Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

The Tombusvirus-encoded P19: from irrelevance to elegance

Abstract

Since its discovery in the late 1980s, the status of the Tombusvirus-encoded p19 protein (P19) changed from being thought obsolete to its identification a decade later as an important viral pathogenicity factor. The recent finding that P19 suppresses RNA interference (RNAi) by appropriating short interfering RNAs led to its widespread use as an RNAi-probing tool in various plant and animal models. Here, I discuss how our knowledge of p19 has developed over the years, with emphasis on the relevance of understanding its biological roles during Tombusvirus infection of plants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gene-expression strategy of the Tombusvirus p19 as illustrated for Tomato bushy stunt virus (TBSV).
Figure 2: A model showing how RNA interference (RNAi) and P19 influence Tombusvirus infection of plants.
Figure 3: P19–short interfering (si)RNA structure: side view (top) and view from the dimer-base up towards siRNA (bottom).

Accession codes

Accessions

Protein Data Bank

References

  1. Hull, R. Matthews' Plant Virology (Academic Press, London, 2002).

    Google Scholar 

  2. Hillman, B. I. et al. A defective interfering RNA that contains a mosaic of a plant virus genome. Cell 51, 427–433 (1987).

    Article  CAS  Google Scholar 

  3. Yamamura, Y. & Scholthof, H. B. Pathogen profile: tomato bushy stunt virus: a resilient model system for studying virus–plant interactions. Mol. Plant Pathol. 6, 491–502 (2005).

    Article  CAS  Google Scholar 

  4. Russo, M. et al. Molecular biology of Tombusviridae. Adv. Virus Res. 44, 381–428 (1994).

    Article  CAS  Google Scholar 

  5. Martelli, G. P. et al. in The Plant Viruses (ed. Koenig, R.) 13–72 (Plenum Press, New York, 1988).

    Book  Google Scholar 

  6. Grieco, F. et al. Nucleotide sequence of the 3′-terminal region of cymbidium ringspot virus RNA. J. Gen. Virol. 70, 2533–2538 (1989).

    Article  CAS  Google Scholar 

  7. Hayes, R. J. et al. Gene mapping and expression of tomato bushy stunt virus. J. Gen. Virol. 69, 3047–3057 (1988).

    Article  CAS  Google Scholar 

  8. Hillman, B. I. et al. Organization of tomato bushy stunt virus genome: characterization of the coat protein gene and the 3′ terminus. Virology 169, 42–50 (1989).

    Article  CAS  Google Scholar 

  9. Tavazza, M. et al. Nucleotide sequence, genomic organization and synthesis of infectious transcripts from a full-length clone of artichoke mottle crinkle virus. J. Gen. Virol. 75, 1515–1524 (1994).

    Article  CAS  Google Scholar 

  10. Rubino, L. et al. Molecular cloning and complete nucleotide sequence of carnation italian ringspot tombusvirus genomic and defective interfering RNAs. Arch. Virol. 140, 2027–2039 (1995).

    Article  CAS  Google Scholar 

  11. Burgyan, J. et al. Synthesis of infectious RNA from full-length cloned cDNA to RNA of cymbidium ringspot tombusvirus. J. Gen. Virol. 71, 1857–1860 (1990).

    Article  CAS  Google Scholar 

  12. Hearne, P. Q. et al. The complete genome structure and synthesis of infectious RNA from clones of tomato bushy stunt virus. Virology 177, 141–151 (1990).

    Article  CAS  Google Scholar 

  13. Rochon, D. M. & Johnston, J. C. Infectious transcripts from cloned cucumber necrosis virus cDNA: evidence for a bifunctional subgenomic mRNA. Virology 181, 656–665 (1991).

    Article  CAS  Google Scholar 

  14. White, K. A. & Nagy, P. D. Advances in the molecular biology of tombusviruses: gene expression, genome replication, and recombination. Prog. Nucleic Acid Res. Mol. Biol. 78, 187–226 (2004).

    Article  CAS  Google Scholar 

  15. Choi, I. R. et al. Regulatory activity of distal and core RNA elements in Tombusvirus subgenomic mRNA2 transcription. J. Biol. Chem. 276, 41761–41768 (2001).

    Article  CAS  Google Scholar 

  16. Wu, B. & White, K. A. A primary determinant of cap-independent translation is located in the 3′-proximal region of the tomato bushy stunt virus genome. J. Virol. 73, 8982–8988 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Johnston, J. C. & Rochon, D. M. Both codon context and leader length contribute to efficient expression of two overlapping open reading frames of a cucumber necrosis virus bifunctional subgenomic mRNA. Virology 221, 232–239 (1996).

    Article  CAS  Google Scholar 

  18. Johnston, J. C. & Rochon, D. M. Deletion analysis of the promoter for the cucumber necrosis virus 0.9-kb subgenomic RNA. Virology 214, 100–109 (1995).

    Article  CAS  Google Scholar 

  19. Scholthof, H. B. et al. The biological activity of two tombusvirus proteins translated from nested genes is influenced by dosage control via context-dependent leaky scanning. Mol. Plant Microbe Interact. 12, 670–679 (1999).

    Article  CAS  Google Scholar 

  20. Scholthof, H. B. et al. Identification of tomato bushy stunt virus host-specific symptom determinants by expression of individual genes from a potato virus X vector. Plant Cell 7, 1157–1172 (1995).

    Article  CAS  Google Scholar 

  21. Qiu, W. & Scholthof, H. B. Effects of inactivation of the coat protein and movement genes of Tomato bushy stunt virus on early accumulation of genomic and subgenomic RNAs. J. Gen. Virol. 82, 3107–3114 (2001).

    Article  CAS  Google Scholar 

  22. Rochon, D. M. Rapid de novo generation of defective interfering RNA by cucumber necrosis mutants that do not express the 20-kDa nonstructural protein. Proc. Natl Acad. Sci. USA 88, 11153–11157 (1991).

    Article  CAS  Google Scholar 

  23. Dalmay, T. et al. Functional analysis of cymbidium ringspot virus genome. Virology 194, 697–704 (1993).

    Article  CAS  Google Scholar 

  24. Scholthof, H. B. et al. Tomato bushy stunt virus spread is regulated by two nested genes that function in cell-to-cell movement and host-dependent systemic invasion. Virology 213, 425–438 (1995).

    Article  CAS  Google Scholar 

  25. Chu, M. et al. Genetic dissection of tomato bushy stunt virus p19-protein-mediated host-dependent symptom induction and systemic invasion. Virology 266, 79–87 (2000).

    Article  CAS  Google Scholar 

  26. Turina, M. et al. A newly identified role for the Tomato bushy stunt virus P19 in short distance spread. Molec. Plant Pathol. 4, 67–72 (2003).

    Article  CAS  Google Scholar 

  27. Vargason, J. M. et al. Size selective recognition of siRNA by an RNA silencing suppressor. Cell 115, 799–811 (2003).

    Article  CAS  Google Scholar 

  28. Scholthof, K. -B. G. et al. The effect of defective interfering RNAs on the accumulation of tomato bushy stunt virus proteins and implications for disease attenuation. Virology 211, 324–328 (1995).

    Article  CAS  Google Scholar 

  29. Voinnet, O. Induction and suppression of RNA silencing: insights from viral infections. Nature Rev. Genetics 6, 206–220 (2005).

    Article  CAS  Google Scholar 

  30. Anandalakshmi, R. et al. A viral suppressor of gene silencing in plants. Proc. Natl Acad. Sci. USA 95, 13079–13084 (1998).

    Article  CAS  Google Scholar 

  31. Brigneti, G. et al. Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J. 17, 6739–6746 (1998).

    Article  CAS  Google Scholar 

  32. Kasschau, K. D. & Carrington, J. C. A counterdefensive strategy of plant viruses: suppression of posttranscriptional gene silencing. Cell 95, 461–470 (1998).

    Article  CAS  Google Scholar 

  33. Voinnet, O. et al. Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc. Natl Acad. Sci. USA 96, 14147–14152 (1999).

    Article  CAS  Google Scholar 

  34. Roth, B. M. et al. Plant viral suppressors of RNA silencing. Virus Res. 102, 97–108 (2004).

    Article  CAS  Google Scholar 

  35. Scholthof, H. B. Plant virus transport: motions of functional equivalence. Trends Plant Sci. 10, 376–382 (2005).

    Article  CAS  Google Scholar 

  36. Qu, F. & Morris, T. J. Suppressors of RNA silencing encoded by plant viruses and their role in virus infection. FEBS Lett. 579, 5958–5964 (2005).

    Article  CAS  Google Scholar 

  37. Silhavy, D. & Burgyan, J. Effects and side-effects of viral RNA silencing suppressors on short RNAs. Trends Plant Sci. 9, 76–83 (2004).

    Article  CAS  Google Scholar 

  38. Li, H. W. & Ding, S. W. Antiviral silencing in animals. FEBS Lett. 579, 5965–5973 (2005).

    Article  CAS  Google Scholar 

  39. Baulcombe, D. RNA silencing in plants. Nature 431, 356–363 (2004).

    Article  CAS  Google Scholar 

  40. Szittya, G. et al. Short defective interfering RNAs of tombusviruses are not targeted but trigger post-transcriptional gene silencing against their helper virus. Plant Cell 14, 1–15 (2002).

    Article  Google Scholar 

  41. Qu, F. & Morris, T. J. Efficient infection of Nicotiana benthamiana by Tomato bushy stunt virus is facilitated by the coat protein and maintained by p19 through suppression of gene silencing. Mol. Plant Microbe Interact. 15, 193–202 (2002).

    Article  CAS  Google Scholar 

  42. Qiu, W. P. et al. Tombusvirus P19-mediated suppression of virus induced gene silencing is controlled by genetic and dosage features that influence pathogenicity. Mol. Plant Microbe Interact. 15, 269–280 (2002).

    Article  CAS  Google Scholar 

  43. Havelda, Z. et al. In situ characterization of cymbidium ringspot tombusvirus infection-induced posttranscriptional gene silencing in Nicotiana benthamiana. J. Virol. 77, 6082–6086 (2003).

    Article  CAS  Google Scholar 

  44. Silhavy, D. et al. A viral protein suppresses RNA silencing and binds silencing-generated, 21- to 25-nucleotide double-stranded RNAs. EMBO J. 21, 3070–3080 (2002).

    Article  CAS  Google Scholar 

  45. Szittya, G. et al. Low temperature inhibits RNA silencing-mediated defence by the control of siRNA generation. EMBO J. 22, 633–640 (2003).

    Article  CAS  Google Scholar 

  46. Papp, I. et al. Evidence for nuclear processing of plant microRNA and short-interfering RNA precursors. Plant Physiol. 132, 1382–1390 (2003).

    Article  CAS  Google Scholar 

  47. Uhrig, J. F. et al. Relocalization of nuclear ALY proteins to the cytoplasm by the tomato bushy stunt virus P19 pathogenicity protein. Plant Physiol. 135, 2411–2423 (2004).

    Article  CAS  Google Scholar 

  48. Park, J. -W. et al. The multifunctional plant viral suppressor of gene silencing P19 interacts with itself and an RNA binding host protein. Virology 323, 49–58 (2004).

    Article  CAS  Google Scholar 

  49. Lakatos, L. et al. Molecular mechanism of RNA silencing suppression mediated by the P19 protein of tombusviruses. EMBO J. 23, 876–884 (2004).

    Article  CAS  Google Scholar 

  50. Desvoyes, B. et al. A novel plant homeodomain protein interacts in a functionally relevant manner with a virus movement protein. Plant Physiol. 129, 1521–1532 (2002).

    Article  CAS  Google Scholar 

  51. Xie, Z. et al. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol. 2, e104 (2004).

    Article  Google Scholar 

  52. Dunoyer, P. et al. DICER-LIKE 4 is required for RNA interference and produces the 21-nucleotide small interfering RNA component of the plant cell-to-cell silencing signal. Nature Genet. 37, 1356–1360 (2005).

    Article  CAS  Google Scholar 

  53. Molnar, A. et al. Plant virus-derived small interfering RNAs originate predominantly from highly structured single-stranded viral RNAs. J. Virol. 79, 7812–7818 (2005).

    Article  CAS  Google Scholar 

  54. Ye, K. et al. Recognition of small interfering RNA by a viral suppressor of RNA silencing. Nature 426, 874–878 (2003).

    Article  CAS  Google Scholar 

  55. Chapman, E. et al. Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step. Genes Dev. 18, 1179–1186 (2004).

    Article  CAS  Google Scholar 

  56. Dunoyer, P. et al. Probing the microRNA and small interfering RNA pathways with virus-encoded suppressors of RNA silencing. Plant Cell 16, 1235–1250 (2004).

    Article  CAS  Google Scholar 

  57. Li, W. X. et al. Interferon antagonist proteins of influenza and vaccinia viruses are suppressors of RNA silencing. Proc. Natl Acad. Sci. USA 101, 1350–1355 (2004).

    Article  CAS  Google Scholar 

  58. Lecellier, C. H. et al. A cellular microRNA mediates antiviral defense in human cells. Science 308, 557–560 (2005).

    Article  CAS  Google Scholar 

  59. Lu, R. et al. Animal virus replication and RNAi-mediated antiviral silencing in Caenorhabditis elegans. Nature 436, 1040–1043 (2005).

    Article  CAS  Google Scholar 

  60. Voinnet, O. et al. An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J. 33, 949–956 (2003).

    Article  CAS  Google Scholar 

  61. Burgyan, J. et al. The ORF1 products of tombusviruses play a crucial role in lethal necrosis of virus-infected plants. J. Virol. 74, 10873–10881 (2000).

    Article  CAS  Google Scholar 

  62. Omarov, R. et al. Biological relevance of a stable interaction between the tombusvirus-encoded P19 and siRNAs. J. Virol. (in the press).

  63. Scholthof, H. B. et al. The capsid protein gene of tomato bushy stunt virus is dispensable for systemic movement and can be replaced for localized expression of foreign genes. Mol. Plant Microbe Interact. 6, 309–322 (1993).

    Article  CAS  Google Scholar 

  64. Zamore, P. D. Plant RNAi: how a viral silencing suppressor inactivates siRNA. Curr. Biol. 14, 198–200 (2004).

    Article  Google Scholar 

  65. Havelda, Z. et al. Defective interfering RNA hinders the activity of a tombusvirus-encoded posttranscriptional gene silencing suppressor. J. Virol. 79, 450–457 (2005).

    Article  CAS  Google Scholar 

  66. Rochon, D. M. & Tremaine, J. H. Complete nucleotide sequence of the cucumber necrosis virus genome. Virology 169, 251–259 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank R. Omarov and K.-B. G. Scholthof for providing helpful suggestions, and J. Hsieh for customizing the P19 structure representation. Funding for our TBSV work was provided by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome

PVX

TBSV

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholthof, H. The Tombusvirus-encoded P19: from irrelevance to elegance. Nat Rev Microbiol 4, 405–411 (2006). https://doi.org/10.1038/nrmicro1395

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1395

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing