Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Invertebrates as a source of emerging human pathogens

Abstract

Despite their importance, little is known about the origins of many emerging human pathogens. However, given the age and current predominance of invertebrates, it is likely that bacteria—invertebrate interactions are not only a present source of human pathogens but have also shaped their evolution. Pathogens of invertebrate and unicellular organisms represent an extensive reservoir of bacterial strains equipped with virulence factors that evolved to overcome the innate immune responses of their hosts. This reservoir might represent a source of new human pathogenic strains and might also foster the spread of novel virulence factors into existing human commensal or pathogenic bacteria. This article examines the available evidence for this concept by examining pairs of closely related bacteria, one of which is benign, but insect associated, and one of which is a human pathogen.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evolution of the virulence gene pool.
Figure 2: Common themes in insect and mammalian immunity.
Figure 3: Pathogenicity islands encode both insect and mammalian virulence factors.
Figure 4: Making the leap from invertebrates to vertebrates.

Similar content being viewed by others

References

  1. Perry, R. D. & Fetherston, J. D. Yersinia pestis — etiologic agent of plague. Clin. Microbiol. Rev. 10, 35—66 (1997).

    Article  CAS  Google Scholar 

  2. Steere, A. C., Coburn, J. & Glickstein, L. The emergence of Lyme disease. J. Clin. Invest. 113, 1093—1101 (2004).

    Article  CAS  Google Scholar 

  3. Hinnebusch, B. J., Rosso, M. L., Schwan, T. G. & Carniel, E. High-frequency conjugative transfer of antibiotic resistance genes to Yersinia pestis in the flea midgut. Mol. Microbiol. 46, 349—354 (2002).

    Article  CAS  Google Scholar 

  4. Daborn, P. J. et al. A single Photorhabdus gene makes caterpillars floppy (mcf) allows Escherichia coli to persist within and kill insects. Proc. Natl Acad. Sci. USA 99, 10742—10747 (2002).

    Article  CAS  Google Scholar 

  5. Saier, M. H. Jr. Evolution of bacterial type III protein secretion systems. Trends Microbiol. 12, 113—115 (2004).

    Article  CAS  Google Scholar 

  6. Girardin, S. E., Sansonetti, P. J. & Philpott, D. J. Intracellular vs extracellular recognition of pathogens — common concepts in mammals and flies. Trends Microbiol. 10, 193—199 (2002).

    Article  CAS  Google Scholar 

  7. Gillespie, J. P., Kanost, M. R. & Trenczek, T. Biological mediators of insect immunity. Annu. Rev. Entomol. 42, 611—643 (1997).

    Article  CAS  Google Scholar 

  8. Lavine, M. D. & Strand, M. R. Insect hemocytes and their role in immunity. Insect Biochem. Mol. Biol. 32, 1295—1309 (2002).

    Article  CAS  Google Scholar 

  9. Achtman, M. et al. Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc. Natl Acad. Sci. USA 96, 14043—14048 (1999).

    Article  CAS  Google Scholar 

  10. Read, T. D. et al. The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature 423, 81—86 (2003).

    Article  CAS  Google Scholar 

  11. Gerrard, J., Waterfield, N., Vohra, R. & ffrench-Constant, R. Human infection with Photorhabdus asymbiotica: an emerging bacterial pathogen. Microbes Infect. 6, 229—237 (2004).

    Article  CAS  Google Scholar 

  12. Parkhill, J. et al. Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413, 523—527 (2001).

    Article  CAS  Google Scholar 

  13. Duchaud, E. et al. The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nature Biotechnol. 21, 1307—1313 (2003).

    Article  CAS  Google Scholar 

  14. Pocock, M. J., Searle, J. B., Betts, W. B. & White, P. C. Patterns of infection by Salmonella and Yersinia spp. in commensal house mouse (Mus musculus domesticus) populations. J. Appl. Microbiol. 90, 755—760 (2001).

    Article  CAS  Google Scholar 

  15. Casanovas, L., de Simon, M., Ferrer, M. D., Arques, J. & Monzon, G. Intestinal carriage of campylobacters, salmonellas, yersinias and listerias in pigeons in the city of Barcelona. J. Appl. Bacteriol. 78, 11—13 (1995).

    Article  CAS  Google Scholar 

  16. Wren, B. W. The yersiniae — a model genus to study the rapid evolution of bacterial pathogens. Nature Rev. Microbiol. 1, 55—64 (2003).

    Article  CAS  Google Scholar 

  17. Cornelis, G. R. Molecular and cell biology aspects of plague. Proc. Natl Acad. Sci. USA 97, 8778—8783 (2000).

    Article  CAS  Google Scholar 

  18. Lindler, L. E., Plano, G. V., Burland, V., Mayhew, G. F. & Blattner, F. R. Complete DNA sequence and detailed analysis of the Yersinia pestis KIM5 plasmid encoding murine toxin and capsular antigen. Infect. Immun. 66, 5731—5742 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hinnebusch, B. J., Fischer, E. R. & Schwan, T. G. Evaluation of the role of the Yersinia pestis plasminogen activator and other plasmid-encoded factors in temperature-dependent blockage of the flea. J. Infect. Dis. 178, 1406—1415 (1998).

    Article  CAS  Google Scholar 

  20. Hinnebusch, B. J. et al. Role of Yersinia murine toxin in survival of Yersinia pestis in the midgut of the flea vector. Science 296, 733—735 (2002).

    Article  CAS  Google Scholar 

  21. Sodeinde, O. A., Sample, A. K., Brubaker, R. R. & Goguen, J. D. Plasminogen activator/coagulase gene of Yersinia pestis is responsible for degradation of plasmid-encoded outer membrane proteins. Infect. Immun. 56, 2749—2752 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Waterfield, N. R., Bowen, D. J., Fetherston, J. D., Perry, R. D. & ffrench-Constant, R. H. The toxin complex genes of Photorhabdus: a growing gene family. Trends Microbiol. 9, 185—191 (2001).

    Article  CAS  Google Scholar 

  23. Hinnebusch, B. J., Perry, R. D. & Schwan, T. G. Role of the Yersinia pestis hemin storage (hms) locus in the transmission of plague by fleas. Science 273, 367—370 (1996).

    Article  CAS  Google Scholar 

  24. Deng, W. et al. Genome sequence of Yersinia pestis KIM. J. Bacteriol. 184, 4601—4611 (2002).

    Article  CAS  Google Scholar 

  25. Marokhazi, J. et al. Using a DNA microarray to investigate the distribution of insect virulence factors in strains of Photorhabdus bacteria. J. Bacteriol. 185, 4648—4656 (2003).

    Article  CAS  Google Scholar 

  26. Hinchliffe, S. J. et al. Application of DNA microarrays to study the evolutionary genomics of Yersinia pestis and Yersinia pseudotuberculosis. Genome Res. 13, 2018—2029 (2003).

    Article  CAS  Google Scholar 

  27. Stabler, R. A. et al. Construction of a Yersinia pestis microarray. Adv. Exp. Med. Biol. 529, 47—49 (2003).

    Article  Google Scholar 

  28. Sulakvelidze, A. Yersiniae other than Y. enterocolitica, Y. pseudotuberculosis, and Y. pestis: the ignored species. Microbes Infect. 2, 497—513 (2000).

    Article  CAS  Google Scholar 

  29. Hurst, M. R., Glare, T. R., Jackson, T. A. & Ronson, C. W. Plasmid-located pathogenicity determinants of Serratia entomophila, the causal agent of amber disease of grass grub, show similarity to the insecticidal toxins of Photorhabdus luminescens. J. Bacteriol. 182, 5127—5138 (2000).

    Article  CAS  Google Scholar 

  30. Glare, T. R., Corbett, G. E. & Sadler, A. J. Association of a large plasmid with amber disease of the New Zealand grass grub, Costelytra zealandica, caused by Serratia entomophila and Serratia proteamaculans. J. Invertebr. Pathol. 62, 165—170 (1993).

    Article  CAS  Google Scholar 

  31. Darby, C., Hsu, J. W., Ghori, N. & Falkow, S. Caenorhabditis elegans: plague bacteria biofilm blocks food intake. Nature 417, 243—244 (2002).

    Article  CAS  Google Scholar 

  32. Joshua, G. W. et al. A Caenorhabditis elegans model of Yersinia infection: biofilm formation on a biotic surface. Microbiology 149, 3221—3229 (2003).

    Article  CAS  Google Scholar 

  33. Brubaker, R. R. The recent emergence of plague: a process of felonious evolution. Microb. Ecol. April 2004 (doi:10.1007/s00248-003-1022-y).

  34. Liu, J., Berry, R. E. & Blouin, M. S. Identification of symbiotic bacteria (Photorhabdus and Xenorhabdus) from the entomopathogenic nematodes Heterorhabditis marelatus and Steinernema oregonense based on 16S rDNA sequence. J. Invertebr. Pathol. 77, 87—91 (2001).

    Article  CAS  Google Scholar 

  35. Forst, S., Dowds, B., Boemare, N. & Stackebrandt, E. Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Annu. Rev. Microbiol. 51, 47—72 (1997).

    Article  CAS  Google Scholar 

  36. Fischer-Le Saux, M., Mauleon, H., Constant, P., Brunel, B. & Boemare, N. PCR-ribotyping of Xenorhabdus and Photorhabdus isolates from the Caribbean region in relation to the taxonomy and geographic distribution of their nematode hosts. Appl. Environ. Microbiol. 64, 4246—4254 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Peel, M. M. et al. Isolation, identification, and molecular characterization of strains of Photorhabdus luminescens from infected humans in Australia. J. Clin. Microbiol. 37, 3647—3653 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. ffrench-Constant, R. et al. Photorhabdus: towards a functional genomic analysis of a symbiont and pathogen. FEMS Microbiol. Rev. 26, 433—456 (2003).

    Article  CAS  Google Scholar 

  39. Forst, S. & Clarke, D. in Entomopathogenic nematology (ed. Gaugler, R.) 57—77 (CAB International, London, 2002).

    Book  Google Scholar 

  40. Akhurst, R. J. Antibiotic activity of Xenorhabdus spp., bacteria symbiotically associated with insect pathogenic nematodes of the families Heterorhabditidae and Steinernematidae. J. Gen. Microbiol. 128, 3061—3065 (1982).

    CAS  PubMed  Google Scholar 

  41. McInerney, B. V. et al. Biologically active metabolites from Xenorhabdus spp., part 1. Dithiolopyrrolone derivatives with antibiotic activity. J. Nat. Prod. 54, 774—784 (1991).

    Article  CAS  Google Scholar 

  42. McInerney, B. V., Taylor, W. C., Lacey, M. J., Akhurst, R. J. & Gregson, R. P. Biologically active metabolites from Xenorhabdus spp., part 2. Benzopyran-1-one derivatives with gastroprotective activity. J. Nat. Prod. 54, 785—795 (1991).

    Article  CAS  Google Scholar 

  43. Derzelle, S., Duchaud, E., Kunst, F., Danchin, A. & Bertin, P. Identification, characterization, and regulation of a cluster of genes involved in carbapenem biosynthesis in Photorhabdus luminescens. Appl. Environ. Microbiol. 68, 3780—3789 (2002).

    Article  CAS  Google Scholar 

  44. Liu, D. et al. Insect resistance conferred by 283-kDa Photorhabdus luminescens protein TcdA in Arabidopsis thaliana. Nature Biotechnol. 21, 1222—1228 (2003).

    Article  CAS  Google Scholar 

  45. Bowen, D. et al. Insecticidal toxins from the bacterium Photorhabdus luminescens. Science 280, 2129—2132 (1998).

    Article  CAS  Google Scholar 

  46. ffrench-Constant, R. H. et al. A genomic sample sequence of the entomopathogenic bacterium Photorhabdus luminescens W14: potential implications for virulence. Appl. Environ. Microbiol. 66, 3310—3329 (2000).

    Article  CAS  Google Scholar 

  47. Waterfield, N. R., Daborn, P. J. & ffrench-Constant, R. H. Genomic islands in Photorhabdus. Trends Microbiol. 10, 541—545 (2002).

    Article  CAS  Google Scholar 

  48. Gerrard, J. G., McNevin, S., Alfredson, D., Forgan-Smith, R. & Fraser, N. Photorhabdus species: bioluminescent bacteria as emerging human pathogens? Emerg. Infect. Dis. 9, 251—254 (2003).

    Article  Google Scholar 

  49. Nakayama, K., Kanaya, S., Ohnishi, M., Terawaki, Y. & Hayashi, T. T. The complete nucleotide sequence of φCTX, a cytotoxin-converting phage of Pseudomonas aeruginosa: implications for phage evolution and horizontal gene transfer via bacteriophages. Mol. Microbiol. 31, 399—419 (1999).

    Article  CAS  Google Scholar 

  50. Parkhill, J. & Berry, C. Genomics: relative pathogenic values. Nature 423, 23—25 (2003).

    Article  CAS  Google Scholar 

  51. Schnepf, E. et al. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62, 775—806 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Tabashnik, B. E. et al. Insect resistance to transgenic Bt crops: lessons from the laboratory and field. J. Econ. Entomol. 96, 1031—1038 (2003).

    Article  CAS  Google Scholar 

  53. Helgason, E. et al. Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis — one species on the basis of genetic evidence. Appl. Environ. Microbiol. 66, 2627—2630 (2000).

    Article  CAS  Google Scholar 

  54. Chang, Y. H., Shangkuan, Y. H., Lin, H. C. & Liu, H. W. PCR assay of the groEL gene for detection and differentiation of Bacillus cereus group cells. Appl. Environ. Microbiol. 69, 4502—4510 (2003).

    Article  CAS  Google Scholar 

  55. Cherif, A. et al. Bacillus anthracis diverges from related clades of the Bacillus cereus group in 16S—23S ribosomal DNA intergenic transcribed spacers containing tRNA genes. Appl. Environ. Microbiol. 69, 33—40 (2003).

    Article  CAS  Google Scholar 

  56. Cherif, A. et al. Genetic relationship in the 'Bacillus cereus group' by rep-PCR fingerprinting and sequencing of a Bacillus anthracis-specific rep-PCR fragment. J. Appl. Microbiol. 94, 1108—1119 (2003).

    Article  CAS  Google Scholar 

  57. Ezzell, J. W. & Welkos, S. L. The capsule of Bacillus anthracis, a review. J. Appl. Microbiol. 87, 250 (1999).

    Article  CAS  Google Scholar 

  58. Welkos, S. L. Plasmid-associated virulence factors of non-toxigenic (pX01−) Bacillus anthracis. Microb. Pathog. 10, 183—198 (1991).

    Article  CAS  Google Scholar 

  59. Welkos, S. L., Vietri, N. J. & Gibbs, P. H. Non-toxigenic derivatives of the Ames strain of Bacillus anthracis are fully virulent for mice: role of plasmid pXO2 and chromosome in strain-dependent virulence. Microb. Pathog. 14, 381—388 (1993).

    Article  CAS  Google Scholar 

  60. Rasko, D. A. et al. The genome sequence of Bacillus cereus ATCC 10987 reveals metabolic adaptations and a large plasmid related to Bacillus anthracis pXO1. Nucleic Acids Res. 32, 977—988 (2004).

    Article  CAS  Google Scholar 

  61. Bourgogne, A., Drysdale, M., Hilsenbeck, S. G., Peterson, S. N. & Koehler, T. M. Global effects of virulence gene regulators in a Bacillus anthracis strain with both virulence plasmids. Infect. Immun. 71, 2736—2743 (2003).

    Article  CAS  Google Scholar 

  62. Drysdale, M., Bourgogne, A., Hilsenbeck, S. G. & Koehler, T. M. atxA controls Bacillus anthracis capsule synthesis via acpA and a newly discovered regulator, acpB. J. Bacteriol. 186, 307—315 (2004).

    Article  CAS  Google Scholar 

  63. Agaisse, H., Gominet, M., Okstad, O. A., Kolsto, A. B. & Lereclus, D. PlcR is a pleiotropic regulator of extracellular virulence factor gene expression in Bacillus thuringiensis. Mol. Microbiol. 32, 1043—1053 (1999).

    Article  CAS  Google Scholar 

  64. Salamitou, S. et al. The plcR regulon is involved in the opportunistic properties of Bacillus thuringiensis and Bacillus cereus in mice and insects. Microbiology 146, 2825—2832 (2000).

    Article  CAS  Google Scholar 

  65. Lereclus, D., Agaisse, H., Grandvalet, C., Salamitou, S. & Gominet, M. Regulation of toxin and virulence gene transcription in Bacillus thuringiensis. Int. J. Med. Microbiol. 290, 295—299 (2000).

    Article  CAS  Google Scholar 

  66. Mignot, T. et al. The incompatibility between the PlcR- and AtxA-controlled regulons may have selected a nonsense mutation in Bacillus anthracis. Mol. Microbiol. 42, 1189—1198 (2001).

    Article  CAS  Google Scholar 

  67. Gonzalez, J. M. Jr, Brown, B. J. & Carlton, B. C. Transfer of Bacillus thuringiensis plasmids coding for δ-endotoxin among strains of B. thuringiensis and B. cereus. Proc. Natl Acad. Sci. USA 79, 6951—6955 (1982).

    Article  CAS  Google Scholar 

  68. Gonzalez, J. M. Jr, Dulmage, H. T. & Carlton, B. C. Correlation between specific plasmids and δ-endotoxin production in Bacillus thuringiensis. Plasmid 5, 352—365 (1981).

    Article  Google Scholar 

  69. Aronson, A. Sporulation and δ-endotoxin synthesis by Bacillus thuringiensis. Cell. Mol. Life Sci. 59, 417—425 (2002).

    Article  CAS  Google Scholar 

  70. Daborn, P. J., Waterfield, N., Blight, M. A. & ffrench-Constant, R. H. Measuring virulence factor expression by the pathogenic bacterium Photorhabdus luminescens in culture and during insect infection. J. Bacteriol. 183, 5834—5839 (2001).

    Article  CAS  Google Scholar 

  71. Zhou, X., Kaya, H. K., Heungens, K. & Goodrich-Blair, H. Response of ants to a deterrent factor(s) produced by the symbiotic bacteria of entomopathogenic nematodes. Appl. Environ. Microbiol. 68, 6202—6209 (2002).

    Article  CAS  Google Scholar 

  72. Ivanova, N. et al. Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature 423, 87—91 (2003).

    Article  CAS  Google Scholar 

  73. Fedhila, S., Gohar, M., Slamti, L., Nel, P. & Lereclus, D. The Bacillus thuringiensis PlcR-regulated gene inhA2 is necessary, but not sufficient, for virulence. J. Bacteriol. 185, 2820—2825 (2003).

    Article  CAS  Google Scholar 

  74. Margulis, L. et al. The arthromitus stage of Bacillus cereus: intestinal symbionts of animals. Proc. Natl Acad. Sci. USA 95, 1236—1241 (1998).

    Article  CAS  Google Scholar 

  75. Helgason, E., Tourasse, N. J., Meisal, R., Caugant, D. A. & Kolsto, A. B. Multilocus sequence typing scheme for bacteria of the Bacillus cereus group. Appl. Environ. Microbiol. 70, 191—201 (2004).

    Article  CAS  Google Scholar 

  76. Medzhitov, R. & Janeway, C. A. Jr. Decoding the patterns of self and nonself by the innate immune system. Science 296, 298—300 (2002).

    Article  CAS  Google Scholar 

  77. Zaharik, M. L., Gruenheid, S., Perrin, A. J. & Finlay, B. B. Delivery of dangerous goods: type III secretion in enteric pathogens. Int. J. Med. Microbiol. 291, 593—603 (2002).

    Article  CAS  Google Scholar 

  78. Tamayo, R., Ryan, S. S., McCoy, A. J. & Gunn, J. S. Identification and genetic characterization of PmrA-regulated genes and genes involved in polymyxin B resistance in Salmonella enterica serovar Typhimurium. Infect. Immun. 70, 6770—6778 (2002).

    Article  CAS  Google Scholar 

  79. Fujita, T., Matsushita, M. & Endo, Y. The lectin—complement pathway — its role in innate immunity and evolution. Immunol. Rev. 198, 185—202 (2004).

    Article  CAS  Google Scholar 

  80. Kukkonen, M. et al. Lack of O-antigen is essential for plasminogen activation by Yersinia pestis and Salmonella enterica. Mol. Microbiol. 51, 215—225 (2004).

    Article  CAS  Google Scholar 

  81. Kawahara, K., Tsukano, H., Watanabe, H., Lindner, B. & Matsuura, M. Modification of the structure and activity of lipid A in Yersinia pestis lipopolysaccharide by growth temperature. Infect. Immun. 70, 4092—4098 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank various reviewers for helpful comments and ideas in the preparation of this manuscript. Work in our laboratories is funded by the BBSRC, the Wellcome Trust, the Medical Research Council and the DSTL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard H. ffrench-Constant.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

Bacillus anthracis

Bacillus cereus

Bacillus thuringiensis

Caenorhabditis elegans

pADAP

Photorhabdus luminescens

Pseudomonas fluorescens

Pseudomonas syringae

tcaC/tcdB

tccC

Yersinia enterocolitica

Yersinia pestis

Y. pestis CO92 strain

Y. pestis KIM10 strain

FURTHER INFORMATION

Photorhabdus asymbiotica

Yersinia pseudotuberculosis

Wellcome Trust Sanger Institute

Glossary

CHITINASE

The outer skeleton of invertebrates is hardened with chitin. As invertebrates are so numerous on both land and sea, one of the most common enzymes used by bacteria are the chitinases — enzymes that degrade chitin.

ENTOMOPATHOGENIC

Pathogenic to insects.

HAEMOCOEL

In contrast to vertebrates, invertebrate blood systems are open sacs (haemocoels), within which phagocytic cells (haemocytes) are found.

MELANIN ENCAPSULATION PROCESS

As well as being used to clot blood, the melanisation reaction can also be used to trap foreign invaders such as bacteria, which are wrapped in layers of haemocytes and trapped in a melanised capsule to isolate them from the rest of the haemocoel.

PHENOL-OXIDASE

Similar to the human clotting reaction, insects use the melanisation reaction to clot the blood. The final clot is composed of melanin and the final step of the process is mediated by cleavage of the inactive pro-phenyloxidase to the active phenol-oxidase.

SHORT-RANGE SYNTENY

Conservation in the order of gene homologues on the chromosome.

SYMBIONT

Symbiosis and pathogenicity can be viewed as two extremes of one contiuum of interaction between bacteria and their hosts. Photorhabdus spp. are termed obligate pathogens as their life cycle indicates that they must kill the insect host to be taken up again by the nematode vector (and symbiont).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waterfield, N., Wren, B. & ffrench-Constant, R. Invertebrates as a source of emerging human pathogens. Nat Rev Microbiol 2, 833–841 (2004). https://doi.org/10.1038/nrmicro1008

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1008

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing