Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Getting organized — how bacterial cells move proteins and DNA

Key Points

  • In recent years, bacterial cells have been shown to be spatially organized by localized protein complexes and dynamic cytoskeletal filaments.

  • Localized protein complexes are frequently based on integral membrane proteins. Their specific subcellular localization occurs by diffusion and capture or targeted membrane insertion.

  • Dynamic cytoskeletal filaments serve as scaffolds that determine the localization of other proteins and provide directionality and force for macromolecular transport processes.

  • Actin homologues of the MreB family assemble into helical cables that line the inner face of the cytoplasmic membrane. They show dynamic subcellular localization patterns and function in the positioning of proteins that are involved in cell-wall biosynthesis.

  • Plasmid segregation is achieved by three-component partitioning systems. One of the components is an actin homologue, a tubulin homologue or a Walker-type ATPase that assembles into dynamic cytoskeletal filaments. The other two components establish centromere-like nucleoprotein complexes that mediate the attachment of plasmids to these filaments and regulate the partitioning process.

  • Bacterial chromosomes have a conserved circular arrangement within the cell, with the loci arrayed in a linear order that reflects their position on the chromosomal DNA. The subcellular location of each locus is determined during DNA segregation.

  • Unlike in eukaryotes, bacteria segregate their chromosomes while DNA replication is in progress. The chromosomal-origin regions are partitioned by an active mechanism that might involve cytoskeletal structures that are formed by the dynamic assembly of Walker-type ATPases.

  • Bacteria have evolved at least three independent mechanisms to define the site of cell division — the Min system, nucleoid occlusion, and the MipZ and ParB system. In all cases, an inhibitor of cell division is dynamically localized within the cell so that cytokinesis is restricted to a region at mid-cell between the two sister nucleoids.

Abstract

In recent years, the subcellular organization of prokaryotic cells has become a focal point of interest in microbiology. Bacteria have evolved several different mechanisms to target protein complexes, membrane vesicles and DNA to specific positions within the cell. This versatility allows bacteria to establish the complex temporal and spatial regulatory networks that couple morphological and physiological differentiation with cell-cycle progression. In addition to stationary localization factors, dynamic cytoskeletal structures also have a fundamental role in many of these processes. In this Review, we summarize the current knowledge on localization mechanisms in bacteria, with an emphasis on the role of polymeric protein assemblies in the directed movement and positioning of macromolecular complexes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protein localization to the septal membrane during Bacillus subtilis sporulation.
Figure 2: Dynamics of actin-like filaments in bacteria.
Figure 3: Plasmid segregation by the actin homologue ParM.
Figure 4: The arrangement of chromosomal DNA in bacteria.
Figure 5: Positioning of the cell-division plane.

Similar content being viewed by others

References

  1. Rudner, D. Z., Pan, Q. & Losick, R. M. Evidence that subcellular localization of a bacterial membrane protein is achieved by diffusion and capture. Proc. Natl Acad. Sci. USA 99, 8701–8706 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Deich, J., Judd, E. M., McAdams, H. H. & Moerner, W. E. Visualization of the movement of single histidine kinase molecules in live Caulobacter cells. Proc. Natl Acad. Sci. USA 101, 15921–15926 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Goehring, N. W. & Beckwith, J. Diverse paths to midcell: assembly of the bacterial cell division machinery. Curr. Biol. 15, R514–R526 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Rubio, A. & Pogliano, K. Septal localization of forespore membrane proteins during engulfment in Bacillus subtilis. EMBO J. 23, 1636–1646 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Blaylock, B., Jiang, X., Rubio, A., Moran, C. P. Jr. & Pogliano, K. Zipper-like interaction between proteins in adjacent daughter cells mediates protein localization. Genes Dev. 18, 2916–2928 (2004). Demonstration of a zipper-like interaction between proteins from the forespore and mother cell that allows the assembly of protein complexes at the septal membrane.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Doan, T., Marquis, K. A. & Rudner, D. Z. Subcellular localization of a sporulation membrane protein is achieved through a network of interactions along and across the septum. Mol. Microbiol. 55, 1767–1781 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Jiang, X., Rubio, A., Chiba, S. & Pogliano, K. Engulfment-regulated proteolysis of SpoIIQ: evidence that dual checkpoints control σk activity. Mol. Microbiol. 58, 102–115 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rubio, A., Jiang, X. & Pogliano, K. Localization of translocation complex components in Bacillus subtilis: enrichment of the signal recognition particle receptor at early sporulation septa. J. Bacteriol. 187, 5000–5002 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Steinhauer, J., Agha, R., Pham, T., Varga, A. W. & Goldberg, M. B. The unipolar Shigella surface protein IcsA is targeted directly to the bacterial old pole: IcsP cleavage of IcsA occurs over the entire bacterial surface. Mol. Microbiol. 32, 367–377 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Charles, M., Perez, M., Kobil, J. H. & Goldberg, M. B. Polar targeting of Shigella virulence factor IcsA in Enterobacteriacae and Vibrio. Proc. Natl Acad. Sci. USA 98, 9871–9876 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brandon, L. D. et al. IcsA, a polarly localized autotransporter with an atypical signal peptide, uses the Sec apparatus for secretion, although the Sec apparatus is circumferentially distributed. Mol. Microbiol. 50, 45–60 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Jones, L. J., Carballido-Lopez, R. & Errington, J. Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell 104, 913–922 (2001). Landmark paper showing the helical arrangement of bacterial actin-like filaments in the cell and their role as cytoskeletal elements that are involved in the determination of cell shape.

    Article  CAS  PubMed  Google Scholar 

  13. Defeu Soufo, H. J. & Graumann, P. L. Dynamic movement of actin-like proteins within bacterial cells. EMBO Rep. 5, 789–794 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shih, Y. L., Le, T. & Rothfield, L. Division site selection in Escherichia coli involves dynamic redistribution of Min proteins within coiled structures that extend between the two cell poles. Proc. Natl Acad. Sci. USA 100, 7865–7870 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Figge, R. M., Divakaruni, A. V. & Gober, J. W. MreB, the cell shape-determining bacterial actin homologue, co-ordinates cell wall morphogenesis in Caulobacter crescentus. Mol. Microbiol. 51, 1321–1332 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Gitai, Z., Dye, N. & Shapiro, L. An actin-like gene can determine cell polarity in bacteria. Proc. Natl Acad. Sci. USA 101, 8643–8648 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gitai, Z., Dye, N. A., Reisenauer, A., Wachi, M. & Shapiro, L. MreB actin-mediated segregation of a specific region of a bacterial chromosome. Cell 120, 329–341 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Kruse, T. et al. Actin homolog MreB and RNA polymerase interact and are both required for chromosome segregation in Escherichia coli. Genes Dev. 20, 113–124 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pollard, T. D. Regulation of actin filament assembly by arp2/3 complex and formins. Annu. Rev. Biophys. Biomol. Struct. 36, 451–477 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Esue, O., Wirtz, D. & Tseng, Y. GTPase activity, structure, and mechanical properties of filaments assembled from bacterial cytoskeleton protein MreB. J. Bacteriol. 188, 968–976 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. van den Ent, F., Amos, L. A. & Löwe, J. Prokaryotic origin of the actin cytoskeleton. Nature 413, 39–44 (2001). A crystallographic analysis that demonstrates high structural similarity between MreB and actin, therefore providing evidence for a common evolutionary origin of the two proteins.

    Article  CAS  PubMed  Google Scholar 

  22. Esue, O., Cordero, M., Wirtz, D. & Tseng, Y. The assembly of MreB, a prokaryotic homolog of actin. J. Biol. Chem. 280, 2628–2635 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Carballido-Lopez, R. & Errington, J. The bacterial cytoskeleton: in vivo dynamics of the actin-like protein Mbl of Bacillus subtilis. Dev. Cell 4, 19–28 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Slovak, P. M., Wadhams, G. H. & Armitage, J. P. Localization of MreB in Rhodobacter sphaeroides under conditions causing changes in cell shape and membrane structure. J. Bacteriol. 187, 54–64 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Slovak, P. M., Porter, S. L. & Armitage, J. P. Differential localization of Mre proteins with PBP2 in Rhodobacter sphaeroides. J. Bacteriol. 188, 1691–1700 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Defeu Soufo, H. J. & Graumann, P. L. Dynamic localization and interaction with other Bacillus subtilis actin-like proteins are important for the function of MreB. Mol. Microbiol. 62, 1340–1356 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Carballido-Lopez, R. et al. Actin homolog MreBH governs cell morphogenesis by localization of the cell wall hydrolase LytE. Dev. Cell 11, 399–409 (2006). This paper demonstrates a direct interaction between the actin-like protein MreBH and the peptidoglycan hydrolase LytE.

    Article  CAS  PubMed  Google Scholar 

  28. Kim, S. Y., Gitai, Z., Kinkhabwala, A., Shapiro, L. & Moerner, W. E. Single molecules of the bacterial actin MreB undergo directed treadmilling motion in Caulobacter crescentus. Proc. Natl Acad. Sci. USA 103, 10929–10934 (2006). Analysis of the dynamics of MreB cables in C. crescentus by tracking the movement of single fluorescently labelled MreB subunits within the cell.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kruse, T., Bork-Jensen, J. & Gerdes, K. The morphogenetic MreBCD proteins of Escherichia coli form an essential membrane-bound complex. Mol. Microbiol. 55, 78–89 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. van den Ent, F. et al. Dimeric structure of the cell shape protein MreC and its functional implications. Mol. Microbiol. 62, 1631–1642 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Divakaruni, A. V., Loo, R. R., Xie, Y., Loo, J. A. & Gober, J. W. The cell-shape protein MreC interacts with extracytoplasmic proteins including cell wall assembly complexes in Caulobacter crescentus. Proc. Natl Acad. Sci. USA 102, 18602–18607 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee, J. C. & Stewart, G. C. Essential nature of the mreC determinant of Bacillus subtilis. J. Bacteriol. 185, 4490–4498 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Leaver, M. & Errington, J. Roles for MreC and MreD proteins in helical growth of the cylindrical cell wall in Bacillus subtilis. Mol. Microbiol. 57, 1196–1209 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Soufo, H. J. & Graumann, P. L. Actin-like proteins MreB and Mbl from Bacillus subtilis are required for bipolar positioning of replication origins. Curr. Biol. 13, 1916–1920 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Dye, N. A., Pincus, Z., Theriot, J. A., Shapiro, L. & Gitai, Z. Two independent spiral structures control cell shape in Caulobacter. Proc. Natl Acad. Sci. USA 102, 18608–18613 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ausmees, N., Kuhn, J. R. & Jacobs-Wagner, C. The bacterial cytoskeleton: an intermediate filament-like function in cell shape. Cell 115, 705–713 (2003). Discovery of the first bacterial intermediate filament protein.

    Article  CAS  PubMed  Google Scholar 

  37. Parry, D. A., Strelkov, S. V., Burkhard, P., Aebi, U. & Herrmann, H. Towards a molecular description of intermediate filament structure and assembly. Exp. Cell Res. 313, 2204–2216 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Aaron, M. et al. The tubulin homologue FtsZ contributes to cell elongation by guiding cell wall precursor synthesis in Caulobacter crescentus. Mol. Microbiol. 64, 938–952 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Divakaruni, A. V., Baida, C., White, C. L. & Gober, J. W. The cell shape proteins MreB and MreC control cell morphogenesis by positioning cell wall synthetic complexes. Mol. Microbiol. 66, 174–188 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Mohammadi, T. et al. The essential peptidoglycan glycosyltransferase MurG forms a complex with proteins involved in lateral envelope growth as well as with proteins involved in cell division in Escherichia coli. Mol. Microbiol. 65, 1106–1121 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li, Y. & Austin, S. The P1 plasmid is segregated to daughter cells by a 'capture and ejection' mechanism coordinated with Escherichia coli cell division. Mol. Microbiol. 46, 63–74 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Gordon, S., Rech, J., Lane, D. & Wright, A. Kinetics of plasmid segregation in Escherichia coli. Mol. Microbiol. 51, 461–469 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Ebersbach, G. & Gerdes, K. Bacterial mitosis: partitioning protein ParA oscillates in spiral-shaped structures and positions plasmids at mid-cell. Mol. Microbiol. 52, 385–398 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Ho, T. Q., Zhong, Z., Aung, S. & Pogliano, J. Compatible bacterial plasmids are targeted to independent cellular locations in Escherichia coli. EMBO J. 21, 1864–1872 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Niki, H. & Hiraga, S. Subcellular distribution of actively partitioning F plasmid during the cell division cycle in E. coli. Cell 90, 951–957 (1997). First analysis of the dynamics of active plasmid segregation in bacteria.

    Article  CAS  PubMed  Google Scholar 

  46. Gordon, G. S. et al. Chromosome and low copy plasmid segregation in E. coli: visual evidence for distinct mechanisms. Cell 90, 1113–1121 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Dam, M. & Gerdes, K. Partitioning of plasmid R1. Ten direct repeats flanking the parA promoter constitute a centromere-like partition site parC, that expresses incompatibility. J. Mol. Biol. 236, 1289–1298 (1994).

    Article  CAS  PubMed  Google Scholar 

  48. Møller-Jensen, J. et al. Bacterial mitosis: ParM of plasmid R1 moves plasmid DNA by an actin-like insertional polymerization mechanism. Mol. Cell 12, 1477–1487 (2003).

    Article  PubMed  Google Scholar 

  49. Jensen, R. B. & Gerdes, K. Partitioning of plasmid R1. The ParM protein exhibits ATPase activity and interacts with the centromere-like ParR–parC complex. J. Mol. Biol. 269, 505–513 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. van den Ent, F., Møller-Jensen, J., Amos, L. A., Gerdes, K. & Löwe, J. F-actin-like filaments formed by plasmid segregation protein ParM. EMBO J. 21, 6935–6943 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Møller-Jensen, J., Jensen, R. B., Löwe, J. & Gerdes, K. Prokaryotic DNA segregation by an actin-like filament. EMBO J. 21, 3119–3127 (2002). Demonstration of the partitioning of plasmid R1 by a dynamic axial ParM filament that grows between the segregating plasmid copies.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Garner, E. C., Campbell, C. S. & Mullins, R. D. Dynamic instability in a DNA-segregating prokaryotic actin homolog. Science 306, 1021–1025 (2004). Elaborate biochemical analysis of the mechanism that underlies the polymerization of the actin-like protein ParM.

    Article  CAS  PubMed  Google Scholar 

  53. Garner, E. C., Campbell, C. S., Weibel, D. B. & Mullins, R. D. Reconstitution of DNA segregation driven by assembly of a prokaryotic actin homolog. Science 315, 1270–1274 (2007). This paper reports the first successful reconstitution of a plasmid-partitioning system in vitro and provides detailed information on the R1 partitioning mechanism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mitchison, T. & Kirschner, M. Dynamic instability of microtubule growth. Nature 312, 237–242 (1984).

    Article  CAS  PubMed  Google Scholar 

  55. Becker, E. et al. DNA segregation by the bacterial actin AlfA during Bacillus subtilis growth and development. EMBO J. 25, 5919–5931 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Michie, K. A. & Löwe, J. Dynamic filaments of the bacterial cytoskeleton. Annu. Rev. Biochem. 75, 467–492 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Ebersbach, G. & Gerdes, K. Plasmid segregation mechanisms. Annu. Rev. Genet. 39, 453–479 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Hayes, F. & Barilla, D. The bacterial segrosome: a dynamic nucleoprotein machine for DNA trafficking and segregation. Nature Rev. Microbiol. 4, 133–143 (2006).

    Article  CAS  Google Scholar 

  59. Leonard, T. A., Møller-Jensen, J. & Löwe, J. Towards understanding the molecular basis of bacterial DNA segregation. Philos. Trans. R. Soc. Lond. B 360, 523–535 (2005).

    Article  CAS  Google Scholar 

  60. Ebersbach, G. & Gerdes, K. The double par locus of virulence factor pB171: DNA segregation is correlated with oscillation of ParA. Proc. Natl Acad. Sci. USA 98, 15078–15083 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lim, G. E., Derman, A. I. & Pogliano, J. Bacterial DNA segregation by dynamic SopA polymers. Proc. Natl Acad. Sci. USA 102, 17658–17663 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ebersbach, G. et al. Regular cellular distribution of plasmids by oscillating and filament-forming ParA ATPase of plasmid pB171. Mol. Microbiol. 61, 1428–1442 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Thompson, S. R., Wadhams, G. H. & Armitage, J. P. The positioning of cytoplasmic protein clusters in bacteria. Proc. Natl Acad. Sci. USA 103, 8209–8214 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tang, M., Bideshi, D. K., Park, H. W. & Federici, B. A. Minireplicon from pBtoxis of Bacillus thuringiensis subsp. israelensis. Appl. Environmen. Microbiol. 72, 6948–6954 (2006).

    Article  CAS  Google Scholar 

  65. Larsen, R. A. et al. Treadmilling of a prokaryotic tubulin-like protein, TubZ, required for plasmid stability in Bacillus thuringiensis. Genes Dev. 21, 1340–1352 (2007). First report of a bacterial tubulin homologue that performs a function in plasmid segregation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gitai, Z., Thanbichler, M. & Shapiro, L. The choreographed dynamics of bacterial chromosomes. Trends Microbiol. 13, 221–228 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Thanbichler, M., Wang, S. C. & Shapiro, L. The bacterial nucleoid: a highly organized and dynamic structure. J. Cell. Biochem. 96, 506–521 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Teleman, A. A., Graumann, P. L., Lin, D. C., Grossman, A. D. & Losick, R. Chromosome arrangement within a bacterium. Curr. Biol. 8, 1102–1109 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Viollier, P. H. et al. Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. Proc. Natl Acad. Sci. USA 101, 9257–9262 (2004). The first global analysis of chromosome organization and segregation in live bacterial cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang, X., Liu, X., Possoz, C. & Sherratt, D. J. The two Escherichia coli chromosome arms locate to separate cell halves. Genes Dev. 20, 1727–1731 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nielsen, H. J., Ottesen, J. R., Youngren, B., Austin, S. J. & Hansen, F. G. The Escherichia coli chromosome is organized with the left and right chromosome arms in separate cell halves. Mol. Microbiol. 62, 331–338 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Jensen, R. B. & Shapiro, L. The Caulobacter crescentus smc gene is required for cell cycle progression and chromosome segregation. Proc. Natl Acad. Sci. USA 96, 10661–10666 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li, Y., Sergueev, K. & Austin, S. The segregation of the Escherichia coli origin and terminus of replication. Mol. Microbiol. 46, 985–996 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Roos, M. et al. The replicated ftsQAZ and minB chromosomal regions of Escherichia coli segregate on average in line with nucleoid movement. Mol. Microbiol. 39, 633–640 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Niki, H., Yamaichi, Y. & Hiraga, S. Dynamic organization of chromosomal DNA in Escherichia coli. Genes Dev. 14, 212–223 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Nielsen, H. J., Li, Y., Youngren, B., Hansen, F. G. & Austin, S. Progressive segregation of the Escherichia coli chromosome. Mol. Microbiol. 61, 383–393 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Thanbichler, M. & Shapiro, L. Chromosome organization and segregation in bacteria. J. Struct. Biol. 156, 292–303 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Bigot, S., Sivanathan, V., Possoz, C., Barre, F. X. & Cornet, F. FtsK, a literate chromosome segregation machine. Mol. Microbiol. 64, 1434–1441 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Webb, C. D. et al. Use of time-lapse microscopy to visualize rapid movement of the replication origin region of the chromosome during the cell cycle in Bacillus subtilis. Mol. Microbiol. 28, 883–892 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Fiebig, A., Keren, K. & Theriot, J. A. Fine-scale time-lapse analysis of the biphasic, dynamic behaviour of the two Vibrio cholerae chromosomes. Mol. Microbiol. 60, 1164–1178 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kruse, T., Møller-Jensen, J., Løbner-Olesen, A. & Gerdes, K. Dysfunctional MreB inhibits chromosome segregation in Escherichia coli. EMBO J. 22, 5283–5292 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bartosik, A. A. & Jagura-Burdzy, G. Bacterial chromosome segregation. Acta Biochim. Pol. 52, 1–34 (2005).

    CAS  PubMed  Google Scholar 

  83. Lin, D. C. & Grossman, A. D. Identification and characterization of a bacterial chromosome partitioning site. Cell 92, 675–685 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Breier, A. M. & Grossman, A. D. Whole-genome analysis of the chromosome partitioning and sporulation protein Spo0J (ParB) reveals spreading and origin-distal sites on the Bacillus subtilis chromosome. Mol. Microbiol. 64, 703–718 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Murray, H., Ferreira, H. & Errington, J. The bacterial chromosome segregation protein Spo0J spreads along DNA from parS nucleation sites. Mol. Microbiol. 61, 1352–1361 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Marston, A. L. & Errington, J. Dynamic movement of the ParA-like Soj protein of B. subtilis and its dual role in nucleoid organization and developmental regulation. Mol. Cell 4, 673–682 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Yamaichi, Y. & Niki, H. Active segregation by the Bacillus subtilis partitioning system in Escherichia coli. Proc. Natl Acad. Sci. USA 97, 14656–14661 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Godfrin-Estevenon, A. M., Pasta, F. & Lane, D. The parAB gene products of Pseudomonas putida exhibit partition activity in both P. putida and Escherichia coli. Mol. Microbiol. 43, 39–49 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Wu, L. J. & Errington, J. RacA and the Soj-Spo0J system combine to effect polar chromosome segregation in sporulating Bacillus subtilis. Mol. Microbiol. 49, 1463–1475 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Ben-Yehuda, S. et al. Defining a centromere-like element in Bacillus subtilis by identifying the binding sites for the chromosome-anchoring protein RacA. Mol. Cell 17, 773–782 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Ben-Yehuda, S., Rudner, D. Z. & Losick, R. RacA, a bacterial protein that anchors chromosomes to the cell poles. Science 299, 532–536 (2003). Identification of a B. subtilis sporulation-specific protein that serves to attach the chromosomal origin region to the cell pole in the incipient forespore compartment.

    Article  CAS  PubMed  Google Scholar 

  92. Lee, P. S. & Grossman, A. D. The chromosome partitioning proteins Soj (ParA) and Spo0J (ParB) contribute to accurate chromosome partitioning, separation of replicated sister origins, and regulation of replication initiation in Bacillus subtilis. Mol. Microbiol. 60, 853–869 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Fogel, M. A. & Waldor, M. K. Distinct segregation dynamics of the two Vibrio cholerae chromosomes. Mol. Microbiol. 55, 125–136 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Fogel, M. A. & Waldor, M. K. A dynamic, mitotic-like mechanism for bacterial chromosome segregation. Genes Dev. 20, 3269–3282 (2006). This paper proves the involvement of ParAB in the segregation and polar attachment of the chromosomal origin regions in V. cholerae and provides evidence for a partitioning mechanism that is based on a pulling force that is generated by dynamic ParA filaments.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Löwe, J. & Amos, L. A. Crystal structure of the bacterial cell-division protein FtsZ. Nature 391, 203–206 (1998). A crystallographic analysis that shows structural similarity between FtsZ and tubulin.

    Article  PubMed  Google Scholar 

  96. Lutkenhaus, J. Assembly dynamics of the bacterial MinCDE system and spatial regulation of the Z ring. Annu. Rev. Biochem. 76, 539–562 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Weiss, D. S. Bacterial cell division and the septal ring. Mol. Microbiol. 54, 588–597 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. de Boer, P. A., Crossley, R. E. & Rothfield, L. I. A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli. Cell 56, 641–649 (1989). This work defines the function of the Min system in division-site placement.

    Article  CAS  PubMed  Google Scholar 

  99. de Boer, P. A., Crossley, R. E., Hand, A. R. & Rothfield, L. I. The MinD protein is a membrane ATPase required for the correct placement of the Escherichia coli division site. EMBO J. 10, 4371–4380 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. de Boer, P. A., Crossley, R. E. & Rothfield, L. I. Roles of MinC and MinD in the site-specific septation block mediated by the MinCDE system of Escherichia coli. J. Bacteriol. 174, 63–70 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Raskin, D. M. & de Boer, P. A. The MinE ring: an FtsZ-independent cell structure required for selection of the correct division site in E. coli. Cell 91, 685–694 (1997).

    Article  CAS  PubMed  Google Scholar 

  102. Kruse, K. A dynamic model for determining the middle of Escherichia coli. Biophys. J. 82, 618–627 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Raskin, D. M. & de Boer, P. A. Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli. Proc. Natl Acad. Sci. USA 96, 4971–4976 (1999). Discovery of the oscillatory behaviour of the Min system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Raskin, D. M. & de Boer, P. A. MinDE-dependent pole-to-pole oscillation of division inhibitor MinC in Escherichia coli. J. Bacteriol. 181, 6419–6424 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Hu, Z. & Lutkenhaus, J. Topological regulation of cell division in Escherichia coli involves rapid pole to pole oscillation of the division inhibitor MinC under the control of MinD and MinE. Mol. Microbiol. 34, 82–90 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. Hale, C. A., Meinhardt, H. & de Boer, P. A. Dynamic localization cycle of the cell division regulator MinE in Escherichia coli. EMBO J. 20, 1563–1572 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Marston, A. L. & Errington, J. Selection of the midcell division site in Bacillus subtilis through MinD-dependent polar localization and activation of MinC. Mol. Microbiol. 33, 84–96 (1999).

    Article  CAS  PubMed  Google Scholar 

  108. Marston, A. L., Thomaides, H. B., Edwards, D. H., Sharpe, M. E. & Errington, J. Polar localization of the MinD protein of Bacillus subtilis and its role in selection of the mid-cell division site. Genes Dev. 12, 3419–3430 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Rothfield, L., Taghbalout, A. & Shih, Y. L. Spatial control of bacterial division-site placement. Nature Rev. Microbiol. 3, 959–968 (2005).

    Article  CAS  Google Scholar 

  110. Yu, X. C. & Margolin, W. FtsZ ring clusters in min and partition mutants: role of both the Min system and the nucleoid in regulating FtsZ ring localization. Mol. Microbiol. 32, 315–326 (1999).

    Article  CAS  PubMed  Google Scholar 

  111. Wu, L. J. & Errington, J. Coordination of cell division and chromosome segregation by a nucleoid occlusion protein in Bacillus subtilis. Cell 117, 915–925 (2004). Identification of the nucleoid occlusion protein Noc in B. subtilis.

    Article  CAS  PubMed  Google Scholar 

  112. Bernhardt, T. G. & de Boer, P. A. SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over chromosomes in E. coli. Mol. Cell 18, 555–564 (2005). Discovery of the E. coli nucleoid occlusion protein SlmA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Thanbichler, M. & Shapiro, L. MipZ, a spatial regulator coordinating chromosome segregation with cell division in Caulobacter. Cell 126, 147–162 (2006). Identification and functional analysis of a novel spatial regulator that couples bipolar positioning of the newly synthesized origin regions to formation of the FtsZ ring at mid-cell in C. crescentus.

    Article  CAS  PubMed  Google Scholar 

  114. Figge, R. M., Easter, J. & Gober, J. W. Productive interaction between the chromosome partitioning proteins, ParA and ParB, is required for the progression of the cell cycle in Caulobacter crescentus. Mol. Microbiol. 47, 1225–1237 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Mohl, D. A. & Gober, J. W. Cell cycle-dependent polar localization of chromosome partitioning proteins in Caulobacter crescentus. Cell 88, 675–684 (1997).

    CAS  PubMed  Google Scholar 

  116. Laub, M. T., McAdams, H. H., Feldblyum, T., Fraser, C. M. & Shapiro, L. Global analysis of the genetic network controlling a bacterial cell cycle. Science 290, 2144–2148 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Huitema, E., Pritchard, S., Matteson, D., Radhakrishnan, S. K. & Viollier, P. H. Bacterial birth scar proteins mark future flagellum assembly site. Cell 124, 1025–1037 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Lam, H., Schofield, W. B. & Jacobs-Wagner, C. A landmark protein essential for establishing and perpetuating the polarity of a bacterial cell. Cell 124, 1011–1023 (2006). Together with reference 117 , this paper identifies a polar localization factor that passes on positional information from the mother to the daughter cell.

    Article  CAS  PubMed  Google Scholar 

  119. Huang, K. C., Mukhopadhyay, R. & Wingreen, N. S. A curvature-mediated mechanism for localization of lipids to bacterial poles. PLoS Comput. Biol. 2, e151 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Mileykovskaya, E. & Dowhan, W. Visualization of phospholipid domains in Escherichia coli by using the cardiolipin-specific fluorescent dye 10-N-nonyl acridine orange. J. Bacteriol. 182, 1172–1175 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kawai, F. et al. Cardiolipin domains in Bacillus subtilis Marburg membranes. J. Bacteriol. 186, 1475–1483 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Romantsov, T. et al. Cardiolipin promotes polar localization of osmosensory transporter ProP in Escherichia coli. Mol. Microbiol. 64, 1455–1465 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Komeili, A., Li, Z., Newman, D. K. & Jensen, G. J. Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science 311, 242–245 (2006). Analysis of the role of the actin-like protein MamK in the alignment of magnetosome vesicles.

    Article  CAS  PubMed  Google Scholar 

  124. Bazylinski, D. A. & Frankel, R. B. Magnetosome formation in prokaryotes. Nature Rev. Microbiol. 2, 217–230 (2004).

    Article  CAS  Google Scholar 

  125. Scheffel, A. et al. An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria. Nature 440, 110–114 (2006). Identification of a role for the membrane protein MamJ in the attachment of magnetosomes to the MamK filament.

    Article  CAS  PubMed  Google Scholar 

  126. Dunin-Borkowski, R. E. et al. Magnetic microstructure of magnetotactic bacteria by electron holography. Science 282, 1868–1870 (1998).

    Article  CAS  PubMed  Google Scholar 

  127. Pradel, N., Santini, C. L., Bernadac, A., Fukumori, Y. & Wu, L. F. Biogenesis of actin-like bacterial cytoskeletal filaments destined for positioning prokaryotic magnetic organelles. Proc. Natl Acad. Sci. USA 103, 17485–17489 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Cabeen, M. T. & Jacobs-Wagner, C. Bacterial cell shape. Nature Rev. Microbiol. 3, 601–610 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the Max Planck Society to M.T. and grants from the National Institutes of Health to L.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Thanbichler.

Related links

Related links

DATABASES

Entrez Genome Project

Bacillus subtilis

Caulobacter crescentus

Escherichia coli

Magnetospirillum gryphiswaldense

Magnetospirillum magneticum

Rhodobacter sphaeroides

Shigella flexneri

Thermotoga maritima

Vibrio cholerae

Entrez Protein

FtsY

IcsA

MreC

SpoIVFB

SpoIIQ

SpoIIIAH

TipN

FURTHER INFORMATION

Martin Thanbichler's homepage

Glossary

Forespore

Precursor of the spore; a resting cell that is highly resistant to a number of environmental stresses, such as heat, ultraviolet irradiation and desiccation.

Single-molecule tracking

Microscopic analysis of the movement of individual fluorescently labelled molecules within a cell.

Protofilament

The basic polymeric unit of a filamentous structure; consists of a linear row of monomers.

Fluorescence recovery after photobleaching

(FRAP). A method used to study the dynamics of polymeric structures. A region within a filament that has been assembled from fluorescently labelled monomers is bleached by illumination with a high-intensity laser. Subsequently, fluorescence microscopy is used to monitor the kinetics of fluorescence recovery that results from the substitution of bleached by unbleached subunits in the course of filament turnover.

Peptidoglycan

Meshwork of highly crosslinked glycan strands that constitutes the bacterial cell wall.

Penicillin-binding protein

A protein involved in peptidoglycan biosynthesis that is targeted and inactivated by the antibiotic penicillin and its derivatives.

Centromere

A region of a DNA molecule that is attached to the DNA-segregation apparatus.

Walker ATPase

This ATPase is characterized by the presence of two conserved sequence motifs (Walker A and Walker B motif), which form parts of the nucleotide-binding pocket.

Walker A cytoskeletal ATPases

(WACA). A group of Walker ATPases that possess a distinct version of the Walker A motif that deviates from the universal consensus. These proteins share structural similarity with P-loop GTPases and are recognized as members of the GTPase superfamily.

Nucleoid

A distinct region within the cytoplasm that harbours the chromosomal DNA.

Origin of replication

A chromosomal site that serves as the starting point of the bidirectional DNA-replication process.

Terminus

A chromosomal region in which the two replication forks meet towards the end of DNA replication.

Nucleoid occlusion

The inhibitory effect of the nucleoid on the formation of the septal FtsZ ring.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thanbichler, M., Shapiro, L. Getting organized — how bacterial cells move proteins and DNA. Nat Rev Microbiol 6, 28–40 (2008). https://doi.org/10.1038/nrmicro1795

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1795

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing