Review Article | Published:

The spores of Phytophthora: weapons of the plant destroyer



Members of the genus Phytophthora are among the most serious threats to agriculture and food production, causing devastating diseases in hundreds of plant hosts. These fungus-like eukaryotes, which are taxonomically classified as oomycetes, generate asexual and sexual spores with characteristics that greatly contribute to their pathogenic success. The spores include survival and dispersal structures, and potent infectious propagules capable of actively locating hosts. Genetic tools and genomic resources developed over the past decade are now allowing detailed analysis of these important stages in the Phytophthora life cycle.

Key Points

  • Although many researchers would consider oomycetes as fungi, officially oomycetes such as the genus Phytophthora are classified taxonomically in the Straminipilia kingdom, with diatoms and brown algae their nearest taxonomic neighbours.

  • The phytopathogenic Phytophthora are economically significant pathogens, with Phytophthora infestans, the causative agent of potato blight, responsible for an estimated US$5 billion of damage each year.

  • New techniques for genetic, genomic and proteomic analyses were initially applied to more tractable mycological systems such as the basidiomycetes and ascomycetes. However, in the past decade great advances have been made in developing these analytical tools for oomycetes, with Phytophthora leading the way.

  • In this article, the authors provide an overview of the results obtained in molecular studies on Phytophthora spores from the past 4 or 5 years. Several spore-specific genes have now been identified. Further analysis of the different stages of the Phytophthora life cycle might eventually lead to the development of effective strategies for controlling Phytophthora disease.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Roncal, T. & Ugalde, U. Conidiation induction in Penicillium. Res. Microbiol. 154, 539–546 (2003).

  2. 2

    Williams, H. P. & Harwood, A. J. Cell polarity and Dictyostelium development. Curr. Opin. Microbiol. 6, 621–627 (2003).

  3. 3

    Hilbert, D. W. & Piggot, P. J. Compartmentalization of gene expression during Bacillus subtilis spore formation. Microbiol. Mol. Biol. Rev. 68, 234–262 (2004).

  4. 4

    Calvo, A. M., Wilson, R. A., Bok, J. W. & Keller, N. P. Relationship between secondary metabolism and fungal development. Microbiol. Mol. Biol. Rev. 66, 447–459 (2002).

  5. 5

    Large, E. C. The Advance of the Fungi (Dover, New York, 1962). A wonderful volume filled with an entertaining history of mycology and plant pathology, including several chapters on P. infestans and the late blight disease.

  6. 6

    Duncan, J. Phytophthora: an abiding threat to our crops. Microbiol. Today 26, 114–116 (1999).

  7. 7

    Erwin, D. C. & Ribeiro, O. K. Phytophthora Diseases Worldwide (APS Press, St Paul, Minnesota, 1996).

  8. 8

    Rizzo, D. M., Garbelotto, M., Davidson, J. M., Slaughter, G. W. & Koike, S. T. Phytophthora ramorum as the cause of extensive mortality of Quercus spp. and Lithocarpus densiflorus in California. Plant Dis. 86, 205–214 (2002).

  9. 9

    Ebbole, D. J. Morphogenesis and vegetative differentiation in filamentous fungi. J. Genet. 75, 361–374 (1996).

  10. 10

    Kues, U. Life history and developmental processes in the basidiomycete Coprinus cinereus. Microbiol. Mol. Biol. Rev. 64, 316–353 (2000).

  11. 11

    Money, N. P. Why oomycetes have not stopped being fungi. Mycol. Res. 102, 767–768 (1998).

  12. 12

    Baldauf, S. L., Roger, A. J., Wenk-Siefert, I. & Doolittle, W. F. A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290, 972–977 (2000).

  13. 13

    Sogin, M. L. & Silberman, J. D. Evolution of the protists and protistan parasites from the perspective of molecular systematics. Int. J. Parasitol. 28, 11–20 (1998).

  14. 14

    Shaw, D. S. in Oosporic Plant Pathogens, A Modern Perspective (ed. Buczacki, S. T.) 85–121 (Academic Press, London, 1983).

  15. 15

    Cvitanich, C. & Judelson, H. Stable transformation of the oomycete, Phytophthora infestans, using microprojectile bombardment. Curr. Genet. 42, 228–235 (2003).

  16. 16

    Vijn, I. & Govers, F. Agrobacterium tumefaciens mediated transformation of the oomycete plant pathogen Phytophthora infestans. Mol. Plant Pathol. 4, 456–467 (2003).

  17. 17

    Judelson, H. S., Tyler, B. M. & Michelmore, R. W. Transformation of the oomycete pathogen, Phytophthora infestans. Mol. Plant Microbe Interact. 4, 602–607 (1991).

  18. 18

    Kamoun, S., Van West, P., Vleshouwers, V. G. A. A., De Groot, K. E. & Govers, F. Resistance of Nicotiana benthamiana to Phytophthora infestans is mediated by the recognition of the elicitor protein INF1. Plant Cell 10, 1413–1425 (1998).

  19. 19

    Whisson, S. C. et al. Physical mapping across an avirulence locus of Phytophthora infestans using a highly representative, large-insert bacterial artificial chromosome library. Mol. Genet. Genomics 266, 289–295 (2001).

  20. 20

    Randall, T. A., Ah Fong, A. & Judelson, H. Chromosomal heteromorphism and an apparent translocation detected using a BAC contig spanning the mating type locus of Phytophthora infestans. Fungal Genet. Biol. 38, 75–84 (2003).

  21. 21

    Randall, T. A. et al. Large-scale gene discovery in the oomycete Phytophthora infestans reveals likely components of phytopathogenicity shared with true fungi. Mol. Plant Microbe Interact. (in the press). The most recent characterization of the Phytophthora transcriptome, including links to databases of ESTs from P. infestans and P. sojae.

  22. 22

    Kamoun, S., Hraber, P., Sobral, B., Nuss, D. & Govers, F. Initial assessment of gene diversity for the oomycete pathogen Phytophthora infestans based on expressed sequences. Fungal Genet. Biol. 28, 94–106 (1999).

  23. 23

    Qutob, D., Hraber, P. T., Sobral, B. W. S. & Gijzen, M. Comparative analysis of expressed sequences in Phytophthora sojae. Plant Physiol. 123, 243–253 (2000).

  24. 24

    Skalamera, D., Wasson, A. P. & Hardham, A. R. Genes expressed in zoospores of Phytophthora nicotianae. Mol. Genet. Genomics 270, 549–557 (2004).

  25. 25

    Shan, W. -X., Marshall, J. S. & Hardham, A. R. Gene expression in germinated cysts of Phytophthora nicotianae. Mol. Plant Pathol. 5, 317–330 (2004).

  26. 26

    Moy, P., Qutob, D., Chapman, B. P., Atkinson, I. & Gijzen, M. Patterns of gene expression upon infection of soybean plants by Phytophthora sojae. Mol. Plant Microbe Interact. 17, 1051–1062 (2004).

  27. 27

    Hardham, A. R. & Hyde, G. J. Asexual sporulation in the oomycetes. Adv. Bot. Res. 24, 353–398 (1997). A comprehensive review on the biology and development of sporangia within the oomycete group, from the perspective of the field's leading cell biologist.

  28. 28

    Fry, W. E. Principles of Plant Disease Management (Academic Press, New York, 1982).

  29. 29

    Ribeiro, O. K. in Phytophthora: its Biology, Taxonomy, Ecology and Pathology (eds Erwin, D. C., Bartnicki-Garcia, S. & Tsao, P. H.) 55–70 (APS Press, St Paul, Minnesota, 1983).

  30. 30

    Aylor, D. E. Spread of plant disease on a continental scale: role of aerial dispersal of pathogens. Ecology 84, 1989–1997 (2003).

  31. 31

    Gisi, U., Schwinn, F. J. & Oertli, J. J. Dynamics of indirect germination in Phytophthora cactorum sporangia. Trans. Br. Mycol. Soc. 72, 437–446 (1979).

  32. 32

    Ambikapathy, J., Marshall, J. S., Hocart, C. H. & Hardham, A. R. The role of proline in osmoregulation in Phytophthora nicotianae. Fungal Genet. Biol. 35, 287–299 (2002).

  33. 33

    Tyler, B. M. Molecular basis of recognition between Phytophthora pathogens and their hosts. Annu. Rev. Phytopathol. 40, 137–167 (2002).

  34. 34

    Deacon, J. W. & Donaldson, S. P. Molecular recognition in the homing responses of zoosporic fungi, with special reference to Pythium and Phytophthora. Mycol. Res. 97, 1153–1171 (1993). A description of the physiology of zoospore taxis and germ-tube tropism, with emphasis on signalling by calcium and other ions.

  35. 35

    Morris, P. F. & Ward, E. W. B. Chemoattraction of zoospores of the soybean pathogen Phytophthora sojae by isoflavones. Physiol. Mol. Plant Pathol. 40, 17–22 (1992).

  36. 36

    Reid, B., Morris, B. M. & Gow, N. A. R. Calcium-dependent, genus-specific, autoaggregation of zoospores of phytopathogenic fungi. Exp. Mycol. 19, 202–213 (1995).

  37. 37

    van West, P., et al. Oomycete plant pathogens use electric fields to target roots. Mol. Plant Microbe Interact. 15, 790–798 (2002). An examination of the relative roles of electrotaxis and chemotaxis in directing zoospores of different oomycete species to plant roots.

  38. 38

    Morris, B. M. & Gow, N. A. R. Mechanism of electrotaxis of zoospores of phytopathogenic fungi. Phytopathology 83, 877–882 (1993).

  39. 39

    Hardham, A. R. The cell biology behind Phytophthora pathogenicity. Australas. Plant Pathol. 30, 91–98 (2001).

  40. 40

    Bircher, U. & Hohl, H. R. Environmental signalling during induction of appressorium formation in Phytophthora. Mycol. Res. 101, 395–402 (1997).

  41. 41

    Hohl, H. R. & Suter, E. Host–parasite interfaces in a resistant and a susceptible cultivar of Solanum tuberosum inoculated with Phytophthora infestans: leaf tissue. Can. J. Bot. 54, 1956–1970 (1976).

  42. 42

    Carlile, M. J. in Phytophthora: its Biology, Taxonomy, Ecology and Pathology (eds Erwin, D. C., Bartnicki-Garcia, S. & Tsao, P. H.) 95–107 (APS Press, St Paul, Minnesota, 1983).

  43. 43

    Ristaino, J. B. & Gumpertz, M. L. New frontiers in the study of dispersal and spatial analysis of epidemics caused by species in the genus Phytophthora. Annu. Rev. Phytopathol. 38, 541–576 (2000).

  44. 44

    Mizubuti, E. S. G., Aylor, D. E. & Fry, W. E. Survival of Phytophthora infestans sporangia exposed to solar radiation. Phytopathology 90, 78–84 (2000).

  45. 45

    Warren, R. C. & Colhoun, J. Viability of sporangia of Phytophthora infestans in relation to drying. Trans. Br. Mycol. Soc. 64, 73–78 (1975).

  46. 46

    Sleigh, M. A. Cilia and Flagella (Academic Press, New York, 1962).

  47. 47

    Dick, M. W. Fungi, flagella and phylogeny. Mycol. Res. 101, 385–394 (1997).

  48. 48

    de Bary, A. Comparative Morphology and Biology of the Fungi (Clarendon Press, Oxford, 1887).

  49. 49

    Tani, S., Yatzkan, E. & Judelson, H. S. Multiple pathways regulate the induction of genes during zoosporogenesis in Phytophthora infestans. Mol. Plant Microbe Interact. 17, 330–337 (2004). A macroarray study of zoospore-specific gene expression, which integrates the expression of the genes with calcium and phospholipid signalling pathways.

  50. 50

    Kim, K. S. & Judelson, H. S. Sporangia-specific gene expression in the oomyceteous phytopathogen Phytophthora infestans. Eukaryot. Cell 2, 1376–1385 (2003).

  51. 51

    Shepherd, S. J., Van West, P. & Gow, N. A. R. Proteomic analysis of asexual development of Phytophthora palmivora. Mycol. Res. 107, 395–400 (2003).

  52. 52

    Latijnhouwers, M. & Govers, F. A Phytophthora infestans G-protein β-subunit is involved in sporangium formation. Eukaryot. Cell 2, 971–977 (2003).

  53. 53

    Latijnhouwers, M., Ligterink, W., Vleeshouwers, V. G. A. A., Van West, P. & Govers, F. A G-α subunit controls zoospore motility and virulence in the potato late blight pathogen Phytophthora infestans. Mol. Microbiol. 51, 925–936 (2004). Shows how gene silencing can be used to dissect signalling mechanisms in the spore pathway, and includes pictures and videos of normal and mutant patterns of swimming and chemotaxis.

  54. 54

    Marshall, J. S., Wilkinson, J. M., Moore, T. & Hardham, A. R. Structure and expression of the genes encoding proteins resident in large peripheral vesicles of Phytophthora cinnamomi zoospores. Protoplasma 215, 226–239 (2001).

  55. 55

    Fabritius, A. L. & Judelson, H. S. A mating-induced protein of Phytophthora infestans is a member of a family of elicitors with divergent structures and stage-specific patterns of expression. Mol. Plant Microbe Interact. 16, 926–935 (2003).

  56. 56

    Goernhardt, B., Rouhara, I. & Schmelzer, E. Cyst germination proteins of the potato pathogen Phytophthora infestans share homology with human mucins. Mol. Plant Microbe Interact. 13, 32–42 (2000).

  57. 57

    Lagow, E., DeSouza, M. M. & Carson, D. D. Mammalian reproductive tract mucins. Hum. Reprod. Update 5, 280–292 (1999).

  58. 58

    Judelson, H. S. & Roberts, S. Novel protein kinase induced during sporangial cleavage in the oomycete Phytophthora infestans. Eukaryot. Cell 1, 687–695 (2002).

  59. 59

    Ah Fong, A. & Judelson, H. S. Cell-cycle regulator Cdc14 is expressed during sporulation but not hyphal growth in the fungus-like oomycete Phytophthora infestans. Mol. Microbiol. 50, 487–494 (2003). An example of the use of gene silencing to study a sporulation-associated gene, and how reporter genes can help study patterns of development.

  60. 60

    Tian, Q. E. A. Integrated genomic and proteomic analyses of gene expression in mammalian cells. Mol. Cell. Proteomics 3, 960–969 (2005).

  61. 61

    Griffin, T. J. et al. Complementary profiling of gene expression at the transcriptome and proteome levels in Saccharomyces cerevisiae. Mol. Cell. Proteomics 1, 323–333 (2002).

  62. 62

    Penington, C. J., Iser, J. R., Grant, B. R. & Gayler, K. R. Role of RNA and protein synthesis in stimulated germination of zoospores of the pathogenic fungus Phytophthora palmivora. Exp. Mycol. 13, 158–168 (1989).

  63. 63

    Clark, M. C., Melanson, D. L. & Page, O. T. Purine metabolism and differential inhibition of spore germination in Phytophthora infestans. Can. J. Microbiol. 24, 1032–1038 (1978).

  64. 64

    Maltese, C. E., Conigliaro, G. & Shaw, D. S. The development of sporangia of Phytophthora infestans. Mycol. Res. 99, 1175–1181 (1995). An analysis of sporangia development, with emphasis on nuclear behaviour. Also speculates on host and environmental factors that coordinate daily cycles of sporulation that occur in natural pathosystems.

  65. 65

    Cvitanich, C. & Judelson, H. S. A gene expressed during sexual and asexual sporulation in Phytophthora infestans is a member of the Puf family of translational regulators. Eukaryot. Cell 2, 465–473 (2003).

  66. 66

    Tani, S., Kim, K. S. & Judelson, H. S. A cluster of NIF transcriptional regulators with divergent patterns of spore-specific expression in Phytophthora infestans. Fungal Genet. Biol. (in the press).

  67. 67

    Axelrod, D. E., Gealt, M. & Pastushok, M. Gene control of developmental competence in Aspergillus nidulans. Dev. Biol. 34, 9–15 (1973).

  68. 68

    Kasahara, S. & Nuss, D. L. Targeted disruption of a fungal G-protein β-subunit gene results in increased vegetative growth but reduced virulence. Mol. Plant Microbe Interact. 10, 984–993 (1997).

  69. 69

    Parisi, M. & Lin, H. Translational repression: a duet of Nanos and Pumilio. Curr. Biol. 10, R81–R83 (2000).

  70. 70

    Nakahata, S. et al. Biochemical identification of Xenopus Pumilio as a sequence-specific cyclin B1 mRNA-binding protein that physically interacts with a Nanos homolog, Xcat-2, and a cytoplasmic polyadenylation element-binding protein. J. Biol. Chem. 276, 20945–20953 (2001).

  71. 71

    McCollum, D. & Gould, K. L. Timing is everything: regulation of mitotic exit and cytokinesis by the MEN and SIN. Trends Cell Biol. 11, 89–95 (2001).

  72. 72

    Li, L., Ernsting, B. R., Wishart, M. J., Lohse, D. L. & Dixon, J. E. A family of putative tumor suppressors is structurally and functionally conserved in humans and yeast. J. Biol. Chem. 272, 29403–29406 (1997).

  73. 73

    Whittaker, S. L., Shattock, R. C. & Shaw, D. S. The duplication cycle and DAPI-DNA contents in nuclei of germinating zoospore cysts of Phytophthora infestans. Mycol. Res. 96, 355–358 (1992).

  74. 74

    Bigot, J. & Boucaud, J. Effects of Ca-signalling inhibitors on short-term cold-acclimation of hydraulic conductivity in roots of Brassica rapa plants. J. Plant Physiol. 157, 7–12 (2000).

  75. 75

    Connolly, M. S., Williams, N., Heckman, C. A. & Morris, P. F. Soybean isoflavones trigger a calcium influx in Phytophthora sojae. Fungal Genet. Biol. 28, 6–11 (1999).

  76. 76

    Bircher, U. & Hohl, H. R. A role for calcium in appressorium induction in Phytophthora palmivora. Bot. Helv. 109, 55–65 (1999).

  77. 77

    Warburton, A. J. & Deacon, J. W. Transmembrane Ca2+ fluxes associated with zoospore encystment and cyst germination by the phytopathogen Phytophthora parasitica. Fungal Genet. Biol. 25, 54–62 (1998).

  78. 78

    Latijnhouwers, M., Munnik, T. & Govers, F. Phospholipase D in Phytophthora infestans and its role in zoospore encystment. Mol. Plant Microbe Interact. 15, 939–946 (2002).

  79. 79

    Senchou, V. et al. High affinity recognition of a Phytophthora protein by Arabidopsis via an RGD motif. Cell. Mol. Life Sci. 61, 502–509 (2004).

  80. 80

    Mitchell, H. J., Kovac, K. A. & Hardham, A. R. Characterization of Phytophthora nicotiana zoospore and cyst membrane proteins. Mycol. Res. 106, 1211–1223 (2002).

  81. 81

    McLeod, A., Smart, C. D. & Fry, W. E. Characterization of 1,3-β-glucanase and 1,3;1,4-β-glucanase genes from Phytophthora infestans. Fungal Genet. Biol. 38, 250–263 (2003).

  82. 82

    Stienen, G. J., Kiers, J. L., Bottinelli, R. & Reggiani, C. Myofibrillar ATPase activity in skinned human skeletal muscle fibres: fibre type and temperature dependence. J. Physiol. 493, 503–519 (1996).

  83. 83

    Holker, U., Ersek, T. & Hofer, M. Changes in ion fluxes and the energy demand during spore development in Phytophthora infestans. Folio Microbiol. 38, 193–200 (1993).

  84. 84

    Bimpong, C. E. Changes in metabolic reserves activities during zoospore motility and cyst germination in Phytophthora palmivora. Can. J. Bot. 53, 1411–1416 (1975).

  85. 85

    Wang, M. C. & Bartnicki-Garcia, S. Novel phosphoglucans from the cytoplasm of Phytophthora palmivora and their selective occurrence in certain life cycle stages. J. Biol. Chem. 248, 4112–4118 (1973).

  86. 86

    Niere, J. O., Griffith, J. M. & Grant, B. R. 31P NMR studies on the effect of phosphite on Phytophthora. J. Gen. Microbiol. 136, 147–156 (1990).

  87. 87

    Dietrich, S. M. C. Presence of polyphosphate of low molecular weight in Zygomycetes. J. Bacteriol. 127, 1408–1413 (1976).

  88. 88

    Pfyffer, G. E., Pfyffer, B. U. & Rast, D. M. The polyol pattern, chemotaxonomy, and phylogeny of the fungi. Sydowia 39, 160–201 (1986).

  89. 89

    Ellington, W. R. Evolution and physiological roles of phosphagen systems. Annu. Rev. Physiol. 63, 289–325 (2001).

  90. 90

    Marshall, J. S., Ashton, A. R., Govers, F. & Hardham, A. R. Isolation and characterization of four genes encoding pyruvate, phosphate dikinase in the oomycete plant pathogen Phytophthora cinnamomi. Curr. Genet. 40, 73–81 (2001).

  91. 91

    Fernandez-Pavia, S. P., Grunwald, N. J., Diaz-Valasis, M., Cadena-Hinojosa, M. & Fry, W. E. Soilborne oospores of Phytophthora infestans in central Mexico survive winter fallow and infect potato plants in the field. Plant Dis. 88, 29–33 (2004).

  92. 92

    Hermansen, A., Hannukkala, A., Naerstad, R. H. & Brurberg, M. B. Variation in populations of Phytophthora infestans in Finland and Norway: mating type, metalaxyl resistance, and virulence phenotype. Plant Pathol. 49, 11–22 (2000).

  93. 93

    Hemmes, D. & Bartnicki-Garcia, S. Electron microscopy of gametangial interaction and oospore development in Phytophthora capsici. Arch. Microbiol. 103, 91–112 (1975).

  94. 94

    Judelson, H. S., Spielman, L. J. & Shattock, R. C. Genetic mapping and non-Mendelian segregation of mating type loci in the oomycete, Phytophthora infestans. Genetics 141, 503–512 (1995).

  95. 95

    Fabritius, A. -L. & Judelson, H. S. Mating-type loci segregate aberrantly in Phytophthora infestans but normally in Phytophthora parasitica: implications for models of mating-type determination. Curr. Genet. 32, 60–65 (1997).

  96. 96

    Van der Lee, T., De Witte, I., Drenth, A., Alfonso, C. & Govers, F. AFLP linkage map of the oomycete Phytophthora infestans. Fungal Genet. Biol. 21, 278–291 (1997).

  97. 97

    Ah Fong, A. & Judelson, H. S. The haT-like DNA transposon DodoPi resides in a cluster of retro and DNA transposons in the stramenopile Phytophthora infestans. Mol. Gen. Genom. 271, 577–585 (2004).

  98. 98

    Judelson, H. S. Genetic and physical variability at the mating type locus of the oomycete, Phytophthora infestans. Genetics 144, 1005–1013 (1996).

  99. 99

    Judelson, H. S. Chromosomal heteromorphism linked to the mating type locus of the oomycete Phytophthora infestans. Mol. Gen. Genet. 252, 155–161 (1996).

  100. 100

    Chern, L. L., Tang, C. S. & Ko, W. H. Chemical characterization of α hormones of Phytophthora parasitica. Bot. Bull. Acad. Sin. 40, 79–85 (1999).

  101. 101

    Ko, W. H. Hormonal heterothallism and homothallism in Phytophthora. Annu. Rev. Phytopathol. 26, 57–73 (1988).

  102. 102

    Judelson, H. S. Expression and inheritance of sexual preference and selfing potential in Phytophthora infestans. Fungal Genet. Biol. 21, 188–197 (1997).

  103. 103

    Barksdale, A. W. Inter-thallic sexual reactions in Achlya, a genus of the aquatic fungi. Am. J. Bot. 47, 14–23 (1960).

  104. 104

    Groves, C. T. & Ristaino, J. B. Commercial fungicide formulations induce in vitro oospore formation and phenotypic change in mating type in Phytophthora infestans. Phytopathology 90, 1201–1208 (2000).

  105. 105

    Fabritius, A. -L., Cvitanich, C. & Judelson, H. S. Stage-specific gene expression during sexual development in Phytophthora infestans. Mol. Microbiol. 45, 1057–1066 (2002).

  106. 106

    Jennings, L. D., Wawrzak, Z., Amorose, D., Schwartz, R. S. & Jordan, D. B. A new potent inhibitor of fungal melanin biosynthesis identified through combinatorial chemistry. Bioorg. Med. Chem. Lett. 9, 2509–2514 (1999).

  107. 107

    Torto, T. A., Rauser, L. & Kamoun, S. The pipg1 gene of the oomycete Phytophthora infestans encodes a fungal-like endopolygalacturonase. Curr. Genet. 40, 385–390 (2002).

  108. 108

    Gotesson, A., Marshall, J. S., Jones, D. A. & Hardham, A. R. Characterization and evolutionary analysis of a large polygalacturonase gene family in the oomycete plant pathogen Phytophthora cinnamomi. Mol. Plant Microbe Interact. 15, 907–921 (2002).

  109. 109

    Rose, J. K. C., Ham, K. -S., Darvill, A. G. & Albersheim, P. Molecular cloning and characterization of glucanase inhibitor proteins: coevolution of a counterdefense mechanism by plant pathogens. Plant Cell 14, 1329–1345 (2002).

  110. 110

    Tian, M., Huitema, E., da Cunha, L., Torto-Alalibo, T. & Kamoun, S. A Kazal-like extracellular serine protease inhibitor from Phytophthora infestans targets the tomato pathogenesis-related protease P69B. J. Biol. Chem. 279, 26370–26377 (2004).

Download references


We thank our colleagues that have helped to develop Phytophthora species into tractable experimental systems. Our work related to the topic has been supported by the US Department of Agriculture National Research Initiative, the National Science Foundation of the United States, Syngenta and the University of California Industry–University Cooperative Research Program.

Author information

Competing interests

The authors declare no competing financial interests.

Correspondence to Howard S. Judelson.

Related links



An organism that feeds on dead organic matter.


A sac-like structure that is capable of converting its cytoplasm into multiple spores.


Motile, wall-less spores, specialized for dispersal.


Non-motile, sexual spores.


Thick-walled asexual reproductive structures that are found in many Phytophthora species, but not Phytophthora infestans.


A specialized hypha that has a sporangium.


In caducous species the sporangia can detach from the hypha for dispersal.


An epidermal pore on a leaf or stem that allows the passage of gases and water vapour.


An opening in the corky skin of plants that enables gas and vapour to move to and from interior tissues.


Non-septate, with nuclei residing in a common cytoplasm.

Rights and permissions

To obtain permission to re-use content from this article visit RightsLink.

About this article

Further reading

Figure 1: Course of infection by Phytophthora infestans.
Figure 2: Stages of the spore cycles of Phytophthora infestans.
Figure 3: Promoter activation during asexual sporulation and germination.
Figure 4: Sex in Phytophthora.