Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Breaching the great wall: peptidoglycan and microbial interactions

Abstract

Once thought to be a process that occurred only in a few human pathogens, release of biologically active peptidoglycan fragments during growth by Gram-negative bacteria controls many types of bacterial interaction, including symbioses and interactions between microorganisms. This Perspective explores the role of peptidoglycan fragments in mediating a range of microbial?host interactions, and discusses the many systems in which peptidoglycan fragments released during bacterial growth might be active.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Peptidoglycan and tracheal cytotoxin structure.
Figure 2: Peptidoglycan and Euprymna scolopes ?Vibrio fischeri symbiosis.

Similar content being viewed by others

References

  1. Park, J. T. in Escherichia coli and Salmonella (eds Frederick, R. C. I. et al.) 48?57 (ASM Press, Washington DC, 1996).

    Google Scholar 

  2. Demchick, P. & Koch, A. L. The permeability of the wall fabric of Escherichia coli and Bacillus subtilis. J. Bacteriol. 178, 768?773 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Goodell, E. W. Recycling of murein by Escherichia coli. J. Bacteriol. 163, 305?310 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Jacobs, C., Huang, L. J., Bartowsky, E., Normark, S. & Park, J. T. Bacterial cell wall recycling provides cytosolic muropeptides as effectors for β-lactamase induction. EMBO J. 13, 4684?4694 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Park, J. T. Why does Escherichia coli recycle its cell wall peptides? Mol. Microbiol. 17, 421?426 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Goldman, W. E., Klapper, D. G. & Baseman, J. B. Detection, isolation, and analysis of a released Bordetella pertussis product toxic to cultured tracheal cells. Infect. Immun. 36, 782?794 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Cookson, B. T., Cho, H. L., Herwaldt, L. A. & Goldman, W. E. Biological activities and chemical composition of purified tracheal cytotoxin of Bordetella pertussis. Infect. Immun. 57, 2223?2229 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Melly, M. A., McGee, Z. A. & Rosenthal, R. S. Ability of monomeric peptidoglycan fragments from Neisseria gonorrhoeae to damage human fallopian-tube mucosa. J. Infect. Dis. 149, 378?386 (1984).

    Article  CAS  PubMed  Google Scholar 

  9. Sinha, R. K. & Rosenthal, R. S. Release of soluble peptidoglycan from growing gonococci: demonstration of anhydro-muramyl-containing fragments. Infect. Immun. 29, 914?925 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Viala, J. et al. Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nature Immunol. 5, 1166?1174 (2004).

    Article  CAS  Google Scholar 

  11. Koropatnick, T. A. et al. Microbial factor-mediated development in a host?bacterial mutalism. Science 306, 1186?1188 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Boneca, I. G. The role of peptidoglycan in pathogenesis. Curr. Opin. Microbiol. 8, 46?53 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Cookson, B. T., Tyler, A. N. & Goldman, W. E. Primary structure of the peptidoglycan-derived tracheal cytotoxin of Bordetella pertussis. Biochemistry 28, 1744?1749 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. Flak, T. A. & Goldman, W. E. Signaling and cellular specificity of airway nitric oxide production in pertussis. Cell. Microbiol. 1, 51?60 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Burroughs, M., Prasad, S., Cabellos, C., Mendelman, P. M. & Tuomanen, E. The biologic activities of peptidoglycan in experimental Haemophilus influenzae meningitis. J. Infect. Dis. 167, 464?468 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Leake, E. R., Holmes, K., Lim, D. J. & DeMaria, T. F. Peptidoglycan isolated from nontypeable Haemophilus influenzae induces experimental otitis media in the chinchilla. J. Infect. Dis. 170, 1532?1538 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Girardin, S. E. et al. Nod1 detects a unique muropeptide from Gram-negative bacterial peptidoglycan. Science 300, 1584?1587 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Girardin, S. E. et al. CARD4/Nod1 mediates NF-kB and JNK activation by invasive Shigella flexneri. EMBO Rep. 2, 736?742 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Travassos, L. H. et al. Nod1 participates in the innate immune response to Pseudomonas aeruginosa. J. Biol. Chem. 280, 36714?36718 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Dinarello, C. A., Elin, R. J., Chedid, L. & Wolff, S. M. The pyrogenicity of the synthetic adjuvant muramyl dipeptide and two structural analogues. J. Infect. Dis. 138, 760?767 (1978).

    Article  CAS  PubMed  Google Scholar 

  21. Langhans, W., Harlacher, R., Balkowski, G. & Scharrer, E. Comparison of the effects of bacterial lipopolysaccharide and muramyl dipeptide on food intake. Physiol. Behav. 47, 805?813 (1990).

    Article  CAS  PubMed  Google Scholar 

  22. Fleming, T. J., Wallsmith, D. E. & Rosenthal, R. S. Arthropathic properties of gonococcal peptidoglycan fragments: implications for the pathogenesis of disseminated gonococcal disease. Infect. Immun. 52, 600?608 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Johannsen, L. et al. Somnogenic, pyrogenic, and hematologic effects of bacterial peptidoglycan . Am. J. Physiol. 258, R182?R186 (1990).

    CAS  PubMed  Google Scholar 

  24. Krueger, J. M., Pappenheimer, J. R. & Karnovsky, M. L. Sleep-promoting effects of muramyl peptides . Proc. Natl Acad. Sci. USA 79, 6102?6106 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Aguilera, A. et al. Helicobacter pylori infection: a new cause of anorexia in peritoneal dialysis patients. Perit. Dial. Int. 21, S152?S156 (2001).

    PubMed  Google Scholar 

  26. Portnoi, V. A. Helicobacter pylori infection and anorexia of aging. Arch. Intern. Med. 157, 269?272 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Unal, M., Ozturk, L., Ozturk, C. & Kabal, A. The seroprevalence of Helicobacter pylori infection in patients with obstructive sleep apnoea: a preliminary study. Clin. Otolaryngol. Allied Sci. 28, 100?102 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Krueger, J. M., Pappenheimer, J. P. & Karnovsky, M. L. The composition of sleep-promoting factor isolated from human urine. J. Biol. Chem. 257, 1664?1669 (1982).

    CAS  PubMed  Google Scholar 

  29. Martin, S. A., Karnovsky, M. L., Krueger, J. M., Pappenheimer, J. R. & Biemann, K. Peptidoglycans as promoters of slow-wave sleep. I. Structure of the sleep-promoting factor isolated from human urine. J. Biol. Chem. 259, 12652?12658 (1984).

    CAS  PubMed  Google Scholar 

  30. Netea, M. G. et al. The frameshift mutation in nod2 results in unresponsiveness not only to Nod2- but also Nod1-activating peptidoglycan agonists. J. Biol. Chem. 280, 35859?35867 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Maeda, S. et al. Nod2 mutation in Crohn's disease potentiates NF-κB activity and IL-1β processing. Science 307, 734?738 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Cloud, K. A. & Dillard, J. P. A lytic transglycosylase of Neisseria gonorrhoeae is involved in peptidoglycan-derived cytotoxin production. Infect. Immun. 70, 2752?2757 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shen, K. et al. Identification, distribution and expression of novel genes in 10 clinical isolates of nontypeable Haemophilus influenzae. Infect. Immun. 73, 3479?3491 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bartoleschi, C. et al. Selection of Shigella flexneri candidate virulence genes specifically induced in bacteria resident in host cell cytoplasm. Cell. Microbiol. 4, 613?626 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. McCoy, A. J. & Maurelli, A. T. Characterization of Chlamydia MurC?Ddl, a fusion protein exhibiting D-alanyl-D-alanine ligase activity involved in peptidoglycan synthesis and D-cycloserine sensitivity. Mol. Microbiol. 57, 41?52 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. McCoy, A. J., Sandlin, R. C. & Maurelli, A. T. In vitro and in vivo functional activity of Chlamydia MurA, and UDP-N-acetylglucosamine endopyruvyl transferase involved in peptidoglycan synthesis and fosfomycin resistance. J. Bacteriol. 185, 1218?1228 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McCoy, A. J. & Maurelli, A. T. Building the invisible wall: updating the chlamydial peptidoglycan anomaly. Trends Microbiol. 14, 70?77 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Opitz, B. et al. Nod1-mediated endothelial cell activation by Chlamydophila pneumoniae. Circ. Res. 96, 319?326 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Ausubel, F. M. Are innate immune signaling pathways in plants and animals conserved? Nature Immunol. 6, 973?979 (2005).

    Article  CAS  Google Scholar 

  40. Nurnberger, T. & Brunner, F. Innate immunity in plants and animals: emerging parallels between the recognition of general elicitors and pathogen-associated molecular patterns. Curr. Opin. Plant Biol. 5, 318?324 (2002).

    Article  PubMed  Google Scholar 

  41. Dangl, J. L. & Jones, J. D. G. Plant pathogens and integrated defense responses to infection. Nature 411, 826?832 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Bokma, E., van Koningsveld, G. A., Jeronimus-Stratingh, M. & Beintema, J. J. Hevamine, a chitinase from the rubber tree Hevea brasiliensis, cleaves peptidoglycan between the C-1 of N-acetylglucosamine and C-4 of N-acetylmuramic acid and therefore is not a lysozyme. FEBS Lett. 411, 161?163 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Martin, M. N. The latex of Hevea brasiliensis contains high levels of both chitinases and chitinases/lysozymes. Plant Physiol. 95, 469?476 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ogunlana, E. O., Honglund, S., Onawunmi, G. & Skold, O. Effects of lemongrass oil on the morphological characteristics and peptidoglycan synthesis of Escherichia coli cells. Microbios 50, 43?59 (1987).

    CAS  PubMed  Google Scholar 

  45. Tans-Kersten, J., Gay, J. & Allen, C. Ralstonia solanacearum AmpD is required for wild-type bacterial wilt virulence. Mol. Plant Pathol. 1, 179?185 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Folkesson, A., Eriksson, S., Andersson, M., Park, J. T. & Normark, S. Components of the peptidoglycan-recycling pathway modulate invasion and intracellular survival of Salmonella enterica serovar Typhimurium. Cell. Microbiol. 7, 147?155 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Zhao, Y., Blumer, S. E. & Sundin, G. W. Identification of Erwinia amylovora genes induced during infection of immature pear tissue. J. Bacteriol. 187, 8088?8103 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Adu-Bobie, J. et al. GNA33 of Neisseria meningitidis is a lipoprotein required for cell separation, membrane architecture, and virulence. Infect. Immun. 72, 1914?1919 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nyholm, S. V. & McFall-Ngai, M. J. The winnowing: establishing the squid?vibrio symbiosis. Nature Rev. Microbiol. 2, 632?642 (2004).

    Article  CAS  Google Scholar 

  50. Jones, B. W. & Nishiguchi, M. K. Counterillumination in the Hawaiian bobtail squid, Euprymna scolopes Berry (Mollusca: Cephalopoda). Marine Biol. 144, 1151?1155 (2004).

    Article  Google Scholar 

  51. Nyholm, S. V. & McFall-Ngai, M. J. Dominance of Vibrio fischeri in secreted mucus outside the light organ of Euprymna scolopes: the first site of symbiont specificity. Appl. Environ. Microbiol. 69, 3932?3937 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nyholm, S. V., Stabb, E. V., Ruby, E. G. & McFall-Ngai, M. J. Establishment of an animal?bacterial association: recruiting symbiotic vibrios from the environment. Proc. Natl Acad. Sci. USA 97, 10231?10235 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Montgomery, M. & McFall-Ngai, M. Bacterial symbionts induce host organ morphogenesis during early post embryonic development of the squid Euprymna scolopes. Development 120, 1719?1729 (1994).

    CAS  PubMed  Google Scholar 

  54. Dunn, A. K., Millikan, D. S., Adin, D. M., Bose, J. L. & Stabb, E. V. New rfp- and pES213-derived tools for analyzing symbiotic Vibrio fischeri reveal patterns of infection and lux expression in situ. Appl. Environ. Microbiol. 72, 802?810 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Foster, J. et al. The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode. PLoS Biol 3, e121 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Taylor, M. J. Wolbachia in the inflammatory pathogenesis of human filariasis. Ann. N. Y. Acad. Sci. 990, 444?449 (2003).

    Article  PubMed  Google Scholar 

  57. Heddi, A. et al. Molecular and cellular profiles of insect bacteriocytes: mutualism and harm at the initial evolutionary step of symbiogenesis. Cell. Microbiol. 7, 293?305 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Ayouba, A. et al. Interactions of plant lectins with the components of the bacterial cell wall peptidoglycan. Biochem. Syst. Ecol. 22, 153?159 (1994).

    Article  CAS  Google Scholar 

  59. Ayouba, A., Chatelain, C. & Rouge, P. Legume lectins interact with muramic acid and N-acetylmuramic acid. FEBS Lett. 289, 102?104 (1991).

    Article  CAS  PubMed  Google Scholar 

  60. Bourne, Y., Ayouba, A., Rouge, P. & Cambillau, C. Interaction of a legume lectin with two components of the bacterial cell wall. J. Biol. Chem. 269, 9429?9435 (1994).

    CAS  PubMed  Google Scholar 

  61. Hirsch, A. M. Role of lectins (and rhizobial exopolysaccharides) in legume nodulation. Curr. Opin. Plant Biol. 2, 320?326 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Hanson, N. D. & Sanders, C. C. Regulation of inducible AmpC β-lactamase expression among enterobacteriaceae. Curr. Pharm. Des. 5, 881?894 (1999).

    CAS  PubMed  Google Scholar 

  63. Cheng, Q. & Park, J. T. Substrate specificity of the AmpG permease required for recycling of cell wall anhydro-muropeptides. J. Bacteriol. 184, 6434?6436 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Okabe, S., Kindaichi, T. & Ito, T. Fate of C-14-labeled microbial products derived from nitrifying bacteria in autotrophic nitrifying biofilms. Appl. Environ. Microbiol. 71, 3987?3994 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kindaichi, T., Ito, T. & Okabe, S. Ecophysiological interaction between nitrifying bacteria and heterotrophic bacteria in autotrophic nitrifying biofilms as determined by microautoradiography-fluorescence in situ hybridization. Appl. Environ. Microbiol. 70, 1641?1650 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Peterson, S. B., Dunn, A. K., Klimowicz, A. K. & Handelsman, J. Peptidoglycan from Bacillus cereus mediates commensalism with rhizosphere bacteria from the Cytophaga-Flavobacterium group. Appl. Environ. Microbiol. (in the press).

  67. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783?801 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Dziarski, R. & Gupta, D. Peptidoglycan recognition in innate immunity. J. Endotoxin Res. 11, 304?310 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Strober, W., Murray, P. J., Kitani, A. & Watanabe, T. Signaling pathways and molecular interactions of NOD1 and NOD2. Nature Rev. Immunol. 6, 9?20 (2006).

    Article  CAS  Google Scholar 

  70. Magalhaes, J. G. et al. Murine Nod1 but not its human orthologue mediates innate immune detection of tracheal cytotoxin. EMBO Rep. 6, 1201?1207 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chang, C. I., Chelliah, Y., Borek, D., Mengin-Lecreulx, D. & Deisenhofer, J. Structure of tracheal cytotoxin in complex with a heterodimeric pattern-recognition receptor. Science 311, 1761?1764 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Choe, J., Kelker, M. S. & Wilson, I. A. Crystal structure of human toll-like receptor 3 (TLR3) ectodomain. Science 309, 581?585 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Lu, X. et al. Peptidoglycan recognition proteins are a new class of human bactericidal proteins. J. Biol. Chem. 281, 5895?5907 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Inohara, N., Chamaillard, M., McDonald, C. & Nunez, G. NOD-LRR proteins: role in host?microbial interactions and inflammatory disease. Annu. Rev. Biochem. 74, 355?383 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Dziarski, R. & Gupta, D. Staphylococcus aureus peptidoglycan is a toll-like receptor 2 activator: a reevaluation. Infect. Immun. 73, 5212?5216 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Travassos, L. H. et al. Toll-like receptor 2-dependent bacterial sensing does not occur via peptidoglycan recognition. EMBO Rep. 5, 1000?1006 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Dokter, W. H. et al. G(Anh)MTetra, a natural bacterial cell wall breakdown product, induces interleukin-1β and interleukin-6 expression in human monocytes. A study of the molecular mechanisms involved in inflammatory cytokine expression. J. Biol. Chem. 269, 4201?4206 (1994).

    CAS  PubMed  Google Scholar 

  78. Chamaillard, M., Girardin, S. E., Viala, J. & Philpott, D. J. Nods, Nalps and Naip: intracellular regulators of bacterial-induced inflammation. Cell. Microbiol. 5, 581?592 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Kaneko, T. & Silverman, N. Bacterial recognition and signaling by the Drosophila IMD pathway. Cell. Microbiol. 7, 461?469 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Canavessi, A. M., Harms, J., de Leon Gatti, N. & Splitter, G. A. The role of integrase/recombinase xerD and monofunctional biosynthesis peptidoglycan transglycosylase genes in the pathogenicity of Brucella abortus infection in vitro and in vivo. Microb. Pathog. 37, 241?251 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Lestrate, P. et al. Identification and characterization of in vivo attenuated mutants of Brucella melitensis. Mol. Microbiol. 38, 543?551 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Hunt, T. A., Kooi, C., Sokol, P. A. & Valvano, M. A. Identification of Burkholderia cenocepacia genes required for bacterial survival in vivo. Infect. Immun. 72, 4010?4022 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yang, S. et al. Genome-wide identification of plant-upregulated genes of Erwinia chrysanthemi 3937 using a GFP-based IVET leaf array. Mol. Plant Microbe Interact. 17, 999?1008 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Herbert, M. A. et al. Signature tagged mutagenesis of Haemophilus influenzae identifies genes required for in vivo survival. Microb. Pathog. 33, 211?223 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Graham, J. E., Peek, R. M. Jr, Krishna, U. & Cover, T. L. Global analysis of Helicobacter pylori gene expression in human gastric mucosa. Gastroenterol. 123, 1637?1648 (2002).

    Article  CAS  Google Scholar 

  86. Sun, Y. H., Bakshi, S., Chalmers, R. & Tang, C. M. Functional genomics of Neisseria meningitidis pathogenesis. Nature Med. 6, 1269?1273 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Fuller, T. E., Kennedy, M. J. & Lowery, D. E. Identification of Pasteurella multocida virulence genes in a septicemic mouse model using signature-tagged mutagenesis. Microb. Pathog. 29, 25?38 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Harper, M., Boyce, J. D., Wilkie, I. W. & Adler, B. Signature-tagged mutagenesis of Pasteurella multocida identifies mutants displaying differential virulence characteristics in mice and chickens. Infect. Immun. 71, 5440?5446 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Burral, L. S. et al. Proteus mirabilis genes that contribute to pathogenesis of urinary tract infection: identification of 25 signature-tagged mutants attenuated at least 100-fold. Infect. Immun. 72, 2922?2938 (2004).

    Article  CAS  Google Scholar 

  90. Boch, J. et al. Identification of Pseudomonas syringae pv. tomato genes induced during infection of Arabidopsis thaliana. Mol. Microbiol. 44, 73?88 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Soo, P. C. et al. Characterization of the dapA?nlpB genetic locus involved in regulation of swarming motility, cell envelope architecture, hemolysin production, and cell attachment ability in Serratia marcescens. Infect. Immun. 73, 6075?6084 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. de Souza, A. A. et al. Analysis of gene expression in two growth states of Xylella fastidiosa and its relationship with pathogenicity. Mol. Plant Microbe Interact. 16, 867?875 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jo Handelsman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome Project

Bacillus cereus

Bordetella pertussis

Brugia malayi

Chlamydophilia pneumoniae

Chlamydia trachomatis

Erwinia amylovora

Escherichia coli

Flavobacterium johnsoniae

Haemophilus influenzae

Helicobacter pylori

Neisseria gonorrhoeae

Neisseria meningitides

Pseudomonas aeruginosa

Ralstonia solanacearum

Salmonella typhimurium

Serratia marcescens

Shigella flexneri

Vibrio fischeri

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cloud-Hansen, K., Peterson, S., Stabb, E. et al. Breaching the great wall: peptidoglycan and microbial interactions. Nat Rev Microbiol 4, 710–716 (2006). https://doi.org/10.1038/nrmicro1486

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1486

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing