Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Protein export through the bacterial Sec pathway

Key Points

  • More than one-third of the bacterial proteome is destined for the cell envelope. The general secretory (Sec) pathway is the ubiquitous, central and essential protein export pathway into, and through, the plasma membrane.

  • Nascent exported chains that emerge from the ribosome are scanned by chaperones and export-specific proteins that select them from cytoplasmic residents and direct them for either co-translational or post-translational export through the SecYEG channel.

  • Kinetic competition between the scanning factors that recognize exported protein signals selects for the export route.

  • SecA, the ATPase motor of post-translational export, 'proof-reads' its substrates, which are possibly already at the ribosome, and assembles with SecYEG into the translocase holoenzyme.

  • SecA is allosterically activated by amino-terminal signals that are present on exported proteins and uses its highly regulated quaternary and intraprotomeric dynamics for chemo–mechanical coupling that drives protein translocation.

  • SecYEG is regulated by its cytoplasmic partners, ribosomes and SecA, and is activated by exported proteins for either vectorial or lateral translocation.

Abstract

The general secretory (Sec) pathway comprises an essential, ubiquitous and universal export machinery for most proteins that integrate into, or translocate through, the plasma membrane. Sec exportome polypeptides are synthesized as pre-proteins that have cleavable signal peptides fused to the exported mature domains. Recent advances have re-evaluated the interaction networks of pre-proteins with chaperones that are involved in pre-protein targeting from the ribosome to the SecYEG channel and have identified conformational signals as checkpoints for high-fidelity targeting and translocation. The recent structural and mechanistic insights into the channel and its ATPase motor SecA are important steps towards the elucidation of the allosteric crosstalk that mediates secretion. In this Review, we discuss recent biochemical, structural and mechanistic insights into the consecutive steps of the Sec pathway — sorting and targeting, translocation and release — in both co-translational and post-translational modes of export. The architecture and conformational dynamics of the SecYEG channel and its regulation by ribosomes, SecA and pre-proteins are highlighted. Moreover, we present conceptual models of the mechanisms and energetics of the Sec-pathway dependent secretion process in bacteria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bacterial protein export.
Figure 2: Structures of the sorting and targeting factors.
Figure 3: Architecture and dynamics of the Sec translocase components.
Figure 4: Conformational states of the SecYEG channel.
Figure 5: Model of Sec-dependent post-translational translocation and pre-protein maturation and release factors.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Orfanoudaki, G. & Economou, A. Proteome-wide subcellular topologies of E. coli polypeptides database (STEPdb). Mol. Cell. Proteomics 13, 3674–3687 (2014).

    CAS  Google Scholar 

  2. Chatzi, K. E., Sardis, M. F., Karamanou, S. & Economou, A. Breaking on through to the other side: protein export through the bacterial Sec system. Biochem. J. 449, 25–37 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. De Geyter, J. et al. Protein folding in the cell envelope of Escherichia coli. Nat. Microbiol. 1, 16107 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Van den Berg, B. et al. X-Ray structure of a protein-conducting channel. Nature 427, 36–44 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Prabudiansyah, I. & Driessen, A. J. The canonical and accessory Sec system of Gram-positive bacteria. Curr. Top. Microbiol. Immunol. http://dx.doi.org/10.1007/82_2016_9 (2016).

  6. Schulze, R. J. et al. Membrane protein insertion and proton-motive-force-dependent secretion through the bacterial holo-translocon SecYEG–SecDF–YajC–YidC. Proc. Natl Acad. Sci. USA 111, 4844–4849 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Duong, F. & Wickner, W. Distinct catalytic roles of the SecYE, SecG and SecDFyajC subunits of preprotein translocase holoenzyme. EMBO J. 16, 2756–2768 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sachelaru, I. et al. YidC occupies the lateral gate of the SecYEG translocon and is sequentially displaced by a nascent membrane protein. J. Biol. Chem. 288, 16295–16307 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Komar, J. et al. Membrane protein insertion and assembly by the bacterial holo-translocon SecYEG–SecDF–YajC–YidC. Biochem. J. 473, 3341–3354 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. von Heijne, G. The signal peptide. J. Membr. Biol. 115, 195–201 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. Akopian, D., Shen, K., Zhang, X. & Shan, S. O. Signal recognition particle: an essential protein-targeting machine. Annu. Rev. Biochem. 82, 693–721 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chatzi, K. E., Sardis, M. F., Economou, A. & Karamanou, S. SecA-mediated targeting and translocation of secretory proteins. Biochim. Biophys. Acta 1843, 1466–1474 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Hartl, F. U., Lecker, S., Schiebel, E., Hendrick, J. P. & Wickner, W. The binding cascade of SecB to SecA to SecY/E mediates preprotein targeting to the E. coli plasma membrane. Cell 63, 269–279 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Huber, D. et al. SecA interacts with ribosomes in order to facilitate posttranslational translocation in bacteria. Mol. Cell 41, 343–353 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Singh, R. et al. Cryo-electron microscopic structure of SecA protein bound to the 70S ribosome. J. Biol. Chem. 289, 7190–7199 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schiebel, E., Driessen, A. J., Hartl, F. U. & Wickner, W. ΔμH+ and ATP function at different steps of the catalytic cycle of preprotein translocase. Cell 64, 927–939 (1991). This study examines the process of segmental pre-protein translocation, which is driven by SecA-mediated ATP binding and hydrolysis, and its interconnection to PMF-driven parts of the export cycle.

    Article  CAS  PubMed  Google Scholar 

  17. Lill, R., Dowhan, W. & Wickner, W. The ATPase activity of SecA is regulated by acidic phospholipids, SecY, and the leader and mature domains of precursor proteins. Cell 60, 271–280 (1990).

    Article  CAS  PubMed  Google Scholar 

  18. Ismail, N., Hedman, R., Linden, M. & von Heijne, G. Charge-driven dynamics of nascent-chain movement through the SecYEG translocon. Nat. Struct. Mol. Biol. 22, 145–149 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brundage, L., Hendrick, J. P., Schiebel, E., Driessen, A. J. & Wickner, W. The purified E. coli integral membrane protein SecY/E is sufficient for reconstitution of SecA-dependent precursor protein translocation. Cell 62, 649–657 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. Dalbey, R. E., Kuhn, A., Zhu, L. & Kiefer, D. The membrane insertase YidC. Biochim. Biophys. Acta 1843, 1489–1496 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Auclair, S. M., Bhanu, M. K. & Kendall, D. A. Signal peptidase I: cleaving the way to mature proteins. Protein Sci. 21, 13–25 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Oh, E. et al. Selective ribosome profiling reveals the cotranslational chaperone action of trigger factor in vivo. Cell 147, 1295–1308 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gouridis, G., Karamanou, S., Gelis, I., Kalodimos, C. G. & Economou, A. Signal peptides are allosteric activators of the protein translocase. Nature 462, 363–367 (2009). This study dissects the roles that pre-protein signal peptides and mature domains have in SecA-dependent translocation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Saio, T., Guan, X., Rossi, P., Economou, A. & Kalodimos, C. G. Structural basis for protein antiaggregation activity of the trigger factor chaperone. Science 344, 1250494 (2014). This study provides an NMR-based structural visualization of an unfolded pre-protein in complex with the chaperone trigger factor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mapa, K., Tiwari, S., Kumar, V., Jayaraj, G. G. & Maiti, S. Information encoded in non-native states drives substrate–chaperone pairing. Structure 20, 1562–1573 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Jomaa, A., Boehringer, D., Leibundgut, M. & Ban, N. Structures of the E. coli translating ribosome with SRP and its receptor and with the translocon. Nat. Commun. 7, 10471 (2016). This study provides structural evidence for several distinct steps of SRP-mediated RNC targeting to the Sec channel and provides essential conformational changes that regulate co-translational export.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hainzl, T. & Sauer-Eriksson, A. E. Signal-sequence induced conformational changes in the signal recognition particle. Nat. Commun. 6, 7163 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shen, K., Arslan, S., Akopian, D., Ha, T. & Shan, S. O. Activated GTPase movement on an RNA scaffold drives co-translational protein targeting. Nature 492, 271–275 (2012). This article provides a biophysical demonstration that RNA mediates SRP–FtsY movements, which are regulated by their GTPase cycles, the ribosome and the Sec channel for co-translational targeting.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang, X., Rashid, R., Wang, K. & Shan, S. O. Sequential checkpoints govern substrate selection during cotranslational protein targeting. Science 328, 757–760 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bornemann, T., Holtkamp, W. & Wintermeyer, W. Interplay between trigger factor and other protein biogenesis factors on the ribosome. Nat. Commun. 5, 4180 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Bradshaw, N., Neher, S. B., Booth, D. S. & Walter, P. Signal sequences activate the catalytic switch of SRP RNA. Science 323, 127–130 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kusters, I. et al. Quaternary structure of SecA in solution and bound to SecYEG probed at the single molecule level. Structure 19, 430–439 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Corey, R. A. et al. Unlocking the bacterial SecY translocon. Structure 24, 518–527 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ge, Y., Draycheva, A., Bornemann, T., Rodnina, M. V. & Wintermeyer, W. Lateral opening of the bacterial translocon on ribosome binding and signal peptide insertion. Nat. Commun. 5, 5263 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hou, B., Lin, P. J. & Johnson, A. E. Membrane protein TM segments are retained at the translocon during integration until the nascent chain cues FRET-detected release into bulk lipid. Mol. Cell 48, 398–408 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Voorhees, R. M. & Hegde, R. S. Structure of the Sec61 channel opened by a signal sequence. Science 351, 88–91 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zimmer, J., Nam, Y. & Rapoport, T. A. Structure of a complex of the ATPase SecA and the protein-translocation channel. Nature 455, 936–943 (2008). This study elucidates the structure of the SecYEG–SecA–nucleotide holoenzyme at 4.5 Å resolution, which provides insights into interacting interfaces and motions.

    Article  CAS  PubMed  Google Scholar 

  38. Trueman, S. F., Mandon, E. C. & Gilmore, R. A gating motif in the translocation channel sets the hydrophobicity threshold for signal sequence function. J. Cell Biol. 199, 907–918 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Taufik, I., Kedrov, A., Exterkate, M. & Driessen, A. J. Monitoring the activity of single translocons. J. Mol. Biol. 425, 4145–4153 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Gogala, M. et al. Structures of the Sec61 complex engaged in nascent peptide translocation or membrane insertion. Nature 506, 107–110 (2014). This paper provides structural evidence for the selective lateral or vectorial opening of the Sec protein-conducting channel for nascent chain membrane insertion or translocation across the plasma membrane.

    Article  CAS  PubMed  Google Scholar 

  41. Gouridis, G. et al. Quaternary dynamics of the SecA motor drive translocase catalysis. Mol. Cell 52, 655–666 (2013). This study details the first in vitro and in vivo identification and characterization of distinct, but interconvertible, successive quaternary SecA states that are correlated to pre-protein translocation, which unifies several proposed models.

    Article  CAS  PubMed  Google Scholar 

  42. Gelis, I. et al. Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR. Cell 131, 756–769 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Karamanou, S. et al. Preprotein-controlled catalysis in the helicase motor of SecA. EMBO J. 26, 2904–2914 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Keramisanou, D. et al. Disorder–order folding transitions underlie catalysis in the helicase motor of SecA. Nat. Struct. Mol. Biol. 13, 594–602 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Bauer, B. W., Shemesh, T., Chen, Y. & Rapoport, T. A. A “push and slide” mechanism allows sequence-insensitive translocation of secretory proteins by the SecA ATPase. Cell 157, 1416–1429 (2014). This article proposes a model that integrates SecA ATP-hydrolysis-driven pushing motions with Brownian forward pre-protein motion during translocation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li, L. et al. Crystal structure of a substrate-engaged SecY protein-translocation channel. Nature 531, 395–399 (2016). This paper provides the first structural snapshot at 3.7 Å resolution of a 'translocating' pre-protein that is trapped inside the channel of the SecYEG–SecA translocase and also details pre-protein–SecY contacts and open channel motions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Parlitz, R. et al. Escherichia coli signal recognition particle receptor FtsY contains an essential and autonomous membrane-binding amphipathic helix. J. Biol. Chem. 282, 32176–32184 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Angelini, S., Deitermann, S. & Koch, H. G. FtsY, the bacterial signal-recognition particle receptor, interacts functionally and physically with the SecYEG translocon. EMBO Rep. 6, 476–481 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Saraogi, I., Akopian, D. & Shan, S. O. Regulation of cargo recognition, commitment, and unloading drives cotranslational protein targeting. J. Cell Biol. 205, 693–706 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kaiser, C. M. et al. Real-time observation of trigger factor function on translating ribosomes. Nature 444, 455–460 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Castanie-Cornet, M. P., Bruel, N. & Genevaux, P. Chaperone networking facilitates protein targeting to the bacterial cytoplasmic membrane. Biochim. Biophys. Acta 1843, 1442–1456 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Sala, A., Bordes, P. & Genevaux, P. Multitasking SecB chaperones in bacteria. Front. Microbiol. 5, 666 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bechtluft, P. et al. Direct observation of chaperone-induced changes in a protein folding pathway. Science 318, 1458–1461 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Hartl, F. U., Bracher, A. & Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature 475, 324–332 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Baars, L. et al. Defining the role of the Escherichia coli chaperone SecB using comparative proteomics. J. Biol. Chem. 281, 10024–10034 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Ullers, R. S., Ang, D., Schwager, F., Georgopoulos, C. & Genevaux, P. Trigger factor can antagonize both SecB and DnaK/DnaJ chaperone functions in Escherichia coli. Proc. Natl Acad. Sci. USA 104, 3101–3106 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Lee, H. C. & Bernstein, H. D. Trigger factor retards protein export in Escherichia coli. J. Biol. Chem. 277, 43527–43535 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Beena, K., Udgaonkar, J. B. & Varadarajan, R. Effect of signal peptide on the stability and folding kinetics of maltose binding protein. Biochemistry 43, 3608–3619 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Adams, H., Scotti, P. A., De Cock, H., Luirink, J. & Tommassen, J. The presence of a helix breaker in the hydrophobic core of signal sequences of secretory proteins prevents recognition by the signal-recognition particle in Escherichia coli. Eur. J. Biochem. 269, 5564–5571 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Hainzl, T., Huang, S., Merilainen, G., Brannstrom, K. & Sauer-Eriksson, A. E. Structural basis of signal-sequence recognition by the signal recognition particle. Nat. Struct. Mol. Biol. 18, 389–391 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Ariosa, A., Lee, J. H., Wang, S., Saraogi, I. & Shan, S. O. Regulation by a chaperone improves substrate selectivity during cotranslational protein targeting. Proc. Natl Acad. Sci. USA 112, E3169–E3178 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Noriega, T. R., Chen, J., Walter, P. & Puglisi, J. D. Real-time observation of signal recognition particle binding to actively translating ribosomes. eLife 3, e04418 (2014).

    Article  PubMed Central  Google Scholar 

  63. Fluman, N., Navon, S., Bibi, E. & Pilpel, Y. mRNA-programmed translation pauses in the targeting of E. coli membrane proteins. eLife 3, e03440 (2014).

    Article  CAS  PubMed Central  Google Scholar 

  64. Pechmann, S., Chartron, J. W. & Frydman, J. Local slowdown of translation by nonoptimal codons promotes nascent-chain recognition by SRP in vivo. Nat. Struct. Mol. Biol. 21, 1100–1105 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Power, P. M., Jones, R. A., Beacham, I. R., Bucholtz, C. & Jennings, M. P. Whole genome analysis reveals a high incidence of non-optimal codons in secretory signal sequences of Escherichia coli. Biochem. Biophys. Res. Commun. 322, 1038–1044 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Nissley, D. A. et al. Accurate prediction of cellular co-translational folding indicates proteins can switch from post- to co-translational folding. Nat. Commun. 7, 10341 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zalucki, Y. M., Shafer, W. M. & Jennings, M. P. Directed evolution of efficient secretion in the SRP-dependent export of TolB. Biochim. Biophys. Acta 1808, 2544–2550 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Merz, F. et al. Molecular mechanism and structure of trigger factor bound to the translating ribosome. EMBO J. 27, 1622–1632 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Huber, D. et al. Use of thioredoxin as a reporter to identify a subset of Escherichia coli signal sequences that promote signal recognition particle-dependent translocation. J. Bacteriol. 187, 2983–2991 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Peterson, J. H., Szabady, R. L. & Bernstein, H. D. An unusual signal peptide extension inhibits the binding of bacterial presecretory proteins to the signal recognition particle, trigger factor, and the SecYEG complex. J. Biol. Chem. 281, 9038–9048 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. del Alamo, M. et al. Defining the specificity of cotranslationally acting chaperones by systematic analysis of mRNAs associated with ribosome–nascent chain complexes. PLoS Biol. 9, e1001100 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhou, Y., Ueda, T. & Muller, M. Signal recognition particle and SecA cooperate during export of secretory proteins with highly hydrophobic signal sequences. PLoS ONE 9, e92994 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Woolhead, C. A., McCormick, P. J. & Johnson, A. E. Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins. Cell 116, 725–736 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Holtkamp, W. et al. Cotranslational protein folding on the ribosome monitored in real time. Science 350, 1104–1107 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Crooke, E., Brundage, L., Rice, M. & Wickner, W. ProOmpA spontaneously folds in a membrane assembly competent state which trigger factor stabilizes. EMBO J. 7, 1831–1835 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hardy, S. J. & Randall, L. L. A kinetic partitioning model of selective binding of nonnative proteins by the bacterial chaperone SecB. Science 251, 439–443 (1991).

    Article  CAS  PubMed  Google Scholar 

  77. Derman, A. I., Puziss, J. W., Bassford, P. J. Jr & Beckwith, J. A signal sequence is not required for protein export in prlA mutants of Escherichia coli. EMBO J. 12, 879–888 (1993). The first paper to demonstrate that mature domains that are missing signal peptides can be exported post-translationally in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Powers, T. & Walter, P. Co-translational protein targeting catalyzed by the Escherichia coli signal recognition particle and its receptor. EMBO J. 16, 4880–4886 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zopf, D., Bernstein, H. D., Johnson, A. E. & Walter, P. The methionine-rich domain of the 54 kd protein subunit of the signal recognition particle contains an RNA binding site and can be crosslinked to a signal sequence. EMBO J. 9, 4511–4517 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lam, V. Q., Akopian, D., Rome, M., Henningsen, D. & Shan, S. O. Lipid activation of the signal recognition particle receptor provides spatial coordination of protein targeting. J. Cell Biol. 190, 623–635 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Guthrie, B. & Wickner, W. Trigger factor depletion or overproduction causes defective cell division but does not block protein export. J. Bacteriol. 172, 5555–5562 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hoffmann, A., Bukau, B. & Kramer, G. Structure and function of the molecular chaperone trigger factor. Biochim. Biophys. Acta 1803, 650–661 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Patzelt, H. et al. Binding specificity of Escherichia coli trigger factor. Proc. Natl Acad. Sci. USA 98, 14244–14249 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Hoffmann, A. et al. Concerted action of the ribosome and the associated chaperone trigger factor confines nascent polypeptide folding. Mol. Cell 48, 63–74 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Martinez-Hackert, E. & Hendrickson, W. A. Promiscuous substrate recognition in folding and assembly activities of the trigger factor chaperone. Cell 138, 923–934 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Dekker, C., de Kruijff, B. & Gros, P. Crystal structure of SecB from Escherichia coli. J. Struct. Biol. 144, 313–319 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Xu, Z., Knafels, J. D. & Yoshino, K. Crystal structure of the bacterial protein export chaperone SecB. Nat. Struct. Biol. 7, 1172–1177 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Bechtluft, P. et al. Tight hydrophobic contacts with the SecB chaperone prevent folding of substrate proteins. Biochemistry 49, 2380–2388 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Huang, C., Rossi, P., Saio, T. & Kalodimos, C. G. Structural basis for the antifolding activity of a molecular chaperone. Nature 537, 202–206 (2016). This paper provides the first high-resolution NMR-based structure of the SecB chaperone together with pre-protein substrates. This structure suggests a holdase or foldase switch of SecB that is dependent on the intrinsic folding and association rates of the substrate.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lilly, A. A., Crane, J. M. & Randall, L. L. Export chaperone SecB uses one surface of interaction for diverse unfolded polypeptide ligands. Protein Sci. 18, 1860–1868 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Knoblauch, N. T. et al. Substrate specificity of the SecB chaperone. J. Biol. Chem. 274, 34219–34225 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Watanabe, M. & Blobel, G. High-affinity binding of Escherichia coli SecB to the signal sequence region of a presecretory protein. Proc. Natl Acad. Sci. USA 92, 10133–10136 (1995).

    Article  CAS  PubMed  Google Scholar 

  93. Fekkes, P., van der Does, C. & Driessen, A. J. The molecular chaperone SecB is released from the carboxy-terminus of SecA during initiation of precursor protein translocation. EMBO J. 16, 6105–6113 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Suo, Y., Hardy, S. J. & Randall, L. L. The basis of asymmetry in the SecA–SecB complex. J. Mol. Biol. 427, 887–900 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Zhou, J. & Xu, Z. Structural determinants of SecB recognition by SecA in bacterial protein translocation. Nat. Struct. Biol. 10, 942–947 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Suo, Y., Hardy, S. J. & Randall, L. L. Orientation of SecA and SecB in complex, derived from disulfide cross-linking. J. Bacteriol. 193, 190–196 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Tang, Y., Pan, X., Chen, Y., Tai, P. C. & Sui, S. F. Dimeric SecA couples the preprotein translocation in an asymmetric manner. PLoS ONE 6, e16498 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hunt, J. F. et al. Nucleotide control of interdomain interactions in the conformational reaction cycle of SecA. Science 297, 2018–2026 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Zimmer, J. & Rapoport, T. A. Conformational flexibility and peptide interaction of the translocation ATPase SecA. J. Mol. Biol. 394, 606–612 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Papanikou, E. et al. Identification of the preprotein binding domain of SecA. J. Biol. Chem. 280, 43209–43217 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Karamanou, S. et al. A molecular switch in SecA protein couples ATP hydrolysis to protein translocation. Mol. Microbiol. 34, 1133–1145 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Bauer, B. W. & Rapoport, T. A. Mapping polypeptide interactions of the SecA ATPase during translocation. Proc. Natl Acad. Sci. USA 106, 20800–20805 (2009).

    Article  PubMed  Google Scholar 

  103. Park, E. & Rapoport, T. A. Preserving the membrane barrier for small molecules during bacterial protein translocation. Nature 473, 239–242 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tam, P. C., Maillard, A. P., Chan, K. K. & Duong, F. Investigating the SecY plug movement at the SecYEG translocation channel. EMBO J. 24, 3380–3388 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Tanaka, Y. et al. Crystal structures of SecYEG in lipidic cubic phase elucidate a precise resting and a peptide-bound state. Cell Rep. 13, 1561–1568 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. Hizlan, D. et al. Structure of the SecY complex unlocked by a preprotein mimic. Cell Rep. 1, 21–28 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Breyton, C., Haase, W., Rapoport, T. A., Kuhlbrandt, W. & Collinson, I. Three-dimensional structure of the bacterial protein-translocation complex SecYEG. Nature 418, 662–665 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Mitra, K. et al. Structure of the E. coli protein-conducting channel bound to a translating ribosome. Nature 438, 318–324 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Park, E. & Rapoport, T. A. Bacterial protein translocation requires only one copy of the SecY complex in vivo. J. Cell Biol. 198, 881–893 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Deville, K. et al. The oligomeric state and arrangement of the active bacterial translocon. J. Biol. Chem. 286, 4659–4669 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Dalal, K., Chan, C. S., Sligar, S. G. & Duong, F. Two copies of the SecY channel and acidic lipids are necessary to activate the SecA translocation ATPase. Proc. Natl Acad. Sci. USA 109, 4104–4109 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. Kedrov, A., Kusters, I., Krasnikov, V. V. & Driessen, A. J. A single copy of SecYEG is sufficient for preprotein translocation. EMBO J. 30, 4387–4397 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Osborne, A. R. & Rapoport, T. A. Protein translocation is mediated by oligomers of the SecY complex with one SecY copy forming the channel. Cell 129, 97–110 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Tsukazaki, T. et al. Conformational transition of Sec machinery inferred from bacterial SecYE structures. Nature 455, 988–991 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhang, B. & Miller, T. F. Hydrophobically stabilized open state for the lateral gate of the Sec translocon. Proc. Natl Acad. Sci. USA 107, 5399–5404 (2010).

    Article  PubMed  Google Scholar 

  116. Sanganna Gari, R. R., Frey, N. C., Mao, C., Randall, L. L. & King, G. M. Dynamic structure of the translocon SecYEG in membrane: direct single molecule observations. J. Biol. Chem. 288, 16848–16854 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Voorhees, R. M., Fernandez, I. S., Scheres, S. H. & Hegde, R. S. Structure of the mammalian ribosome–Sec61 complex to 3.4 Å resolution. Cell 157, 1632–1643 (2014). This study provides cryo-EM structural insights into the regulation of the Sec channel by idle and translating ribosomes at 3.4 Å resolution.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Gumbart, J., Trabuco, L. G., Schreiner, E., Villa, E. & Schulten, K. Regulation of the protein-conducting channel by a bound ribosome. Structure 17, 1453–1464 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bieker, K. L., Phillips, G. J. & Silhavy, T. J. The sec and prl genes of Escherichia coli. J. Bioenerg. Biomembr. 22, 291–310 (1990).

    Article  CAS  PubMed  Google Scholar 

  120. Smith, M. A., Clemons, W. M. Jr., DeMars, C. J. & Flower, A. M. Modeling the effects of prl mutations on the Escherichia coli SecY complex. J. Bacteriol. 187, 6454–6465 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Duong, F. & Wickner, W. The PrlA and PrlG phenotypes are caused by a loosened association among the translocase SecYEG subunits. EMBO J. 18, 3263–3270 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Park, E. et al. Structure of the SecY channel during initiation of protein translocation. Nature 506, 102–106 (2014).

    Article  CAS  PubMed  Google Scholar 

  123. Junne, T., Schwede, T., Goder, V. & Spiess, M. Mutations in the Sec61p channel affecting signal sequence recognition and membrane protein topology. J. Biol. Chem. 282, 33201–33209 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Kim, D. M., Zheng, H., Huang, Y. J., Montelione, G. T. & Hunt, J. F. ATPase active-site electrostatic interactions control the global conformation of the 100 kDa SecA translocase. J. Am. Chem. Soc. 135, 2999–3010 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Gold, V. A., Whitehouse, S., Robson, A. & Collinson, I. The dynamic action of SecA during the initiation of protein translocation. Biochem. J. 449, 695–705 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chen, Y., Bauer, B. W., Rapoport, T. A. & Gumbart, J. C. Conformational changes of the clamp of the protein translocation ATPase SecA. J. Mol. Biol. 427, 2348–2359 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Papanikou, E. et al. Helicase Motif III in SecA is essential for coupling preprotein binding to translocation ATPase. EMBO Rep. 5, 807–811 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zimmer, J., Li, W. & Rapoport, T. A. A novel dimer interface and conformational changes revealed by an X-ray structure of B. subtilis SecA. J. Mol. Biol. 364, 259–265 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Sharma, V. et al. Crystal structure of Mycobacterium tuberculosis SecA, a preprotein translocating ATPase. Proc. Natl Acad. Sci. USA 100, 2243–2248 (2003).

    Article  CAS  PubMed  Google Scholar 

  130. Robson, A., Booth, A. E., Gold, V. A., Clarke, A. R. & Collinson, I. A large conformational change couples the ATP binding site of SecA to the SecY protein channel. J. Mol. Biol. 374, 965–976 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Sianidis, G. et al. Cross-talk between catalytic and regulatory elements in a DEAD motor domain is essential for SecA function. EMBO J. 20, 961–970 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Alami, M., Dalal, K., Lelj-Garolla, B., Sligar, S. G. & Duong, F. Nanodiscs unravel the interaction between the SecYEG channel and its cytosolic partner SecA. EMBO J. 26, 1995–2004 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sardis, M. F. & Economou, A. SecA: a tale of two protomers. Mol. Microbiol. 76, 1070–1081 (2010).

    Article  CAS  PubMed  Google Scholar 

  134. Lycklama a Nijeholt, J. A., Wu, Z. C. & Driessen, A. J. Conformational dynamics of the plug domain of the SecYEG protein-conducting channel. J. Biol. Chem. 286, 43881–43890 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Allen, W. J. et al. Two-way communication between SecY and SecA suggests a Brownian ratchet mechanism for protein translocation. eLife 5, e15598 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Heinrich, S. U., Mothes, W., Brunner, J. & Rapoport, T. A. The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain. Cell 102, 233–244 (2000).

    Article  CAS  PubMed  Google Scholar 

  137. Hessa, T. et al. Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature 450, 1026–1030 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. White, S. H. & von Heijne, G. How translocons select transmembrane helices. Annu. Rev. Biophys. 37, 23–42 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Tian, P. & Andricioaei, I. Size, motion, and function of the SecY translocon revealed by molecular dynamics simulations with virtual probes. Biophys. J. 90, 2718–2730 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ismail, N., Hedman, R., Schiller, N. & von Heijne, G. A biphasic pulling force acts on transmembrane helices during translocon-mediated membrane integration. Nat. Struct. Mol. Biol. 19, 1018–1022 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ojemalm, K., Halling, K. K., Nilsson, I. & von Heijne, G. Orientational preferences of neighboring helices can drive ER insertion of a marginally hydrophobic transmembrane helix. Mol. Cell 45, 529–540 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Deitermann, S., Sprie, G. S. & Koch, H. G. A dual function for SecA in the assembly of single spanning membrane proteins in Escherichia coli. J. Biol. Chem. 280, 39077–39085 (2005).

    Article  CAS  PubMed  Google Scholar 

  143. Bogdanov, M., Dowhan, W. & Vitrac, H. Lipids and topological rules governing membrane protein assembly. Biochim. Biophys. Acta 1843, 1475–1488 (2014).

    Article  CAS  PubMed  Google Scholar 

  144. Economou, A. & Wickner, W. SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion. Cell 78, 835–843 (1994).

    Article  CAS  PubMed  Google Scholar 

  145. Erlandson, K. J. et al. A role for the two-helix finger of the SecA ATPase in protein translocation. Nature 455, 984–987 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Whitehouse, S. et al. Mobility of the SecA 2-helix-finger is not essential for polypeptide translocation via the SecYEG complex. J. Cell Biol. 199, 919–929 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Tsukazaki, T. et al. Structure and function of a membrane component SecDF that enhances protein export. Nature 474, 235–238 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. van der Wolk, J. P., de Wit, J. G. & Driessen, A. J. The catalytic cycle of the Escherichia coli SecA ATPase comprises two distinct preprotein translocation events. EMBO J. 16, 7297–7304 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Liang, F. C., Bageshwar, U. K. & Musser, S. M. Bacterial Sec protein transport is rate-limited by precursor length: a single turnover study. Mol. Biol. Cell 20, 4256–4266 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Ting, Y. T. et al. Peptide binding to a bacterial signal peptidase visualized by peptide tethering and carrier-driven crystallization. IUCrJ 3, 10–19 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Sachelaru, I., Petriman, N. A., Kudva, R. & Koch, H. G. Dynamic interaction of the Sec translocon with the chaperone PpiD. J. Biol. Chem. 289, 21706–21715 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Antonoaea, R., Furst, M., Nishiyama, K. & Muller, M. The periplasmic chaperone PpiD interacts with secretory proteins exiting from the SecYEG translocon. Biochemistry 47, 5649–5656 (2008).

    Article  CAS  PubMed  Google Scholar 

  153. Xie, K. & Dalbey, R. E. Inserting proteins into the bacterial cytoplasmic membrane using the Sec and YidC translocases. Nat. Rev. Microbiol. 6, 234–244 (2008).

    Article  CAS  PubMed  Google Scholar 

  154. Patel, R., Smith, S. M. & Robinson, C. Protein transport by the bacterial Tat pathway. Biochim. Biophys. Acta 1843, 1620–1628 (2014).

    Article  CAS  PubMed  Google Scholar 

  155. Costa, T. R. et al. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat. Rev. Microbiol. 13, 343–359 (2015).

    Article  CAS  PubMed  Google Scholar 

  156. Portaliou, A. G., Tsolis, K. C., Loos, M. S., Zorzini, V. & Economou, A. Type III secretion: building and operating a remarkable nanomachine. Trends Biochem. Sci. 41, 175–189 (2016).

    Article  CAS  PubMed  Google Scholar 

  157. Schneewind, O. & Missiakas, D. M. Protein secretion and surface display in Gram-positive bacteria. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 367, 1123–1139 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Rollauer, S. E., Sooreshjani, M. A., Noinaj, N. & Buchanan, S. K. Outer membrane protein biogenesis in Gram-negative bacteria. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 370, 20150023 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Okuda, S. & Tokuda, H. Lipoprotein sorting in bacteria. Annu. Rev. Microbiol. 65, 239–259 (2011).

    Article  CAS  PubMed  Google Scholar 

  160. Prehna, G. et al. A protein export pathway involving Escherichia coli porins. Structure 20, 1154–1166 (2012).

    Article  CAS  PubMed  Google Scholar 

  161. Lee, E. Y. et al. Global proteomic profiling of native outer membrane vesicles derived from Escherichia coli. Proteomics 7, 3143–3153 (2007).

    Article  PubMed  Google Scholar 

  162. Bischoff, L., Wickles, S., Berninghausen, O., van der Sluis, E. O. & Beckmann, R. Visualization of a polytopic membrane protein during SecY-mediated membrane insertion. Nat. Commun. 5, 4103 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank G. Gouridis, A. Kuhn, R. Dalbey, S. White and B. Berks for fruitful discussions in relation to this manuscript, and C. Huang and B. Kalodimos for the structure of the SecB pre-protein. Research in the authors' laboratory is funded by grants: KUL-Spa (Onderzoekstoelagen 2013; Bijzonder Onderzoeksfonds; Katholieke Universiteit (KU) Leuven) RiMembR (Vlaanderen Onderzoeksprojecten; #G0C6814N; Research Foundation — Flanders (FWO)), StrepSynth (FP7 KBBE.2013.3.6-02: Synthetic Biology towards applications; #613877; European Union), T3RecS (#G002516N; FWO) and DIP-BiD (#AKUL/15/40 - G0H2116N; Hercules/FWO) to A.E and grant #G0B4915N from the FWO to S.K. J.D.G. is an FWO doctoral fellow.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anastassios Economou or Spyridoula Karamanou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

Protein export through the bacterial Sec pathway (DOCX 136 kb)

Supplementary information S2 (table)

Cell envelope concentrations of the secretory proteins that employ the Sec secretion pathway in E. coli. (XLS 346 kb)

Supplementary information S3 (table)

Protein export through the bacterial Sec pathway (DOCX 206 kb)

Glossary

Membranome

The portion of the bacterial exportome that is integrated into the plasma membrane (approximately 22% of the total proteome of Escherichia coli K12).

Secretome

The portion of the bacterial exportome that is exported beyond the plasma membrane (that is, to the periplasm, outer membrane, extracellular milieu or a host cell; approximately 13% of the total proteome of Escherichia coli K12).

Chemo–mechanical conversion

The conversion of chemical energy, such as the energy that is produced through breaking chemical bonds during ATP hydrolysis, to mechanical work, such as the movement of protein domains or whole proteins.

Exportome

The non-cytoplasmic portion of the bacterial proteome that is integrated into the plasma membrane or exported beyond the plasma membrane (that is, to the periplasm, outer membrane, extra-cellular milieu or a host cell).

Sortases

Cysteine transpeptidases, found mainly in Gram-positive bacteria, that recognize carboxy-terminal signals (cell wall sorting signals) with an LPXTG motif on their substrate proteins (surface proteins), cleave them at the threonyl residue of the motif and then attach them on the cell surface.

Pre-proteins

Exported proteins that are synthesized as pre-forms, that is, containing an amino-terminal signal peptide (also known as a signal sequence or leader peptide) extension that is proteolytically removed during, or after, export.

Chaperones

Proteins (ATP-dependent or independent) that assist in de novo protein folding or refolding, or disaggregation or the prevention of aggregation under stress or physiological conditions.

Proton motive force

(PMF). The potential energy stored in the plasma membrane, due to proton and voltage gradients across the membrane, that becomes liberated during proton movement through the membrane plane towards achieving electrochemical equilibrium.

Holdase

A chaperone that does not promote protein folding, but 'holds' onto substrates to prevent misfolding and/or aggregation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsirigotaki, A., De Geyter, J., Šoštaric´, N. et al. Protein export through the bacterial Sec pathway. Nat Rev Microbiol 15, 21–36 (2017). https://doi.org/10.1038/nrmicro.2016.161

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro.2016.161

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing