Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Towards nanomicrobiology using atomic force microscopy

Key Points

  • Following an introduction on the importance of single-cell and single-molecule tools, recent opportunities offered by atomic force microscopy (AFM) in microbiology are surveyed.

  • The author discusses progress made in using AFM to visualize and manipulate native bacterial membranes to a resolution of 0.5–1 nm.

  • Live-cell imaging studies are described, with an emphasis on mutant-strain analyses and on the real-time imaging of cell-wall remodelling.

  • The use of force spectroscopy for mapping the elasticity, chemical properties and specific receptors of individual cells is discussed.

  • The author then surveys recent progress in using single-cell and single-molecule techniques to quantify cell–cell and cell–solid interactions.

  • Finally, new possibilities offered by AFM-based nanosensors are highlighted.

Abstract

At the cross-roads of nanoscience and microbiology, the nanoscale analysis of microbial cells using atomic force microscopy (AFM) is an exciting, rapidly evolving research field. Over the past decade, there has been tremendous progress in our use of AFM to observe membrane proteins and live cells at high resolution. Remarkable advances have also been made in applying force spectroscopy to manipulate single membrane proteins, to map surface properties and receptor sites on cells and to measure cellular interactions at the single-cell and single-molecule levels. In addition, recent developments in cantilever nanosensors have opened up new avenues for the label-free detection of microorganisms and bioanalytes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Live-cell imaging.
Figure 2: Real-time imaging of the structural dynamics of single Bacillus atrophaeus spores germinating under native conditions.
Figure 3: Mapping cell-surface receptors using single-molecule force spectroscopy.
Figure 4: Use of cantilever nanosensors in microbiology.

Similar content being viewed by others

References

  1. Cabeen, M. T. & Jacobs-Wagner, C. Bacterial cell shape. Nature Rev. Microbiol. 3, 601–610 (2005).

    Article  CAS  Google Scholar 

  2. Branda, S. S., Vik, S., Friedman, L. & Kolter, R. Biofilms: the matrix revisited. Trends Microbiol. 13, 20–26 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Mazmanian, S. K. & Kasper, D. L. The love–hate relationship between bacterial polysaccharides and the host immune system. Nature Rev. Immunol. 6, 849–858 (2006).

    Article  CAS  Google Scholar 

  4. Cloud-Hansen, K. A. et al. Breaching the great wall: peptidoglycan and microbial interactions. Nature Rev. Microbiol. 4, 710–716 (2006).

    Article  CAS  Google Scholar 

  5. Weidenmaier, C. & Peschel, A. Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions. Nature Rev. Microbiol. 6, 276–287 (2008).

    Article  CAS  Google Scholar 

  6. Brehm-Stecher, B. F. & Johnson, E. A. Single-cell microbiology: tools, technologies, and applications. Microbiol. Mol. Biol. Rev. 68, 538–559 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Maddock, J. R., Alley, M. R. K. & Shapiro, L. Polarized cells, polar actions. J. Bacteriol. 175, 7125–7129 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gerber, C. & Lang, H. P. How the doors to the nanoworld were opened. Nature Nanotechnol. 1, 3–5 (2006).

    Article  CAS  Google Scholar 

  9. Müller, D. J. & Dufrêne, Y. F. Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nature Nanotechnol. 3, 261–269 (2008).

    Article  CAS  Google Scholar 

  10. Engel, A. & Müller, D. J. Observing single biomolecules at work with the atomic force microscope. Nature Struct. Biol. 7, 715–718 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Dufrêne, Y. F. Using nanotechniques to explore microbial surfaces. Nature Rev. Microbiol. 2, 451–460 (2004).

    Article  CAS  Google Scholar 

  12. Scheuring, S., Levy, D. & Rigaud, J. L. Watching the components of photosynthetic bacterial membranes and their in situ organisation by atomic force microscopy. Biochim. Biophys. Acta 1712, 109–127 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Müller, D. J. et al. Single-molecule studies of membrane proteins. Curr. Opin. Struct. Biol. 16, 489–495 (2006).

    Article  PubMed  CAS  Google Scholar 

  14. Camesano, T. A., Liu, Y. T. & Datta, M. Measuring bacterial adhesion at environmental interfaces with single-cell and single-molecule techniques. Adv. Wat. Res. 30, 1470–1491 (2007). Timely review on the use of single-cell and single-molecule techniques for measuring bacterial adhesion.

    Article  CAS  Google Scholar 

  15. Hinterdorfer, P. & Dufrêne, Y. F. Detection and localization of single molecular recognition events using atomic force microscopy. Nature Methods 3, 347–355 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Werten, P. J. L. et al. Progress in the analysis of membrane protein structure and function. FEBS Lett. 529, 65–72 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Scheuring, S. et al. Nanodissection and high-resolution imaging of the Rhodopseudomonas viridis photosynthetic core-complex in native membranes by AFM. Proc. Natl Acad. Sci. USA 100, 1690–1693 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Scheuring, S., Goncalves, R. P., Prima, V. & Sturgis, J. N. The photosynthetic apparatus of Rhodopseudomonas palustris: structures and organization. J. Mol. Biol. 358, 83–96 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Scheuring, S., Rigaud, J. L. & Sturgis, J. N. Variable LH2 stoichiometry and core clustering in native membranes of Rhodospirillum photometricum. EMBO J. 23, 4127–4133 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Scheuring, S. & Sturgis, J. N. Chromatic adaptation of photosynthetic membranes. Science 309, 484–487 (2005). Outstanding high-resolution imaging study that demonstrated how the organization of native photosynthetic membranes changes in response to light.

    Article  CAS  PubMed  Google Scholar 

  21. Scheuring, S., Busselez, J. & Levy, D. Structure of the dimeric PufX-containing core complex of Rhodobacter blasticus by in situ AFM. J. Biol. Chem. 180, 1426–1431 (2005).

    Article  CAS  Google Scholar 

  22. Goncalves, R. P. & Scheuring, S. Manipulating and imaging individual membrane proteins by AFM. Surf. Interf. Anal. 38, 1413–1418 (2006).

    Article  CAS  Google Scholar 

  23. Müller, D. J., Baumeister, W. & Engel, A. Controlled unzipping of a bacterial surface layer with atomic force microscopy. Proc. Natl Acad. Sci. USA 96, 13170–13174 (1999). A combination of AFM imaging and SMFS allowed the controlled nanomanipulation of single-membrane proteins.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Oesterhelt, F. et al. Unfolding pathways of individual bacteriorhodopsins. Science 288, 143–146 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Scheuring, S. et al. Charting and unzipping the surface layer of Corynebacterium glutamicum with the atomic force microscope. Mol. Microbiol. 44, 675–684 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Verbelen, C., Antikainen, J., Korhonen, T. K. & Dufrêne, Y. F. Exploring the molecular forces within and between CbsA S-layer proteins using single molecule force spectroscopy. Ultramicroscopy 107, 1004–1011 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Goncalves, R. P. et al. Two-chamber AFM: probing membrane proteins separating two aqueous compartments. Nature Methods 3, 1007–1012 (2006). Presents a novel AFM set-up for probing membrane proteins that separate two aqueous compartments over which membrane gradients can be established.

    Article  CAS  PubMed  Google Scholar 

  28. Beveridge, T. J. & Graham, L. L. Surface layers of bacteria. Microbiol. Rev. 55, 684–705 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Matias, V. R. F. & Beveridge, T. J. Cryo-electron microscopy reveals native polymeric cell wall structure in Bacillus subtilis 168 and the existence of a periplasmic space. Mol. Microbiol. 56, 240–251 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Beckmann, M. A. et al. Measuring cell surface elasticity on enteroaggregative Escherichia coli wild type and dispersin mutant by AFM. Ultramicroscopy 106, 695–702 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Chada, V. G. R., Sanstad, E. A., Wang, R. & Driks, A. Morphogenesis of Bacillus spore surfaces. J. Bacteriol. 185, 6255–6261 (2003). AFM was used to image the surfaces of B. subtilis spores that have mutations in several coat-protein genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Plomp, M., Leighton, T. J., Wheeler, K. E., Hill, H. D. & Malkin, A. J. In vitro high-resolution structural dynamics of single germinating bacterial spores. Proc. Natl Acad. Sci. USA 104, 9644–9649 (2007). Demonstrated the power of live-cell imaging for visualizing cell-wall remodelling during germination.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Plomp, M. et al. Spore coat architecture of Clostridium novyi NT spores. J. Bacteriol. 189, 6457–6468 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Alsteens, D. et al. Organization of the mycobacterial cell wall: a nanoscale view. Pflugers Arch. 456, 117–125 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Pelling, A. E., Li, Y. N., Shi, W. Y. & Gimzewski, J. K. Nanoscale visualization and characterization of Myxococcus xanthus cells with atomic force microscopy. Proc. Natl Acad. Sci. USA 102, 6484–6489 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ma, H., Snook, L. A., Tian, C., Kaminskyj, S. G. W. & Dahms, T. E. S. Fungal surface remodelling visualized by atomic force microscopy. Mycol. Res. 110, 879–886 (2006).

    Article  PubMed  Google Scholar 

  37. Dague, E. et al. Chemical force microscopy of single live cells. Nano Lett. 7, 3026–3030 (2007). The first time that CFM was applied to microbial cells to address their nanoscale chemical properties and interactions.

    Article  CAS  PubMed  Google Scholar 

  38. Dague, E., Alsteens, D., Latgé, J. P. & Dufrêne, Y. F. High-resolution cell surface dynamics of germinating Aspergillus fumigatus conidia. Biophys. J. 94, 656–660 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Hildebrand, M., Doktycz, M. J. & Allison, D. P. Application of AFM in understanding biomineral formation in diatoms. Pflugers Arch. 456, 127–137 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Francius, G., Tesson, B., Dague, E., Martin-Jézéquel, V. & Dufrêne, Y. F. Nanostructure and nanomechanics of live Phaeodactylum tricornutum morphotypes. Environ. Microbiol. 10, 1344–1356 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Touhami, A., Jericho, M. & Beveridge, T. J. Atomic force microscopy of cell growth and division in Staphylococcus aureus. J. Bacteriol. 186, 3286–3295 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Read, N., Connell, S. & Adams, D. G. Nanoscale visualization of a fibrillar array in the cell wall of filamentous cyanobacteria and its implications for gliding motility J. Bacteriol. 189, 7361–7366 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cross, S. E. et al. Atomic force microscopy study of the structure–function relationships of the biofilm-forming bacterium Streptococcus mutans. Nanotechnology 17, S1–S7 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Dague, E., Delcorte, A., Latgé, J. P. & Dufrêne, Y. F. Combined use of atomic force microscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectrometry for cell surface analysis. Langmuir 24, 2955–2959 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Braga, P. C. & Ricci, D. Atomic force microscopy: application to investigation of Escherichia coli morphology before and after exposure to cefodizime. Antimicrob. Agents Chemother. 42, 18–22 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang, L. et al. Atomic force microscopy study of different effects of natural and semisynthetic β-lactam on the cell envelope of Escherichia coli. Anal. Chem. 78, 7341–7345 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Verbelen, C. et al. Ethambutol-induced alterations in Mycobacterium bovis BCG imaged by atomic force microscopy. FEMS Microbiol. Lett. 264, 192–197 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Touhami, A., Nysten, B. & Dufrêne, Y. F. Nanoscale mapping of the elasticity of microbial cells by atomic force microscopy. Langmuir 19, 4539–4543 (2003).

    Article  CAS  Google Scholar 

  49. Pelling, A. E., Sehati, S., Gralla, E. B., Valentine, J. S. & Gimzewski, J. K. Local nanomechanical motion of the cell wall of Saccharomyces cerevisiae. Science 305, 1147–1150 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Gaboriaud, F., Bailet, S., Dague, E. & Jorand, F. Surface structure and nanomechanical properties of Shewanella putrefaciens bacteria at two pH values (4 and 10) determined by atomic force microscopy. J. Bacteriol. 187, 3864–3868 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Frisbie, C. D., Rozsnyai, L. F., Noy, A., Wrighton, M. S. & Lieber, C. M. Functional group imaging by chemical force microscopy. Science 265, 2071–2074 (1994).

    Article  CAS  PubMed  Google Scholar 

  52. Alsteens, D., Dague, E., Rouxhet, P. G., Baulard, A. R. & Dufrêne, Y. F. Direct measurement of hydrophobic forces on cell surfaces using AFM. Langmuir 23, 11977–11979 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Dupres, V. et al. Nanoscale mapping and functional analysis of individual adhesins on living bacteria. Nature Methods 2, 515–520 (2005). SMFS with tips that bear biologically active molecules was used to map the distribution of individual adhesins on living mycobacteria.

    Article  CAS  PubMed  Google Scholar 

  54. Gilbert, Y. et al. Single-molecule force spectroscopy and imaging of the Vancomycin/D-Ala-D-Ala interaction. Nano Lett. 7, 796–801 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Busscher, H. J., Norde, W. & van der Mei, H. C. Specific molecular recognition and nonspecific contributions to bacterial interaction forces. Appl. Environ. Microbiol. 74, 2559–2564 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Benoit, M., Gabriel, D., Gerisch, G. & Gaub, H. E. Discrete interactions in cell adhesion measured by single-molecule force spectroscopy. Nature Cell Biol. 2, 313–317 (2000). Pioneering paper that showed how SMFS can be used to measure cell–cell interactions at the single-molecule level.

    Article  CAS  PubMed  Google Scholar 

  57. Lower, S. K., Hochella, M. F. & Beveridge, T. J. Bacterial recognition of mineral surfaces: nanoscale interactions between Shewanella and α-FeOOH. Science 292, 1360–1363 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Emerson, R. J. & Camesano, T. A. Nanoscale investigation of pathogenic microbial adhesion to a biomaterial. Appl. Environ. Microbiol. 70, 6012–6022 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Emerson, R. J. et al. Microscale correlation between surface chemistry, texture, and the adhesive strength of Staphylococcus epidermidis. Langmuir 22, 11311–11321 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Postollec, F., Norde, W., de Vries, J., Busscher, H. J. & van der Mei, H. C. Interactive forces between co-aggregating and non-co-aggregating oral bacterial pairs. J. Dent. Res. 85, 231–234 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. van der Aa, B. C. et al. Stretching cell surface macromolecules by atomic force microscopy. Langmuir 17, 3116–3119 (2001).

    Article  CAS  Google Scholar 

  62. Abu-Lail, N. I. & Camesano, T. A. Elasticity of Pseudomonas putida KT2442 surface polymers probed with single-molecule force microscopy. Langmuir 18, 4071–4081 (2002).

    Article  CAS  Google Scholar 

  63. Camesano, T. A. & Abu-Lail, N. I. Heterogeneity in bacterial surface polysaccharides, probed on a single-molecule basis. Biomacromolecules 3, 661–667 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Lower, B. H., Yongsunthon, R., Vellano, F. P. & Lower, S. K. Simultaneous force and fluorescence measurements of a protein that forms a bond between a living bacterium and a solid surface. J. Bacteriol. 187, 2127–2137 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Atabek, A. & Camesano, T. A. Atomic force microscopy study of the effect of lipopolysaccharides and extracellular polymers on adhesion of Pseudomonas aeruginosa. J. Bacteriol. 189, 8503–8509 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dugdale, T. M., Dagastine, R., Chiovitti, A., Mulvaney, P. & Wetherbee, R. Single adhesive nanofibers from a live diatom have the signature fingerprint of modular proteins. Biophys. J. 89, 4252–4260 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Touhami, A., Jericho, M. H., Boyd, J. M. & Beveridge, T. J. Nanoscale characterization and determination of adhesion forces of Pseudomonas aeruginosa pili by using atomic force microscopy. J. Bacteriol. 188, 370–377 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Miller, E., Garcia, T., Hultgren, S. & Oberhauser, A. F. The mechanical properties of E. coli type 1 pili measured by atomic force microscopy techniques. Biophys. J. 91, 3848–3856 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lugmaier, R. A., Schedin, S., Kuhner, F. & Benoit, M. Dynamic restacking of Escherichia coli P-pili. Eur. Biophys. J. Biophys. Lett. 37, 111–120 (2008).

    Article  CAS  Google Scholar 

  70. Bustanji, Y. et al. Dynamics of the interaction between a fibronectin molecule and a living bacterium under mechanical force. Proc. Natl Acad. Sci. USA 100, 13292–13297 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yongsunthon, R. et al. Correlation between fundamental binding forces and clinical prognosis of Staphylococcus aureus infections of medical implants. Langmuir 23, 2289–2292 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Busscher, H. J. et al. Intermolecular forces and enthalpies in the adhesion of Streptococcus mutans and an antigen I/II-deficient mutant to laminin films. J. Bacteriol. 189, 2988–2995 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Xu, C. P. et al. Interaction forces between salivary proteins and Streptococcus mutans with and without antigen I/II. Langmuir 23, 9423–9428 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Lang, H. P., Hegner, M., Meyer, E. & Gerber, C. Nanomechanics from atomic resolution to molecular recognition based on atomic force microscopy technology. Nanotechnology 13, R29–R36 (2002).

    Article  CAS  Google Scholar 

  75. Goeders, K. M., Colton, J. S. & Bottomley, L. A. Microcantilevers: sensing chemical interactions via mechanical motion. Chem. Rev. 108, 522–542 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Fritz, J. et al. Translating biomolecular recognition into nanomechanics. Science 288, 316–318 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Wu, G. H. et al. Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nature Biotechnol. 19, 856–860 (2001).

    Article  CAS  Google Scholar 

  78. Arntz, Y. et al. Label-free protein assay based on a nanomechanical cantilever array. Nanotechnology 14, 86–90 (2003).

    Article  CAS  Google Scholar 

  79. Zhang, J. et al. Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA. Nature Nanotechnol. 1, 214–220 (2006).

    Article  CAS  Google Scholar 

  80. Nugaeva, N. et al. Micromechanical cantilever array sensors for selective fungal immobilization and fast growth detection. Biosens. Bioelectron. 21, 849–856 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Nugaeva, N. et al. An antibody-sensitized microfabricated cantilever for the growth detection of Aspergillus niger spores. Microsc. Microanal. 13, 13–17 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Campbell, G. A. & Mutharasan, R. Method of measuring Bacillus anthracis spores in the presence of copious amounts of Bacillus thuringiensis and Bacillus cereus. Anal. Chem. 79, 1145–1152 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Burg, T. P. et al. Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 446, 1066–1069 (2007). Elegant application of nanosensors in microbiology, in which single bacterial cells were weighed using fluid-filled microcantilevers.

    Article  CAS  PubMed  Google Scholar 

  84. Ando, T. et al. High-speed AFM and nano-visualization of biomolecular processes. Pflugers Arch. 456, 211–225 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author dedicates this article to the memory of T.J. Beveridge, a pioneering expert in electron and atomic force microscopy, and thanks colleagues and collaborators for sharing exciting experiments and discussions. This work was supported by the National Foundation for Scientific Research (FNRS), the Université catholique de Louvain (Fonds Spéciaux de Recherche), the Région wallonne, the Federal Office for Scientific, Technical and Cultural Affairs (Interuniversity Poles of Attraction Programme) and the Research Department of the Communauté française de Belgique (Concerted Research Action). Y.F.D. is a research associate at the FNRS.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Entrez Genome Project

Aspergillus fumigatus

Aspergillus niger

Bacillus anthracis

Bacillus cereus

Bacillus subtilis

Bacillus thuringiensis

Clostridium novyi NT

Corynebacterium glutamicum

Deinococcus radiodurans

Dictyostelium discoideum

Escherichia coli

Lactococcus lactis

Mycobacterium bovis

Mycobacterium tuberculosis

Myxococcus xanthus

Pseudomonas aeruginosa

Saccharomyces cerevisiae

Shewanella oneidensis

Shewanella putrefaciens

Staphylococcus aureus

Staphylococcus epidermidis

Streptococcus mutans

FURTHER INFORMATION

Yves F. Dufrêne's homepage

Glossary

Atomic force microscopy

A sharp tip is scanned over the surface of a sample, which allows the interaction force between the tip and the sample to be measured and three-dimensional images to be generated.

Force spectroscopy

Uses atomic force microscopy in the force spectroscopy mode. The force that acts on the tip is measured as the sample is pushed towards the tip and retracted. In single-molecule force spectroscopy, single molecules are manipulated and their interaction forces are measured.

Chemical force microscopy

An atomic-force-microscopy modality in which modification of the tip with specific functional groups enables researchers to map the spatial arrangement of chemical groups and their interactions.

Cantilever

Atomic-force-microscopy tips are mounted on cantilever beams or triangles — that is, thin beams or triangles that behave as springs. The force that acts on the tip can thus be evaluated by measuring cantilever vertical bending (deflection) and by applying the classical Hooke's law for springs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dufrêne, Y. Towards nanomicrobiology using atomic force microscopy. Nat Rev Microbiol 6, 674–680 (2008). https://doi.org/10.1038/nrmicro1948

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1948

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing