Microorganisms maintain crowding homeostasis

Article metrics


Macromolecular crowding affects the mobility of biomolecules, protein folding and stability, and the association of macromolecules with each other. Local differences in crowding that arise as a result of subcellular components and supramolecular assemblies contribute to the structural organization of the cytoplasm. In this Opinion article we discuss how macromolecular crowding affects the physicochemistry of the cytoplasm and how this, in turn, affects microbial physiology. We propose that cells maintain the overall concentration of macromolecules within a narrow range and discuss possible mechanisms for achieving crowding homeostasis. In addition, we propose that the term 'homeocrowding' is used to describe the process by which cells maintain relatively constant levels of macromolecules.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: General principles of macromolecular crowding.
Figure 2: Schematic showing the effect of osmotic stress on the volume of a bacterial cell.
Figure 3: Possible mechanisms of crowding homeostasis.


  1. 1

    Ellis, R. J. Macromolecular crowding: obvious but underappreciated. Trends Biochem. Sci. 26, 597–604 (2001).

  2. 2

    Swaminathan, R., Hoang, C. P. & Verkman, A. S. Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion. Biophys. J. 72, 1900–1907 (1997).

  3. 3

    Milo, R. & Phillips, R. Cell Biology by the Numbers (Garland Science, 2015).

  4. 4

    Fisher, J. K. et al. Four-dimensional imaging of E. coli nucleoid organization and dynamics in living cells. Cell 153, 882–895 (2013).

  5. 5

    Zimmerman, S. B. & Trach, S. O. Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. J. Mol. Biol. 222, 599–620 (1991).

  6. 6

    Cayley, S. & Record, M. T. Large changes in cytoplasmic biopolymer concentration with osmolality indicate that macromolecular crowding may regulate protein–DNA interactions and growth rate in osmotically stressed Escherichia coli K-12. J. Mol. Recognit. 17, 488–496 (2004).

  7. 7

    Konopka, M. C. et al. Cytoplasmic protein mobility in osmotically stressed Escherichia coli. J. Bacteriol. 191, 231–237 (2009).

  8. 8

    Boersma, A. J., Zuhorn, I. S. & Poolman, B. A sensor for quantification of macromolecular crowding in living cells. Nat. Methods 12, 227–229 (2015).

  9. 9

    Sochacki, K. A., Shkel, I. A., Record, M. T. & Weisshaar, J. C. Protein diffusion in the periplasm of E. coli under osmotic stress. Biophys. J. 100, 22–31 (2011).

  10. 10

    van den Berg, J. Cellular homeostasis of Escherichia coli probed by super-resolution microscopy. Thesis, Univ. Groningen (2016).

  11. 11

    van der Heide, T. & Poolman, B. ABC transporters: one, two or four extracytoplasmic substrate-binding sites? EMBO Rep. 3, 938–943 (2002).

  12. 12

    Minton, A. P. Excluded volume as a determinant of macromolecular structure and reactivity. Biopolymers 20, 2093–2120 (1981).

  13. 13

    Zimmerman, S. B. & Minton, A. P. Macromolecular crowding: biochemical, biophysical, and physiological consequences. Annu. Rev. Biophys. Biomol. Struct. 22, 27–65 (1993).

  14. 14

    de Vries, R. DNA condensation in bacteria: Interplay between macromolecular crowding and nucleoid proteins. Biochimie 92, 1715–1721 (2010).

  15. 15

    Kim, J. S., Backman, V. & Szleifer, I. Crowding-induced structural alterations of random-loop chromosome model. Phys. Rev. Lett. 106, 168102 (2011).

  16. 16

    Marenduzzo, D., Finan, K. & Cook, P. R. The depletion attraction: an underappreciated force driving cellular organization. J. Cell Biol. 175, 681–686 (2006).

  17. 17

    Soranno, A. et al. Single-molecule spectroscopy reveals polymer effects of disordered proteins in crowded environments. Proc. Natl Acad. Sci. USA 111, 4874–4879 (2014).

  18. 18

    Ralston, G. Effects of “crowding” in protein solutions. J. Chem. Educ. 67, 857 (1990).

  19. 19

    Minton, A. P. The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J. Biol. Chem. 276, 10577–10580 (2001).

  20. 20

    Rivas, G. & Minton, A. P. Macromolecular crowding in vitro, in vivo, and in between. Trends Biochem. Sci. 41, 970–981 (2016).

  21. 21

    Stagg, L., Zhang, S. Q., Cheung, M. S. & Wittung-Stafshede, P. Molecular crowding enhances native structure and stability of α/β protein flavodoxin. Proc. Natl Acad. Sci. USA 104, 18976–18981 (2007).

  22. 22

    Hatters, D. M., Minton, A. P. & Howlett, G. J. Macromolecular crowding accelerates amyloid formation by human apolipoprotein C-II. J. Biol. Chem. 277, 7824–7830 (2002).

  23. 23

    Bosma, H. J., Voordouw, G., De Kok, A. & Veeger, C. Self-association of the pyruvate dehydrogenase complex from Azotobacter vinelandii in the presence of polyethylene glycol. FEBS Lett. 120, 179–182 (1980).

  24. 24

    Gnutt, D. & Ebbinghaus, S. The macromolecular crowding effect — from in vitro into the cell. Biol. Chem. 397, 37–44 (2016).

  25. 25

    Elcock, A. H. Models of macromolecular crowding effects and the need for quantitative comparisons with experiment. Curr. Opin. Struct. Biol. 20, 196–206 (2010).

  26. 26

    Zhou, H. X., Rivas, G. & Minton, A. P. Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu. Rev. Biophys. 37, 375–397 (2008).

  27. 27

    Groen, J. et al. Associative interactions in crowded solutions of biopolymers counteract depletion effects. J. Am. Chem. Soc. 137, 13041–13048 (2015).

  28. 28

    Gao, M. et al. RNA hairpin folding in the crowded cell. Angew. Chem. Int. Ed. 55, 3224–3228 (2016).

  29. 29

    Minton, A. P. How can biochemical reactions within cells differ from those in test tubes? J. Cell Sci. 119, 2863–2869 (2006).

  30. 30

    Vöpel, T. & Makhatadze, G. I. Enzyme activity in the crowded milieu. PLoS ONE 7, e39418 (2012).

  31. 31

    Fuller, R. S., Kaguni, J. M. & Kornberg, A. Enzymatic replication of the origin of the Escherichia coli chromosome. Proc. Natl Acad. Sci. USA 78, 7370–7374 (1981).

  32. 32

    Sokolova, E. et al. Enhanced transcription rates in membrane-free protocells formed by coacervation of cell lysate. Proc. Natl Acad. Sci. USA 110, 11692–11697 (2013).

  33. 33

    Ge, X., Luo, D. & Xu, J. Cell-free protein expression under macromolecular crowding conditions. PLoS ONE 6, e28707 (2011).

  34. 34

    Mossing, M. C. & Record, M. T. Thermodynamic origins of specificity in the lac repressor–operator interaction: adaptability in the recognition of mutant operator sites. J. Mol. Biol. 186, 295–305 (1985).

  35. 35

    Roe, J. H. & Record, M. T. Jr. Regulation of the kinetics of the interaction of Escherichia coli RNA polymerase with the λPR promoter by salt concentration. Biochemistry 24, 4721–4726 (1985).

  36. 36

    Richey, B. et al. Variability of the intracellular ionic environment of Escherichia coli. Differences between in vitro and in vivo effects of ion concentrations on protein–DNA interactions and gene expression. J. Biol. Chem. 262, 7157–7164 (1987).

  37. 37

    Karasawa, A. et al. Physicochemical factors controlling the activity and energy coupling of an ionic strength-gated ATP-binding cassette (ABC) transporter. J. Biol. Chem. 288, 29862–29871 (2013).

  38. 38

    Benton, L. A., Smith, A. E., Young, G. B. & Pielak, G. J. Unexpected effects of macromolecular crowding on protein stability. Biochemistry 51, 9773–9775 (2012).

  39. 39

    Schlesinger, A. P., Wang, Y., Tadeo, X., Millet, O. & Pielak, G. J. Macromolecular crowding fails to fold a globular protein in cells. J. Am. Chem. Soc. 133, 8082–8085 (2011).

  40. 40

    Sarkar, M., Li, C. & Pielak, G. J. Soft interactions and crowding. Biophys. Rev. 5, 187–194 (2013).

  41. 41

    Sarkar, M. & Pielak, G. J. An osmolyte mitigates the destabilizing effect of protein crowding. Protein Sci. 23, 1161–1164 (2014).

  42. 42

    Ignatova, Z. & Gierasch, L. M. Inhibition of protein aggregation in vitro and in vivo by a natural osmoprotectant. Proc. Natl Acad. Sci. USA 103, 13357–13361 (2006).

  43. 43

    Dix, J. A. & Verkman, A. Crowding effects on diffusion in solutions and cells. Annu. Rev. Biophys. 37, 247–263 (2008).

  44. 44

    Puchkov, E. Intracellular viscosity: methods of measurement and role in metabolism. Biochem. (Mosc.) Suppl. Ser. A. 7, 270–279 (2013).

  45. 45

    Konopka, M. C., Weisshaar, J. C. & Record, M. T. Methods of changing biopolymer volume fraction and cytoplasmic solute concentrations for in vivo biophysical studies. Methods Enzymol. 428, 487–504 (2007).

  46. 46

    Mika, J. T. & Poolman, B. Macromolecule diffusion and confinement in prokaryotic cells. Curr. Opin. Biotechnol. 22, 117–126 (2011).

  47. 47

    Elowitz, M. B., Surette, M. G., Wolf, P. E., Stock, J. B. & Leibler, S. Protein mobility in the cytoplasm of Escherichia coli. J. Bacteriol. 181, 197–203 (1999).

  48. 48

    Konopka, M. C., Shkel, I. A., Cayley, S., Record, M. T. & Weisshaar, J. C. Crowding and confinement effects on protein diffusion in vivo. J. Bacteriol. 188, 6115–6123 (2006).

  49. 49

    Golding, I. & Cox, E. C. Physical nature of bacterial cytoplasm. Phys. Rev. Lett. 96, 098102 (2006).

  50. 50

    Klumpp, S., Scott, M., Pedersen, S. & Hwa, T. Molecular crowding limits translation and cell growth. Proc. Natl Acad. Sci. USA 110, 16754–16759 (2013).

  51. 51

    Spitzer, J. J. & Poolman, B. Electrochemical structure of the crowded cytoplasm. Trends Biochem. Sci. 30, 536–541 (2005).

  52. 52

    Spitzer, J. & Poolman, B. The role of biomacromolecular crowding, ionic strength, and physicochemical gradients in the complexities of life's emergence. Microbiol. Mol. Biol. Rev. 73, 371–388 (2009).

  53. 53

    Harold, F. M. Molecules into cells: specifying spatial architecture. Microbiol. Mol. Biol. Rev. 69, 544–564 (2005).

  54. 54

    Mathews, C. K. The cell-bag of enzymes or network of channels? J. Bacteriol. 175, 6377–6381 (1993).

  55. 55

    Srere, P. A. The metabolon. Trends Biochem. Sci. 10, 109–110 (1985).

  56. 56

    Norris, V. et al. Functional taxonomy of bacterial hyperstructures. Microbiol. Mol. Biol. Rev. 71, 230–253 (2007).

  57. 57

    O'Connell, J. D., Zhao, A., Ellington, A. D. & Marcotte, E. M. Dynamic reorganization of metabolic enzymes into intracellular bodies. Annu. Rev. Cell Dev. Biol. 28, 89–111 (2012).

  58. 58

    Petrovska, I. et al. Filament formation by metabolic enzymes is a specific adaptation to an advanced state of cellular starvation. eLife 3, e02409 (2014).

  59. 59

    Weber, S. C. & Brangwynne, C. P. Getting RNA and protein in phase. Cell 149, 1188–1191 (2012).

  60. 60

    Di Rienzo, C., Piazza, V., Gratton, E., Beltram, F. & Cardarelli, F. Probing short-range protein Brownian motion in the cytoplasm of living cells. Nat. Commun. 5, 5891 (2014).

  61. 61

    Spitzer, J. & Poolman, B. How crowded is the prokaryotic cytoplasm? FEBS Lett. 587, 2094–2098 (2013).

  62. 62

    Bakshi, S., Siryaporn, A., Goulian, M. & Weisshaar, J. C. Superresolution imaging of ribosomes and RNA polymerase in live Escherichia coli cells. Mol. Microbiol. 85, 21–38 (2012).

  63. 63

    Sanamrad, A. et al. Single-particle tracking reveals that free ribosomal subunits are not excluded from the Escherichia coli nucleoid. Proc. Natl Acad. Sci. USA 111, 11413–11418 (2014).

  64. 64

    Mika, J. T., van den Bogaart, G., Veenhoff, L., Krasnikov, V. & Poolman, B. Molecular sieving properties of the cytoplasm of Escherichia coli and consequences of osmotic stress. Mol. Microbiol. 77, 200–207 (2010).

  65. 65

    Mika, J. T., Schavemaker, P. E., Krasnikov, V. & Poolman, B. Impact of osmotic stress on protein diffusion in Lactococcus lactis. Mol. Microbiol. 94, 857–870 (2014).

  66. 66

    van den Bogaart, G., Hermans, N., Krasnikov, V. & Poolman, B. Protein mobility and diffusive barriers in Escherichia coli: consequences of osmotic stress. Mol. Microbiol. 64, 858–871 (2007).

  67. 67

    Parry, B. R. et al. The bacterial cytoplasm has glass-like properties and is fluidized by metabolic activity. Cell 156, 183–194 (2014).

  68. 68

    Munder, M. C. et al. A pH-driven transition of the cytoplasm from a fluid to a solid-like state promotes entry into dormancy. eLife 5, e09347 (2016).

  69. 69

    Joyner, R. P. et al. A glucose-starvation response regulates the diffusion of macromolecules. eLife 5, e09376 (2016).

  70. 70

    Vazquez, A. Optimal cytoplasmatic density and flux balance model under macromolecular crowding effects. J. Theor. Biol. 264, 356–359 (2010).

  71. 71

    Bennett, B. D. et al. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat. Chem. Biol. 5, 593–599 (2009).

  72. 72

    Dill, K. A., Ghosh, K. & Schmit, J. D. Physical limits of cells and proteomes. Proc. Natl Acad. Sci. USA 108, 17876–17882 (2011).

  73. 73

    Cayley, D. S., Guttman, H. J. & Record, M. T. Biophysical characterization of changes in amounts and activity of Escherichia coli cell and compartment water and turgor pressure in response to osmotic stress. Biophys. J. 78, 1748–1764 (2000).

  74. 74

    Schaechter, M., Maaløe, O. & Kjeldgaard, N. Dependency on medium and temperature on cell size and chemical composition during balanced growth of Salmonella typhimurium. J. Gen. Microbiol. 19, 592–606 (1958).

  75. 75

    Kubitschek, H. E., Baldwin, W. W., Schroeter, S. J. & Graetzer, R. Independence of buoyant cell density and growth rate in Escherichia coli. J. Bacteriol. 158, 296–299 (1984).

  76. 76

    Schmidt, A. et al. The quantitative and condition-dependent Escherichia coli proteome. Nat. Biotechnol. 34, 104–110 (2016).

  77. 77

    Booth, I. R. Bacterial mechanosensitive channels: progress towards an understanding of their roles in cell physiology. Curr. Opin. Microbiol. 18, 16–22 (2014).

  78. 78

    Buda, R. et al. Dynamics of Escherichia coli's passive response to a sudden decrease in external osmolarity. Proc. Natl Acad. Sci. USA 113, E5838–E5846 (2016).

  79. 79

    Pilizota, T. & Shaevitz, J. W. Fast, multiphase volume adaptation to hyperosmotic shock by Escherichia coli. PLoS ONE 7, e35205 (2012).

  80. 80

    Rojas, E., Theriot, J. A. & Huang, K. C. Response of Escherichia coli growth rate to osmotic shock. Proc. Natl Acad. Sci. USA 111, 7807–7812 (2014).

  81. 81

    Poolman, B. et al. How do membrane proteins sense water stress? Mol. Microbiol. 44, 889–902 (2002).

  82. 82

    Wood, J. M. Bacterial responses to osmotic challenges. J. Gen. Physiol. 145, 381–388 (2015).

  83. 83

    Wang, J. D. & Levin, P. A. Metabolism, cell growth and the bacterial cell cycle. Nat. Rev. Microbiol. 7, 822–827 (2009).

  84. 84

    Zhou, Y. et al. Carbon catabolite repression correlates with the maintenance of near invariant molecular crowding in proliferating E. coli cells. BMC Syst. Biol. 7, 138 (2013).

  85. 85

    Vazquez, A. & Oltvai, Z. N. Macromolecular crowding explains overflow metabolism in cells. Sci. Rep. 6, 31007 (2016).

  86. 86

    Levin, P. A. & Angert, E. R. Small but mighty: cell size and bacteria. Cold Spring Harb. Perspect. Biol. 7, a019216 (2015).

  87. 87

    Basan, M. et al. Inflating bacterial cells by increased protein synthesis. Mol. Syst. Biol. 11, 836 (2015).

  88. 88

    van der Heide, T. & Poolman, B. Osmoregulated ABC-transport system of Lactococcus lactis senses water stress via changes in the physical state of the membrane. Proc. Natl Acad. Sci. USA 97, 7102–7106 (2000).

  89. 89

    Peter, H., Weil, B., Burkovski, A., Kramer, R. & Morbach, S. Corynebacterium glutamicum is equipped with four secondary carriers for compatible solutes: identification, sequencing, and characterization of the proline/ectoine uptake system, ProP, and the ectoine/proline/glycine betaine carrier, EctP. J. Bacteriol. 180, 6005–6012 (1998).

  90. 90

    Biemans-Oldehinkel, E., Mahmood, N. A. & Poolman, B. A sensor for intracellular ionic strength. Proc. Natl Acad. Sci. USA 103, 10624–10629 (2006).

  91. 91

    Culham, D. E., Shkel, I. A., Record, M. T. Jr. & Wood, J. M. Contributions of Coulombic and Hofmeister effects to the osmotic activation of Escherichia coli transporter ProP. Biochemistry 55, 1301–1313 (2016).

  92. 92

    Culham, D. E., Henderson, J., Crane, R. A. & Wood, J. M. Osmosensor ProP of Escherichia coli responds to the concentration, chemistry, and molecular size of osmolytes in the proteoliposome lumen. Biochemistry 42, 410–420 (2003).

  93. 93

    Rowe, I., Anishkin, A., Kamaraju, K., Yoshimura, K. & Sukharev, S. The cytoplasmic cage domain of the mechanosensitive channel MscS is a sensor of macromolecular crowding. J. Gen. Physiol. 143, 543–557 (2014).

  94. 94

    Colclasure, G. C. & Parker, J. C. Cytosolic protein concentration is the primary volume signal in dog red cells. J. Gen. Physiol. 98, 881–892 (1991).

  95. 95

    Colclasure, G. C. & Parker, J. C. Cytosolic protein concentration is the primary volume signal for swelling-induced [K-Cl] cotransport in dog red cells. J. Gen. Physiol. 100, 1–10 (1992).

  96. 96

    Strange, K. Cellular and Molecular Physiology of Cell Volume Regulation (CRC Press, 1993).

  97. 97

    Zimmerman, S. B. & Harrison, B. Macromolecular crowding increases binding of DNA polymerase to DNA: an adaptive effect. Proc. Natl Acad. Sci. USA 84, 1871–1875 (1987).

  98. 98

    Cheng, X. et al. Basis of protein stabilization by K glutamate: unfavorable interactions with carbon, oxygen groups. Biophys. J. 111, 1854–1865 (2016).

  99. 99

    von Hippel, P. H. Changing the stability of macromolecular surfaces by manipulating the aqueous environment. Biophys. J. 111, 1817–1820 (2016).

  100. 100

    Dinnbier, U., Limpinsel, E., Schmid, R. & Bakker, E. P. Transient accumulation of potassium glutamate and its replacement by trehalose during adaptation of growing cells of Escherichia coli K-12 to elevated sodium chloride concentrations. Arch. Microbiol. 150, 348–357 (1988).

  101. 101

    Dowhan, W. A retrospective: use of Escherichia coli as a vehicle to study phospholipid synthesis and function. Biochim. Biophys. Acta 1831, 471–494 (2013).

  102. 102

    Cayley, S., Lewis, B. A., Guttman, H. J. & Record, M. T. Characterization of the cytoplasm of Escherichia coli K-12 as a function of external osmolarity: implications for protein-DNA interactions in vivo. J. Mol. Biol. 222, 281–300 (1991).

  103. 103

    Gnutt, D., Gao, M., Brylski, O., Heyden, M. & Ebbinghaus, S. Excluded-volume effects in living cells. Angew. Chem. Int. Ed. 54, 2548–2551 (2015).

  104. 104

    Li, G., Burkhardt, D., Gross, C. & Weissman, J. S. Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. Cell 157, 624–635 (2014).

Download references


Work in the laboratories of the authors was funded by the European FP7 Initial Training Network program Network for Integrated Cellular Homeostasis in Escherichia coli (NICHE; to J.v.d.B.), a The Netherlands Organisation for Scientific Research (NWO) Innovational Research Incentives Scheme (VIDI) grant (to A.J.B.), and a NWO TOPGO (L.10.060) and a European Research Council (ERC) Advanced Grant (ABCVolume) to B.P. The authors thank M. Heinemann, J.-W. Veening and J. Spitzer for the critical reading of this manuscript. The authors also thank M. Guskova for help with the artwork.

Author information

Correspondence to Bert Poolman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (box)

Complex Vectorial Chemistry (PDF 111 kb)

Supplementary information S2 (figure)

Diffusion coefficient of cytoplasmic GFP (DGFP) in E. coli (orange) and L. lactis (green) as a function of cell volume. Volume reduction was achieved by osmotic upshift. (PDF 111 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

van den Berg, J., Boersma, A. & Poolman, B. Microorganisms maintain crowding homeostasis. Nat Rev Microbiol 15, 309–318 (2017) doi:10.1038/nrmicro.2017.17

Download citation

Further reading