Glycan microarray technologies: tools to survey host specificity of influenza viruses

Abstract

New technologies are urgently required for rapid surveillance of the current H5N1 avian influenza A outbreaks to gauge the potential for adaptation of the virus to the human population, a crucial step in the emergence of pandemic influenza virus strains. Owing to the species-specific nature of the interaction between the virus and host glycans, attention has recently focused on novel glycan array technologies that can rapidly assess virus receptor specificity and the potential emergence of human-adapted H5N1 viruses.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Glycans and influenza virus specificity.
Figure 2: Known mechanisms for the emergence of pandemic influenza A virus strains.
Figure 3: Schematic representation of the two assays for analysis of the influenza A virus receptor-binding domain.
Figure 4: Glycan microarray analysis of human H1, human H3, avian H5 and duck H3 influenza virus haemagglutinins.

References

  1. 1

    Taubenberger, J. K. et al. Characterization of the 1918 influenza virus polymerase genes. Nature 437, 889–893 (2005).

  2. 2

    Neumann, G. & Kawaoka, Y. Host range restriction and pathogenicity in the context of influenza pandemic. Emerg. Infect. Dis. 12, 881–886 (2006).

  3. 3

    Scholtissek, C., Burger, H., Kistner, O. & Shortridge, K. F. The nucleoprotein as a possible major factor in determining host specificity of influenza H3N2 viruses. Virology 147, 287–294 (1985).

  4. 4

    Johnson, N. P. & Mueller, J. Updating the accounts: global mortality of the 1918–1920 'Spanish' influenza pandemic. Bull. Hist. Med. 76, 105–115 (2002).

  5. 5

    Antonovics, J., Hood, M. E. & Baker, C. H. Molecular virology: was the 1918 flu avian in origin? Nature 440, E9 (2006).

  6. 6

    Gibbs, M. J. & Gibbs, A. J. Molecular virology: was the 1918 pandemic caused by a bird flu? Nature 440, E8 (2006).

  7. 7

    Taubenberger, J. K. et al. Molecular virology: Was the 1918 pandemic caused by a bird flu? (Reply). Nature 440, E9–E10 (2006).

  8. 8

    WHO. Cumulative number of confirmed human cases of avian influenza A/(H5N1) reported to WHO [online] (2006).

  9. 9

    Ito, T. et al. Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J. Virol. 72, 7367–7373 (1998).

  10. 10

    Matrosovich, M. N., Matrosovich, T. Y., Gray, T., Roberts, N. A. & Klenk, H. D. Human and avian influenza viruses target different cell types in cultures of human airway epithelium. Proc. Natl Acad. Sci. USA 101, 4620–4624 (2004).

  11. 11

    Shinya, K. et al. Avian flu: influenza virus receptors in the human airway. Nature 440, 435–436 (2006).

  12. 12

    Couceiro, J. N., Paulson, J. C. & Baum, L. G. Influenza virus strains selectively recognize sialyloligosaccharides on human respiratory epithelium; the role of the host cell in selection of hemagglutinin receptor specificity. Virus Res. 29, 155–165 (1993).

  13. 13

    van Riel, D. et al. H5N1 virus attachment to lower respiratory tract. Science 312, 399 (2006).

  14. 14

    Gambaryan, A. S., Webster, R. & Matrosovich, M. N. Differences between influenza virus receptors on target cells of duck and chicken. Arch. Virol. 147, 1197–1208 (2002).

  15. 15

    Wan, H. & Perez, D. R. Quail carry sialic acid receptors compatible with binding of avian and human influenza viruses. Virology 346, 278–286 (2006).

  16. 16

    Kuiken, T. et al. Avian H5N1 influenza in cats. Science 306, 241 (2004).

  17. 17

    Keawcharoen, J. et al. Avian influenza H5N1 in tigers and leopards. Emerg. Infect. Dis. 10, 2189–2191 (2004).

  18. 18

    Cyranoski, D. Bird flu spreads among Java's pigs. Nature 435, 390–391 (2005).

  19. 19

    Kuiken, T., Fouchier, R., Rimmelzwaan, G., Osterhaus, A. & Roeder, P. Feline friend or potential foe? Nature 440, 741–742 (2006).

  20. 20

    Levinson, B., Pepper, D. & Belyavin, G. Substituted sialic acid prosthetic groups as determinants of viral hemagglutination. J. Virol. 3, 477–483 (1969).

  21. 21

    Rogers, G. N. & Paulson, J. C. Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology 127, 361–373 (1983).

  22. 22

    Suzuki, Y. et al. The hemagglutinins of the human influenza viruses A and B recognize different receptor microdomains. Biochim. Biophys. Acta 903, 417–424 (1987).

  23. 23

    Rogers, G. N. & D'Souza, B. L. Receptor binding properties of human and animal H1 influenza virus isolates. Virology 173, 317–322 (1989).

  24. 24

    Glaser, L. et al. A single amino acid substitution in 1918 influenza virus hemagglutinin changes receptor binding specificity. J. Virol. 79, 11533–11536 (2005).

  25. 25

    Gambaryan, A. S. & Matrosovich, M. N. A solid-phase enzyme-linked assay for influenza virus receptor-binding activity. J. Virol. Methods 39, 111–123 (1992).

  26. 26

    Sauter, N. K. et al. Binding of influenza virus hemagglutinin to analogs of its cell-surface receptor, sialic acid: analysis by proton nuclear magnetic resonance spectroscopy and X-ray crystallography. Biochemistry 31, 9609–9621 (1992).

  27. 27

    Collins, B. E. & Paulson, J. C. Cell surface biology mediated by low affinity multivalent protein-glycan interactions. Curr. Opin. Chem. Biol. 8, 617–625 (2004).

  28. 28

    Bovin, N. V. et al. Synthesis of polymeric neoglycoconjugates based on N-substituted polyacrylamides. Glycoconj. J. 10, 142–151 (1993).

  29. 29

    Gambaryan, A. S. et al. Specification of receptor-binding phenotypes of influenza virus isolates from different hosts using synthetic sialylglycopolymers: non-egg-adapted human H1 and H3 influenza A and influenza B viruses share a common high binding affinity for 6′-sialyl(N-acetyllactosamine). Virology 232, 345–350 (1997).

  30. 30

    Matrosovich, M. N. et al. Avian influenza A viruses differ from human viruses by recognition of sialyloligosaccharides and gangliosides and by a higher conservation of the HA receptor-binding site. Virology 233, 224–234 (1997).

  31. 31

    Matrosovich, M. N. et al. Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. J. Virol. 74, 8502–8512 (2000).

  32. 32

    Gambaryan, A. S. et al. Receptor specificity of influenza viruses from birds and mammals: new data on involvement of the inner fragments of the carbohydrate chain. Virology 334, 276–283 (2005).

  33. 33

    Gambaryan, A. S. et al. H5N1 chicken influenza viruses display a high binding affinity for Neu5Acα2–3Galβ1–4(6-HSO3)GlcNAc-containing receptors. Virology 326, 310–316 (2004).

  34. 34

    Gambaryan, A. S. et al. Evolution of the receptor binding phenotype of influenza A (H5) viruses. Virology 344, 432–438 (2006).

  35. 35

    CDC–NIH. Interim CDC–HIH recommendation for raising the biosafety level for laboratory work involving noncontemporary human influenza viruses. CDC [online]

  36. 36

    Tumpey, T. M. et al. Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 310, 77–80 (2005).

  37. 37

    Wang, D., Liu, S., Trummer, B. J., Deng, C. & Wang, A. Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells. Nature Biotechnol. 20, 275–281 (2002).

  38. 38

    Disney, M. D. & Seeberger, P. H. The use of carbohydrate microarrays to study carbohydrate-cell interactions and to detect pathogens. Chem. Biol. 11, 1701–1707 (2004).

  39. 39

    Feizi, T. & Chai, W. Oligosaccharide microarrays to decipher the glyco code. Nature Rev. Mol. Cell Biol. 5, 582–588 (2004).

  40. 40

    Blixt, O. et al. Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc. Natl Acad. Sci. USA 101, 17033–17038 (2004).

  41. 41

    Dyukova, V. I. et al. Hydrogel glycan microarrays. Anal. Biochem. 347, 94–105 (2005).

  42. 42

    Dyukova, V. I., Shilova, N. V., Galanina, O. E., Rubina, A. Y. & Bovin, N. V. Design of carbohydrate multiarrays. Biochim. Biophys. Acta 1760, 603–609 (2006).

  43. 43

    Paulson, J. C., Blixt, O. & Collins, B. E. Sweet spots in functional glycomics. Nature Chem. Biol. 2, 238–248 (2006).

  44. 44

    Manimala, J. C., Li, Z., Jain, A., VedBrat, S. & Gildersleeve, J. C. Carbohydrate array analysis of anti-Tn antibodies and lectins reveals unexpected specificities: implications for diagnostic and vaccine development. Chembiochem. 6, 2229–2241 (2005).

  45. 45

    Huflejt, M. E. et al. Glycan array identifies specific signatures of anti-glycan autoantibodies in sera of breast cancer patients: diagnostic, prognostic and therapeutic opportunities. Breast Cancer Res. Treat. 94, S85 (2005).

  46. 46

    Lawrie, C. H. et al. Cancer-associated carbohydrate identification in Hodgkin's lymphoma by carbohydrate array profiling. Int. J. Cancer 118, 3161–3166 (2006).

  47. 47

    Alvarez, R. A., Lee, A., Davis, C., Hoffmann, J. & Blixt, O. Defining the binding specificity of commercially available plant lectins using a printed glycan array. Glycobiology 15, 1207 (2005).

  48. 48

    van Vliet, S. J. et al. Carbohydrate profiling reveals a distinctive role for the C-type lectin MGL in the recognition of helminth parasites and tumor antigens by dendritic cells. Int. Immunol. 17, 661–669 (2005).

  49. 49

    Tateno, H., Crocker, P. R. & Paulson, J. C. Mouse Siglec-F and human Siglec-8 are functionally convergent paralogs that are selectively expressed on eosinophils and recognize 6'-sulfo-sialyl Lewis X as a preferred glycan ligand. Glycobiology 15, 1125–1135 (2005).

  50. 50

    Palma, A. S. et al. Ligands for the β-glucan receptor, Dectin-1, assigned using 'designer' microarrays of oligosaccharide probes (neoglycolipids) generated from glucan polysaccharides. J. Biol. Chem. 281, 5771–5779 (2006).

  51. 51

    McGreal, E. P. et al. The carbohydrate-recognition domain of Dectin-2 is a C-type lectin with specificity for high mannose. Glycobiology 16, 422–430 (2006).

  52. 52

    Coombs, P. J., Graham, S. A., Drickamer, K. & Taylor, M. E. Selective binding of the scavenger receptor C-type lectin to Lewisx trisaccharide and related glycan ligands. J. Biol. Chem. 280, 22993–22999 (2005).

  53. 53

    Bochner, B. S. et al. Glycan array screening reveals a candidate ligand for Siglec-8. J. Biol. Chem. 280, 4307–4312 (2005).

  54. 54

    Collins, B. E. et al. Masking of CD22 by cis ligands does not prevent redistribution of CD22 to sites of cell contact. Proc. Natl Acad. Sci. USA 101, 6104–6109 (2004).

  55. 55

    van Vliet, S. J. et al. Carbohydrate profiling reveals a distinctive role for the C-type lectin MGL in the recognition of helminth parasites and tumor antigens by dendritic cells. Int. Immunol. 17, 661–669 (2005).

  56. 56

    Crocker, P. R. Siglecs in innate immunity. Curr. Opin. Pharm. 5, 431–437 (2005).

  57. 57

    Galustian, C. et al. High and low affinity carbohydrate ligands revealed for murine SIGN-R1 by carbohydrate array and cell binding approaches, and differing specificities for SIGN-R3 and langerin. Int. Immunol. 16, 853–866 (2004).

  58. 58

    Nam, H. J. et al. Identification of the sialic acid structures recognized by minute virus of mice and the role of binding affinity in virulence adaptation. J. Biol. Chem. 281, 25670–25677 (2006).

  59. 59

    Nimrichter, L. et al. Intact cell adhesion to glycan microarrays. Glycobiology 14, 197–203 (2004).

  60. 60

    Ha, Y., Stevens, D. J., Skehel, J. J. & Wiley, D. C. H5 avian and H9 swine influenza virus haemagglutinin structures: possible origin of influenza subtypes. EMBO J. 21, 865–875 (2002).

  61. 61

    Stevens, J. et al. Structure of the uncleaved human H1 hemagglutinin from the extinct 1918 influenza virus. Science 303, 1866–1870 (2004).

  62. 62

    Frank, S. et al. Stabilization of short collagen-like triple helices by protein engineering. J. Mol. Biol. 308, 1081–1089 (2001).

  63. 63

    Stevens, J. et al. Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 312, 404–410 (2006).

  64. 64

    Yin, H. S., Wen, X., Paterson, R. G., Lamb, R. A. & Jardetzky, T. S. Structure of the parainfluenza virus 5 F protein in its metastable, prefusion conformation. Nature 439, 38–44 (2006).

  65. 65

    Stevens, J. et al. Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities. J. Mol. Biol. 355, 1143–1155 (2006).

  66. 66

    Lo-Guidice, J. M. et al. Sialylation and sulfation of the carbohydrate chains in respiratory mucins from a patient with cystic fibrosis. J. Biol. Chem. 269, 18794–18813 (1994).

  67. 67

    Kost, T. A., Condreay, J. P. & Jarvis, D. L. Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nature Biotech. 23, 567–575 (2005).

  68. 68

    Klenk, H. D., Wagner, R., Heuer, D. & Wolff, T. Importance of hemagglutinin glycosylation for the biological functions of influenza virus. Virus Res. 82, 73–75 (2002).

  69. 69

    Govorkova, E. A. et al. Lethality to ferrets of H5N1 influenza viruses isolated from humans and poultry in 2004. J. Virol. 79, 2191–2198 (2005).

  70. 70

    Maines, T. R. et al. Avian influenza (H5N1) viruses isolated from humans in Asia in 2004 exhibit increased virulence in mammals. J. Virol. 79, 11788–11800 (2005).

  71. 71

    Gagneux, P. et al. Human-specific regulation of α2–6-linked sialic acids. J. Biol. Chem. 278, 48245–48250 (2003).

  72. 72

    Rogers, G. N. et al. Host-mediated selection of influenza virus receptor variants. Sialic acid-α 2,6Gal-specific clones of A/duck/Ukraine/1/63 revert to sialic acid-α 2,3Gal-specific wild type in ovo. J. Biol. Chem. 260, 7362–7367 (1985).

  73. 73

    Mehlmann, M. et al. Robust sequence selection method used to develop the FluChip diagnostic microarray for influenza virus. J. Clin. Microbiol. 44, 2857–2862 (2006).

  74. 74

    Townsend, M. B. et al. Experimental evaluation of the FluChip diagnostic microarray for influenza virus surveillance. J. Clin. Microbiol. 44, 2863–2871 (2006).

  75. 75

    Lodes, M. J. et al. Use of semiconductor-based oligonucleotide microarrays for influenza a virus subtype identification and sequencing. J. Clin. Microbiol. 44, 1209–1218 (2006).

Download references

Acknowledgements

The work was supported in part by grants from the National Institute of Allergy and Infectious Diseases, and the National Institute of General Medical Sciences. The authors thank Ruben Donis for suggestions. This is publication 18250 from the Scripps Research Institute.

Author information

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome

A/Puerto Rico/8/1934

FURTHER INFORMATION

The Scripps Research Institute

CFG

CombiMatrix Corporation

Nomenclature Committee of the Consortium for Functional Glycomics

Rights and permissions

Reprints and Permissions

About this article

Further reading