus acidophilus group identified by polyphasic analysis and comparative genomics. J. Bacteriol. 189, 1311–1321 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Nicolas, P., Bessieres, P., Ehrlich, S. D., Maguin, E. & van de Guchte, M. Extensive horizontal transfer of core genome genes between two Lactobacillus species found in the gastrointestinal tract. BMC Evol. Biol. 7, 141 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Klaenhammer, T. R., Barrangou, R., Buck, B. L., Azcarate-Peril, M. A. & Altermann, E. Genomic features of lactic acid bacteria effecting bioprocessing and health. FEMS Microbiol. Rev. 29, 393–409 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Canchaya, C., Claesson, M. J., Fitzgerald, G. F., van Sinderen, D. & O'Toole, P. W. Diversity of the genus Lactobacillus revealed by comparative genomics of five species. Microbiology 152, 3185–3196 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Makarova, K. et al. Comparative genomics of the lactic acid bacteria. Proc. Natl Acad. Sci. USA 103, 15611–15616 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Claesson M. J., von Sinderen, D. & O'Toole, P. W. Lactobacillus phylogenomics — towards a reclassification of the genus. Int. J. Sys. Evo. Microbiol. (in press).

  84. Teuber, M., Meile, L. & Schwarz, F. Acquired antibiotic resistance in lactic acid bacteria from food. Antonie Van Leeuwenhoek 76, 115–137 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Koonin, E. V., Makarova, K. S. & Aravind, L. Horizontal gene transfer in prokaryotes: quantification and classification. Annu. Rev. Microbiol. 55, 709–742 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lloyd, A. L., Rasko, D. A. & Mobley, H. L. Defining genomic islands and uropathogen-specific genes in uropathogenic Escherichia coli. J. Bacteriol. 189, 3532–3546 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pretzer, G. et al. Biodiversity-based identification and functional characterization of the mannose-specific adhesin of Lactobacillus plantarum. J. Bacteriol. 187, 6128–6136 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Grangette, C. et al. Enhanced antiinflammatory capacity of a Lactobacillus plantarum mutant synthesizing modified teichoic acids. Proc. Natl Acad. Sci. USA 102, 10321–10326 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Turnbaugh, P. J. et al. The human microbiome project. Nature 449, 804–810 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ley, R. E. et al. Evolution of mammals and their gut microbes. Science 320, 1647–1651 (2008). This paper describes the bacterial diversity that exists in the gut of numerous mammals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lee, J. H. et al. Comparative genomic analysis of the gut bacterium Bifidobacterium longum reveals loci susceptible to deletion during pure culture growth. BMC Genomics 9, 247 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Leahy, S. C., Higgins, D. G., Fitzgerald, G. F. & van Sinderen, D. Getting better with bifidobacteria. J. Appl. Microbiol. 98, 1303–1315 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the laboratories of D.v.S. and P.W.O.T. is supported by a Science Foundation Ireland Centres for Science, Engineering & Technology (SFI CSET) award to the Alimentary Pharmabiotic Centre and a Department of Agriculture and Food (DAF)/Health Research Board, Food-Health Research Initiative (HRB FHRI) FHRI award to the ELDERMET project. M.V. was supported by an Italian Award for Outstanding Young Researcher scheme “Incentivazione alla mobilità di studiosi stranieri e italiani residente all'estero” 2005–2009, a Marie Curie Reintegration Grant (MERG-CT-2005-03,080) and Parmalat spa, Italy. We also thank C. Canchaya for helpful discussions. Work on genomics of lactobacilli at North Carolina State University, USA, is supported by the NC Dairy Foundation, Danisco USA Inc. and Dairy Management Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul W. O'Toole.

Related links

Related links

DATABASES

Entrez Genome Project

Bacteroides thetaiotaomicron

Bifidobacterium adolescentis

Bifidobacterium breve

Bifidobacterium dentium

Bifidobacterium longum

Enterococcus faecium

Escherichia coli

Lactobacillus acidophilus

Lactobacillus delbrueckii

Lactobacillus fermentum

Lactobacillus gasseri

Lactobacillus helveticus

Lactobacillus johnsonii

Lactobacillus plantarum

Lactobacillus reuteri

Lactobacillus rhamnosus

Lactobacillus salivarius

Lactococcus lactis

FURTHER INFORMATION

Alimentary Pharmabiotic Centre

ELDERMET

Univeristy of Parma

Glossary

Microbiota

The collective microbial community or population that resides in a particular locale at a given time.

Phylotypes

Groups of bacteria that are defined by percentage identity in their 16S rRNA gene sequences.

Neighbour-joining tree

A tree that reconstructs the evolutionary development of organisms on the basis of distances between pairs of taxa.

Omics

The integration of genomics methodology and data with functional genomic analyses involving transcriptomics, proteomics, metabolomics and interactomics.

Prebiotics

Growth substrates that are preferentially (or ideally, exclusively) metabolized by a single genus or species and that may thus be used as dietary supplements to promote growth of a targeted health-promoting microorganism.

Transcriptome

The subset of genes that are transcribed in an organism. It represents dynamic links between a genome, proteins and cellular phenotypes.

Synteny

Genetic linkage or conservation of gene order.

Bacteriocins

Proteinaceous substances that are produced by one bacterium to kill another bacterium, usually by inducing leakage or lysis. Bacteriocins are composed of one or two short peptides that can be post-translationally modified.

COGs

Clusters of orthologous groups are delineated by comparing protein sequences that are encoded in complete genomes, representing major phylogenetic lineages. Each COG consists of individual proteins or groups of paralogues from at least 3 lineages and thus corresponds to an ancient conserved domain.

Autochthonous

Members of the microbiota that are growing where they are found, as distinct from transient species that are only passing through the environment.

Pseudoparalogous

An extra copy of a gene that is already present in a genome that was acquired by lateral gene transfer rather than by gene duplication.

Microbiome

The collective genome of microbial communities.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ventura, M., O'Flaherty, S., Claesson, M. et al. Genome-scale analyses of health-promoting bacteria: probiogenomics. Nat Rev Microbiol 7, 61–71 (2009). https://doi.org/10.1038/nrmicro2047

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2047

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing