Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular mechanisms of mechanosensing and their roles in fungal contact sensing

Key Points

  • Fungal plant pathogens undergo differentiation in response to contact with a surface. Specific features of the surface are sensed.

  • Candida albicans, an opportunistic human pathogen, exhibits contact-dependent filamentous growth, which might promote invasion of host tissue during infection.

  • The well-studied mechanosensitive ion channel MscL is activated by lipid-bilayer deformation. Mechanosensitive ion channels that might use a similar molecular mechanism for activation are involved in some of the contact-dependent responses of fungi.

  • Another mechanism for contact sensing involves fungal members of the G-protein coupled receptor family of proteins.

Abstract

Numerous fungal species respond to contact with a surface by undergoing differentiation. Contact between plant pathogenic fungi and a surface results in the elaboration of the complex structures that enable invasion of the host plant, and for the opportunistic human pathogen Candida albicans, contact with a semi-solid surface results in invasive growth into the subjacent material. The ability to sense contact with an appropriate surface therefore contributes to the ability of these fungi to cause disease in their respective hosts. This Review discusses molecular mechanisms of mechanosensitivity, the proteins involved, such as mechanosensitive ion channels, G-protein-coupled receptors and integrins, and their putative roles in fungal contact sensing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Candida albicans differentiation.
Figure 2: Function of mechanosensitive ion channels.
Figure 3: Sensing of cytoskeletal forces.

Similar content being viewed by others

References

  1. Soll, D. R. et al. Genetic dissimilarity of commensal strains of Candida spp. carried in different anatomical locations of the same healthy women. J. Clin Microbiol. 29, 1702–1710 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Emerling, B. M. & Chandel, N. S. Oxygen sensing: getting pumped by sterols. Sci STKE 2005, pe30 (2005).

    PubMed  Google Scholar 

  3. Sanz, P. Snf1 protein kinase: a key player in the response to cellular stress in yeast. Biochem. Soc. Trans. 31, 178–181 (2003).

    Article  CAS  Google Scholar 

  4. Grant, W. D. Life at low water activity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359, 1249–1266; discussion 1266–1267 (2004).

    Article  CAS  Google Scholar 

  5. Stupack, D. G. The biology of integrins. Oncology (Williston Park) 21, 6–12 (2007).

    Google Scholar 

  6. Alam, N. et al. The integrin-growth factor receptor duet. J. Cell. Physiol. 213, 649–653 (2007).

    Article  CAS  Google Scholar 

  7. Tucker, S. L. & Talbot, N. J. Surface attachment and pre-penetration stage development by plant pathogenic fungi. Annu. Rev. Phytopathol. 39, 385–417 (2001).

    Article  CAS  Google Scholar 

  8. Caracuel-Rios, Z. & Talbot, N. J. Cellular differentiation and host invasion by the rice blast fungus Magnaporthe grisea. Curr. Opin. Microbiol. 10, 339–345 (2007).

    Article  CAS  Google Scholar 

  9. Kumamoto, C. A. & Vinces, M. D. Alternative Candida albicans lifestyles: growth on surfaces. Annu. Rev. Microbiol. 59, 113–133 (2005).

    Article  CAS  Google Scholar 

  10. Sexton, A. C. & Howlett, B. J. Parallels in fungal pathogenesis on plant and animal hosts. Eukaryot. Cell 5, 1941–1949 (2006).

    Article  CAS  Google Scholar 

  11. Kloda, A. et al. Mechanosensitive channel of large conductance. Int. J. Biochem. Cell Biol. 40, 164–169 (2008).

    Article  CAS  Google Scholar 

  12. Booth, I. R., Edwards, M. D., Black, S., Schumann, U. & Miller, S. Mechanosensitive channels in bacteria: signs of closure? Nature Rev. Microbiol. 5, 431–440 (2007).

    Article  CAS  Google Scholar 

  13. Vollrath, M. A., Kwan, K. Y. & Corey, D. P. The micromachinery of mechanotransduction in hair cells. Annu. Rev. Neurosci. 30, 339–365 (2007).

    Article  CAS  Google Scholar 

  14. Perozo, E. & Rees, D. C. Structure and mechanism in prokaryotic mechanosensitive channels. Curr. Opin. Struct. Biol. 13, 432–442 (2003).

    Article  CAS  Google Scholar 

  15. Chang, G., Spencer, R. H., Lee, A. T., Barclay, M. T. & Rees, D. C. Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282, 2220–2226 (1998).

    Article  CAS  Google Scholar 

  16. Betanzos, M., Chiang, C. S., Guy, H. R. & Sukharev, S. A large iris-like expansion of a mechanosensitive channel protein induced by membrane tension. Nature Struct. Biol. 9, 704–710 (2002).

    Article  CAS  Google Scholar 

  17. Perozo, E., Cortes, D. M., Sompornpisut, P., Kloda, A. & Martinac, B. Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418, 942–948 (2002).

    Article  CAS  Google Scholar 

  18. Perozo, E., Kloda, A., Cortes, D. M. & Martinac, B. Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nature Struct. Biol. 9, 696–703 (2002). Provided an analysis of the effect of the bilayer on the conformation of MscL.

    Article  CAS  Google Scholar 

  19. Zhou, X. L., Stumpf, M. A., Hoch, H. C. & Kung, C. A mechanosensitive channel in whole cells and in membrane patches of the fungus Uromyces. Science 253, 1415–1417 (1991).

    Article  CAS  Google Scholar 

  20. Watts, H. J., Very, A. A., Perera, T. H., Davies, J. M. & Gow, N. A. Thigmotropism and stretch-activated channels in the pathogenic fungus Candida albicans. Microbiology 144, 689–695 (1998).

    Article  CAS  Google Scholar 

  21. Hoch, H. C., Staples, R. C., Whitehead, B., Comeau, J. & Wolf, E. D. Signaling for growth orientation and cell differentiation by surface topography in Uromyces. Science 235, 1659–1662 (1987). Demonstrated that Uromyces germ tubes differentiate in response to specific features of the surface.

    Article  CAS  Google Scholar 

  22. Brand, A. et al. Hyphal orientation of Candida albicans is regulated by a calcium-dependent mechanism. Curr. Biol. 17, 347–352 (2007).

    Article  CAS  Google Scholar 

  23. Chachisvilis, M., Zhang, Y. L. & Frangos, J. A. G protein-coupled receptors sense fluid shear stress in endothelial cells. Proc. Natl Acad. Sci. USA 103, 15463–15468 (2006). Showed thats mechanical forces affect the conformation of a GPCR.

    Article  Google Scholar 

  24. Makino, A. et al. G protein-coupled receptors serve as mechanosensors for fluid shear stress in neutrophils. Am. J. Physiol. Cell Physiol. 290, 1633–1639 (2006).

    Article  Google Scholar 

  25. Zou, Y. et al. Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nature Cell Biol. 6, 499–506 (2004).

    Article  CAS  Google Scholar 

  26. Rosenbaum, D. M. et al. GPCR engineering yields high-resolution structural insights into b2-adrenergic receptor function. Science 318, 1266–1273 (2007).

    Article  CAS  Google Scholar 

  27. Palczewski, K. et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289, 739–745 (2000).

    Article  CAS  Google Scholar 

  28. Salom, D. et al. Crystal structure of a photoactivated deprotonated intermediate of rhodopsin. Proc. Natl Acad. Sci. USA 103, 16123–16128 (2006).

    Article  CAS  Google Scholar 

  29. Yasuda, N. et al. Conformational switch of angiotensin II type 1 receptor underlying mechanical stress-induced activation. EMBO Rep. 9, 179–186 (2008).

    Article  CAS  Google Scholar 

  30. DeZwaan, T. M., Carroll, A. M., Valent, B. & Sweigard, J. A. Magnaporthe grisea pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. Plant Cell 11, 2013–2030 (1999). Identified a G protein coupled receptor that promotes contact-dependent appressorium formation.

    Article  CAS  Google Scholar 

  31. Kulkarni, R. D., Thon, M. R., Pan, H. & Dean, R. A. Novel G-protein-coupled receptor-like proteins in the plant pathogenic fungus Magnaporthe grisea. Genome Biol. 6, R24 (2005).

    Article  Google Scholar 

  32. Nishimura, M., Park, G. & Xu, J. R. The G-b subunit MGB1 is involved in regulating multiple steps of infection-related morphogenesis in Magnaporthe grisea. Mol. Microbiol. 50, 231–243 (2003).

    Article  CAS  Google Scholar 

  33. Liu, S. & Dean, R. A. G protein a subunit genes control growth, development, and pathogenicity of Magnaporthe grisea. Mol. Plant Microbe Interact. 10, 1075–1086 (1997).

    Article  CAS  Google Scholar 

  34. Liu, H. et al. Rgs1 regulates multiple Ga subunits in Magnaporthe pathogenesis, asexual growth and thigmotropism. EMBO J. 26, 690–700 (2007).

    Article  CAS  Google Scholar 

  35. Fang, E. G. & Dean, R. A. Site-directed mutagenesis of the magB gene affects growth and development in Magnaporthe grisea. Mol. Plant Microbe Interact. 13, 1214–1227 (2000).

    Article  CAS  Google Scholar 

  36. Miwa, T. et al. Gpr1, a putative G-protein-coupled receptor, regulates morphogenesis and hypha formation in the pathogenic fungus Candida albicans. Eukaryot. Cell 3, 919–931 (2004).

    Article  CAS  Google Scholar 

  37. Maidan, M. M. et al. The G protein-coupled receptor Gpr1 and the Ga protein Gpa2 act through the cAMP-protein kinase A pathway to induce morphogenesis in Candida albicans. Mol. Biol. Cell 16, 1971–1986 (2005).

    Article  CAS  Google Scholar 

  38. Sciascia, Q. L., Sullivan, P. A. & Farley, P. C. Deletion of the Candida albicans G-protein-coupled receptor, encoded by orf19.1944 and its allele orf19.9499, produces mutants defective in filamentous growth. Can. J. Microbiol. 50, 1081–1085 (2004).

    Article  CAS  Google Scholar 

  39. Lorenz, M. C. et al. The G protein-coupled receptor gpr1 is a nutrient sensor that regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Genetics 154, 609–622 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lemaire, K., Van de Velde, S., Van Dijck, P. & Thevelein, J. M. Glucose and sucrose act as agonist and mannose as antagonist ligands of the G protein-coupled receptor Gpr1 in the yeast Saccharomyces cerevisiae. Mol. Cell 16, 293–299 (2004).

    Article  CAS  Google Scholar 

  41. Van de Velde, S. & Thevelein, J. M. cAMP-PKA and Snf1 signaling mechanisms underlie the superior potency of sucrose for induction of filamentation in yeast. Eukaryot. Cell 7, 286–293 (2008).

    Article  CAS  Google Scholar 

  42. Bershadsky, A. D., Balaban, N. Q. & Geiger, B. Adhesion-dependent cell mechanosensitivity. Annu. Rev. Cell Dev. Biol. 19, 677–695 (2003).

    Article  CAS  Google Scholar 

  43. Katsumi, A., Orr, A. W., Tzima, E. & Schwartz, M. A. Integrins in mechanotransduction. J. Biol. Chem. 279, 12001–12004 (2004).

    Article  CAS  Google Scholar 

  44. Astrof, N. S., Salas, A., Shimaoka, M., Chen, J. & Springer, T. A. Importance of force linkage in mechanochemistry of adhesion receptors. Biochemistry 45, 15020–15028 (2006).

    Article  CAS  Google Scholar 

  45. Pelling, A. E., Sehati, S., Gralla, E. B., Valentine, J. S. & Gimzewski, J. K. Local nanomechanical motion of the cell wall of Saccharomyces cerevisiae. Science 305, 1147–1150 (2004).

    Article  CAS  Google Scholar 

  46. Wang, Z. Y. et al. The molecular biology of appressorium turgor generation by the rice blast fungus Magnaporthe grisea. Biochem. Soc. Trans. 33, 384–388 (2005).

    Article  CAS  Google Scholar 

  47. Howard, R. J., Ferrari, M. A., Roach, D. H. & Money, N. P. Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc. Natl Acad. Sci. USA 88, 11281–11284 (1991).

    Article  CAS  Google Scholar 

  48. Howard, R. J. & Valent, B. Breaking and entering: host penetration by the fungal rice blast pathogen Magnaporthe grisea. Annu. Rev. Microbiol. 50, 491–512 (1996).

    Article  CAS  Google Scholar 

  49. Xiao, J. Z., Watanabe, T., Kamakura, T., Ohshima, A. & Yamaguchi, I. Studies on cellular differentiation of Magnaporthe grisea. Physicochemical aspects of substratum surfaces in relation to appressorium formation. Physiol. Mol. Plant Pathol. 44, 227–236 (1994).

    Article  CAS  Google Scholar 

  50. Dean, R. A. et al. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434, 980–986 (2005).

    CAS  Google Scholar 

  51. Kumamoto, C. A. & Vinces, M. D. Contributions of hyphae and hypha-co-regulated genes to Candida albicans virulence. Cell. Microbiol. 7, 1546–1554 (2005).

    Article  CAS  Google Scholar 

  52. Mitchell, A. P. Dimorphism and virulence in Candida albicans. Curr. Opin. Microbiol. 1, 687–692 (1998).

    Article  CAS  Google Scholar 

  53. Brown, D. H. Jr, Giusani, A. D., Chen, X. & Kumamoto, C. A. Filamentous growth of Candida albicans in response to physical environmental cues and its regulation by the unique CZF1 gene. Mol. Microbiol. 34, 651–662 (1999). Demonstrated that C. albicans produces invasive filaments in response to contact with agar medium.

    Article  CAS  Google Scholar 

  54. Douglas, L. J. Candida biofilms and their role in infection. Trends Microbiol. 11, 30–36 (2003).

    Article  CAS  Google Scholar 

  55. Kumamoto, C. A. A contact-activated kinase signals Candida albicans invasive growth and biofilm development. Proc. Natl Acad. Sci. USA 102, 5576–5581 (2005).

    Article  CAS  Google Scholar 

  56. Liu, H., Styles, C. A. & Fink, G. R. Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth. Genetics 144, 967–978 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Gimeno, C. J., Ljungdahl, P. O., Styles, C. A. & Fink, G. R. Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68, 1077–1090 (1992).

    Article  CAS  Google Scholar 

  58. Lorenz, M. C., Cutler, N. S. & Heitman, J. Characterization of alcohol-induced filamentous growth in Saccharomyces cerevisiae. Mol. Biol. Cell 11, 183–199 (2000).

    Article  CAS  Google Scholar 

  59. Levin, D. E. Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 69, 262–291 (2005).

    Article  CAS  Google Scholar 

  60. Lommel, M., Bagnat, M. & Strahl, S. Aberrant processing of the WSC family and Mid2p cell surface sensors results in cell death of Saccharomyces cerevisiae O-mannosylation mutants. Mol. Cell Biol. 24, 46–57 (2004).

    Article  CAS  Google Scholar 

  61. Hutzler, F., Gerstl, R., Lommel, M. & Strahl, S. Protein N-glycosylation determines functionality of the Saccharomyces cerevisiae cell wall integrity sensor Mid2p. Mol. Microbiol. 68, 1438–1449 (2008).

    Article  CAS  Google Scholar 

  62. Philip, B. & Levin, D. E. Wsc1 and Mid2 are cell surface sensors for cell wall integrity signaling that act through Rom2, a guanine nucleotide exchange factor for Rho1. Mol. Cell Biol. 21, 271–280 (2001).

    Article  CAS  Google Scholar 

  63. Green, R., Lesage, G., Sdicu, A. M., Menard, P. & Bussey, H. A synthetic analysis of the Saccharomyces cerevisiae stress sensor Mid2p, and identification of a Mid2p-interacting protein, Zeo1p, that modulates the PKC1-MPK1 cell integrity pathway. Microbiology 149, 2487–2499 (2003).

    Article  CAS  Google Scholar 

  64. Kamada, Y., Jung, U. S., Piotrowski, J. & Levin, D. E. The protein kinase C-activated MAP kinase pathway of Saccharomyces cerevisiae mediates a novel aspect of the heat shock response. Genes Dev. 9, 1559–1571 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank P. Watnick, D. Amberg, B. Cormack, J. Koehler, S. Hadley, D. Brown Jr, M. Vinces and P. Zucchi for stimulating discussions and K. Heldwein and C. Squires for careful reading of the manuscript. I am particularly grateful to the anonymous reviewers whose comments helped determine the scope of this Review. I also thank R. Connolly (Surgical Research Laboratory, Tufts-New England Medical Center) for assistance with the study of C. albicans in the rabbit ileal loop. Research in my laboratory is supported by grant AI076156 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Entrez Gene

MID1

Entrez Genome Project

Candida albicans

Magnaporthe grisea

Mycobacterium tuberculosis

Saccharomyces cerevisiae

FURTHER INFORMATION

Carol A. Kumamoto's homepage

Glossary

Appressorium

The swollen end of a fungal hypha that is involved in host infection.

Hypha

A filament that is composed of highly elongated cells that lack constrictions at the septa and remain attached after division.

Patch clamping

A technique whereby a small electrode tip is sealed onto a patch of cell membrane, making it possible to record the flow of current through individual ion channels or pores in the patch.

Germ tube

An elongated daughter cell that is the precursor to a hypha.

Stomata

Pores found on the undersides of leaves that open and close to regulate gas and water exchange.

Guard cells

A pair of cells in the centre of a stomatal complex that flank the stomatal pore.

Thigmotropism

The ability of cells to orientate growth with respect to features of the physical environment.

Pseudohyphae

Chains of attached, elongated cells with constrictions at the septa.

Biofilm

A three dimensional community of cells that are attached to a surface, are surrounded by exopolymeric matrix and exhibit distinctive phenotypes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumamoto, C. Molecular mechanisms of mechanosensing and their roles in fungal contact sensing. Nat Rev Microbiol 6, 667–673 (2008). https://doi.org/10.1038/nrmicro1960

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1960

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing