Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting of host organelles by pathogenic bacteria: a sophisticated subversion strategy

Key Points

  • Pathogenic bacteria evade host defences by subverting host signalling pathways in many different and sophisticated ways. An intriguing strategy used by several pathogens, mainly intracellular bacteria, is molecular or structural mimicry of host proteins.

  • In the past few years, studies have revealed that some pathogenic bacteria secret specific proteins via their type 3 secretion systems (T3SSs) and type 4 secretion systems (T4SSs) to target host organelles. These proteins contain organelle localization signals that target the effectors, for example to the nucleus or the mitochondria.

  • Legionella pneumophila, Chlamydia trachomatis and Burkholderia thailandensis secrete SET domain-containing proteins that encode histone methyltransferase activity to directly impose epigenetic changes on the chromatin landscape of the host cell, thus aiding bacterial intracellular replication.

  • Listeria monocytogenes, pathogenic Escherichia coli strains and Shigella flexneri secrete specific effector proteins that change the levels of chromatin-binding proteins to indirectly alter the host chromatin to the advantage of the pathogen.

  • Membrane dynamics, and in particular the eukaryotic secretory pathway, are targeted by bacterial pathogens to allow them to form a distinct replication-permissive vacuole inside the host cell. Legionella spp. and Brucella spp. target endoplasmic reticulum (ER)-derived vesicles and the retrograde traffic between the Golgi and the ER; Salmonella spp. and Chlamydia spp. interact with the trans-Golgi network or associated compartments.

  • To target the ER or Golgi network, different secreted effectors evolved to specifically hijack RAB proteins and exploit phosphoinositide lipids, which are phosphorylated derivatives of phosphatidylinositol.

  • Mitochondria are the power plants of the cell, but are also involved in essential cellular processes such as programmed cell death, calcium homeostasis, and the biosynthesis of amino acids, lipids and nucleotides. They also serve as hubs for innate immune signalling against viruses and bacteria.

  • L. pneumophila, enteropathogenic E. coli, Vibrio cholerae and Anaplasma phagocytophilum have been reported to secrete diverse effectors that target mitochondria, mainly to inhibit inflammatory responses.

Abstract

Many bacterial pathogens have evolved the ability to subvert and exploit host functions in order to enter and replicate in eukaryotic cells. For example, bacteria have developed specific mechanisms to target eukaryotic organelles such as the nucleus, the mitochondria, the endoplasmic reticulum and the Golgi apparatus. In this Review, we highlight the most recent advances in our understanding of the mechanisms that bacterial pathogens use to target these organelles. We also discuss how these strategies allow bacteria to manipulate host functions and to ultimately enable bacterial infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Eukaryotic organelles targeted by pathogenic bacteria.
Figure 2: Nuclear targeting by bacterial effectors.
Figure 3: Endoplasmic reticulum and Golgi targeting by bacterial effectors.
Figure 4: Mitochondrial targeting by bacterial effectors.

Similar content being viewed by others

References

  1. Mills, E., Baruch, K., Aviv, G., Nitzan, M. & Rosenshine, I. Dynamics of the type III secretion system activity of enteropathogenic Escherichia coli. mBio 4, e00303-13 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Mills, E., Baruch, K., Charpentier, X., Kobi, S. & Rosenshine, I. Real-time analysis of effector translocation by the type III secretion system of enteropathogenic Escherichia coli. Cell Host Microbe 3, 104–113 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Nora, T., Lomma, M., Gomez-Valero, L. & Buchrieser, C. Molecular mimicry: an important virulence strategy employed by Legionella pneumophila to subvert host functions. Future Microbiol. 4, 691–701 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Rolando, M. & Buchrieser, C. Post-translational modifications of host proteins by Legionella pneumophila: a sophisticated survival strategy. Future Microbiol. 7, 369–381 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Stebbins, C. E. & Galan, J. E. Structural mimicry in bacterial virulence. Nature 412, 701–705 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Hubber, A. & Roy, C. R. Modulation of host cell function by Legionella pneumophila type IV effectors. Annu. Rev. Cell Dev. Biol. 26, 261–283 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Isberg, R. R., O'Connor, T. J. & Heidtman, M. The Legionella pneumophila replication vacuole: making a cosy niche inside host cells. Nat. Rev. Microbiol. 7, 13–24 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Cazalet, C. et al. Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity. Nat. Genet. 36, 1165–1173 (2004). This genome analysis gives intriguing new insights, as it is the first to show the presence of an abundance of eukaryotic-like proteins and proteins containing host-interacting domains in a prokaryotic genome.

    Article  CAS  PubMed  Google Scholar 

  9. de Felipe, K. S. et al. Legionella eukaryotic-like type IV substrates interfere with organelle trafficking. PLoS Pathog. 4, e1000117 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Gomez-Valero, L. & Buchrieser, C. Genome dynamics in Legionella: the basis of versatility and adaptation to intracellular replication. Cold Spring Harb. Perspect. Med. 3, a009993 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. de Felipe, K. S. et al. Evidence for acquisition of Legionella type IV secretion substrates via interdomain horizontal gene transfer. J. Bacteriol. 187, 7716–7726 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gomez Valero, L., Runsiok, C., Cazalet, C. & Buchrieser, C. Comparative and functional genomics of Legionella identified eukaryotic like proteins as key players in host–pathogen interactions. Front. Microbiol. 2, 208 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Michard, C. & Doublet, P. Post-translational modifications are key players of the Legionella pneumophila infection strategy. Front. Microbiol. 6, 87 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rolando, M., Gomez-Valero, L. & Buchrieser, C. Bacterial remodelling of the host epigenome: functional role and evolution of effectors methylating host histones. Cell Microbiol. 17, 1098–1107 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Zhou, Y. & Zhu, Y. Diversity of bacterial manipulation of the host ubiquitin pathways. Cell. Microbiol. 17, 26–34 (2015).

    Article  PubMed  CAS  Google Scholar 

  16. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Huang, H., Sabari, B. R., Garcia, B. A., Allis, C. D. & Zhao, Y. SnapShot: histone modifications. Cell 159, 458–458.e1 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gardner, K. E., Allis, C. D. & Strahl, B. D. Operating on chromatin, a colorful language where context matters. J. Mol. Biol. 409, 36–46 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Schmeck, B. et al. Intracellular bacteria differentially regulated endothelial cytokine release by MAPK-dependent histone modification. J. Immunol. 175, 2843–2850 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Schmeck, B. et al. Histone acetylation and flagellin are essential for Legionella pneumophila-induced cytokine expression. J. Immunol. 181, 940–947 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Slevogt, H. et al. Moraxella catarrhalis induces inflammatory response of bronchial epithelial cells via MAPK and NF-κB activation and histone deacetylase activity reduction. Am. J. Physiol. Lung Cell. Mol. Physiol. 290, L818–L826 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Wang, Y., Curry, H. M., Zwilling, B. S. & Lafuse, W. P. Mycobacteria inhibition of IFN-γ induced HLA-DR gene expression by up-regulating histone deacetylation at the promoter region in human THP-1 monocytic cells. J. Immunol. 174, 5687–5694 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Garcia-Garcia, J. C., Barat, N. C., Trembley, S. J. & Dumler, J. S. Epigenetic silencing of host cell defense genes enhances intracellular survival of the rickettsial pathogen Anaplasma phagocytophilum. PLoS Pathog. 5, e1000488 (2009). This study provides the first evidence that a bacterial pathogen translocates proteins to the nucleus.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Baxt, L. A., Garza-Mayers, A. C. & Goldberg, M. B. Bacterial subversion of host innate immune pathways. Science 340, 697–701 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Cossart, P. & Lebreton, A. A trip in the “New Microbiology” with the bacterial pathogen Listeria monocytogenes. FEBS Lett. 588, 2437–2445 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Canonne, J. & Rivas, S. Bacterial effectors target the plant cell nucleus to subvert host transcription. Plant Signal. Behav. 7, 217–221 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Howard, E. A., Zupan, J. R., Citovsky, V. & Zambryski, P. C. The VirD2 protein of A. tumefaciens contains a C-terminal bipartite nuclear localization signal: implications for nuclear uptake of DNA in plant cells. Cell 68, 109–118 (1992). This paper describes VirD2 of A. tumefaciens , which is the first bacterial effector shown to target organelles of eukaryotic cells.

    Article  CAS  PubMed  Google Scholar 

  29. Citovsky, V. et al. Biological systems of the host cell involved in Agrobacterium infection. Cell. Microbiol. 9, 9–20 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Cossart, P. Illuminating the landscape of host–pathogen interactions with the bacterium Listeria monocytogenes. Proc. Natl Acad. Sci. USA 108, 19484–19491 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lebreton, A. et al. A bacterial protein targets the BAHD1 chromatin complex to stimulate type III interferon response. Science 331, 1319–1321 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Eskandarian, H. A. et al. A role for SIRT2-dependent histone H3K18 deacetylation in bacterial infection. Science 341, 1238858 (2013). Together with reference 31, this report shows that L. monocytogenes modulates the chromatin landscape of its host by recruiting nuclear proteins such as BAHD1 and SIRT2.

    Article  PubMed  CAS  Google Scholar 

  33. Ogawa, M., Handa, Y., Ashida, H., Suzuki, M. & Sasakawa, C. The versatility of Shigella effectors. Nat. Rev. Microbiol. 6, 11–16 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Li, H. et al. The phosphothreonine lyase activity of a bacterial type III effector family. Science 315, 1000–1003 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Arbibe, L. et al. An injected bacterial effector targets chromatin access for transcription factor NF-κB to alter transcription of host genes involved in immune responses. Nat. Immunol. 8, 47–56 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Harouz, H. et al. Shigella flexneri targets the HP1γ subcode through the phosphothreonine lyase OspF. EMBO J. 33, 2606–2622 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jayamani, E. & Mylonakis, E. Effector triggered manipulation of host immune response elicited by different pathotypes of Escherichia coli. Virulence 5, 733–739 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shames, S. R. et al. The pathogenic Escherichia coli type III secreted protease NleC degrades the host acetyltransferase p300. Cell. Microbiol. 13, 1542–1557 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Chen, L., Fischle, W., Verdin, E. & Greene, W. C. Duration of nuclear NF-κB action regulated by reversible acetylation. Science 293, 1653–1657 (2001).

    Article  CAS  Google Scholar 

  40. Pearson, J. S., Riedmaier, P., Marches, O., Frankel, G. & Hartland, E. L. A type III effector protease NleC from enteropathogenic Escherichia coli targets NF-κB for degradation. Mol. Microbiol. 80, 219–230 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yen, H. et al. NleC, a type III secretion protease, compromises NF-κB activation by targeting p65/RelA. PLoS Pathog. 6, e1001231 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dillon, S. C., Zhang, X., Trievel, R. C, & Cheng, X. The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol. 6, 227 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Dautry-Varsat, A., Balana, M. E. & Wyplosz, B. Chlamydia—host cell interactions: recent advances on bacterial entry and intracellular development. Traffic 5, 561–570 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Stephens, R. S. et al. Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282, 754–759 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Pennini, M. E., Perrinet, S., Dautry-Varsat, A. & Subtil, A. Histone methylation by NUE, a novel nuclear effector of the intracellular pathogen Chlamydia trachomatis. PLoS Pathog. 6, e1000995 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Rolando, M., Rusniok, C., Margueron, R. & Buchrieser, C. [Host epigenetic targeting by Legionella pneumophila]. Med. Sci. (Paris) 29, 843–845 (in French) (2013).

    Article  Google Scholar 

  47. Cheung, W. L., Briggs, S. D. & Allis, C. D. Acetylation and chromosomal functions. Curr. Opin. Cell Biol. 12, 326–333 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Li, T. et al. SET-domain bacterial effectors target heterochromatin protein 1 to activate host rDNA transcription. EMBO Rep. 14, 733–740 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rolando, M. & Buchrieser, C. Legionella pneumophila type IV effectors hijack the transcription and translation machinery of the host cell. Trends Cell Biol. 24, 771–778 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Abrami, L., Reig, N. & van der Goot, F. G. Anthrax toxin: the long and winding road that leads to the kill. Trends Microbiol. 13, 72–78 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Mujtaba, S. et al. Anthrax SET protein: a potential virulence determinant that epigenetically represses NF-κB activation in infected macrophages. J. Biol. Chem. 288, 23458–23472 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Caturegli, P. et al. ankA: an Ehrlichia phagocytophila group gene encoding a cytoplasmic protein antigen with ankyrin repeats. Infect. Immun. 68, 5277–5283 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pan, X., Lührmann, A., Satoh, A., Laskowski-Arce, M. A. & Roy, C. R. Ankyrin repeat proteins comprise a diverse family of bacterial type IV effectors. Science 320, 1651–1654 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lee, M. C., Miller, E. A., Goldberg, J., Orci, L. & Schekman, R. Bi-directional protein transport between the ER and Golgi. Annu. Rev. Cell Dev. Biol. 20, 87–123 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Mizuno-Yamasaki, E., Rivera-Molina, F. & Novick, P. GTPase networks in membrane traffic. Annu. Rev. Biochem. 81, 637–659 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Stenmark, H. Rab GTPases as coordinators of vesicle traffic. Nat. Rev. Mol. Cell Biol. 10, 513–525 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Cottam, N. P. & Ungar, D. Retrograde vesicle transport in the Golgi. Protoplasma 249, 943–955 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Behnia, R. & Munro, S. Organelle identity and the signposts for membrane traffic. Nature 438, 597–604 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Jean, S. & Kiger, A. A. Coordination between RAB GTPase and phosphoinositide regulation and functions. Nat. Rev. Mol. Cell Biol. 13, 463–470 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Asrat, S., de Jesus, D. A., Hempstead, A. D., Ramabhadran, V. & Isberg, R. R. Bacterial pathogen manipulation of host membrane trafficking. Annu. Rev. Cell Dev. Biol. 30, 79–109 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Hilbi, H. & Haas, A. Secretive bacterial pathogens and the secretory pathway. Traffic 13, 1187–1197 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Haneburger, I. & Hilbi, H. Phosphoinositide lipids and the Legionella pathogen vacuole. Curr. Top. Microbiol. Immunol. 376, 155–173 (2013).

    PubMed  Google Scholar 

  63. Weber, S. S., Ragaz, C. & Hilbi, H. The inositol polyphosphate 5-phosphatase OCRL1 restricts intracellular growth of Legionella, localizes to the replicative vacuole and binds to the bacterial effector LpnE. Cell. Microbiol. 11, 442–460 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Neunuebel, M. R. & Machner, M. P. The taming of a Rab GTPase by Legionella pneumophila. Small GTPases 3, 28–33 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Sherwood, R. K. & Roy, C. R. A. Rab-centric perspective of bacterial pathogen-occupied vacuoles. Cell Host Microbe 14, 256–268 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Machner, M. P. & Isberg, R. R. A bifunctional bacterial protein links GDI displacement to Rab1 activation. Science 318, 974–977 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Murata, T. et al. The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor. Nat. Cell Biol. 8, 971–977 (2006). Together with reference 66, this study demonstrates that L. pneumophila translocates a T4SS effector into host cells, and that this effector acts as a RAB1GEF, allowing the activation and recruitment of RAB1 to the LCV.

    Article  CAS  PubMed  Google Scholar 

  68. Müller, M. P. et al. The Legionella effector protein DrrA AMPylates the membrane traffic regulator Rab1b. Science 329, 946–949 (2010).

    Article  PubMed  Google Scholar 

  69. Mukherjee, S. et al. Modulation of Rab GTPase function by a protein phosphocholine transferase. Nature 477, 103–106 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Neunuebel, M. R. et al. De-AMPylation of the Small GTPase Rab1 by the pathogen Legionella pneumophila. Science 333, 453–456 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tan, Y., Arnold, R. J. & Luo, Z. Q. Legionella pneumophila regulates the small GTPase Rab1 activity by reversible phosphorylcholination. Proc. Natl Acad. Sci. USA 108, 21212–21217 (2011). This article and reference 70 show for the first time that a bacterial pathogen encodes effector proteins that are able to phosphocholinate and dephosphocholinate host proteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tan, Y. & Luo, Z. Q. Legionella pneumophila SidD is a deAMPylase that modifies Rab1. Nature 475, 506–509 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ingmundson, A., Delprato, A., Lambright, D. G. & Roy, C. R. Legionella pneumophila proteins that regulate Rab1 membrane cycling. Nature 450, 365–369 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Mihai Gazdag, E. et al. Mechanism of Rab1b deactivation by the Legionella pneumophila GAP LepB. EMBO Rep. 14, 199–205 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Schoebel, S., Cichy, A. L., Goody, R. S. & Itzen, A. Protein LidA from Legionella is a Rab GTPase supereffector. Proc. Natl Acad. Sci. USA 108, 17945–17950 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Arasaki, K., Toomre, D. K. & Roy, C. R. The Legionella pneumophila effector DrrA is sufficient to stimulate SNARE-dependent membrane fusion. Cell Host Microbe 11, 46–57 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Liu, Y. & Luo, Z. Q. The Legionella pneumophila effector SidJ is required for efficient recruitment of endoplasmic reticulum proteins to the bacterial phagosome. Infect. Immun. 75, 592–603 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Ragaz, C. et al. The Legionella pneumophila phosphatidylinositol-4 phosphate-binding type IV substrate SidC recruits endoplasmic reticulum vesicles to a replication-permissive vacuole. Cell. Microbiol. 10, 2416–2433 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Creasey, E. A. & Isberg, R. R. The protein SdhA maintains the integrity of the Legionella-containing vacuole. Proc. Natl Acad. Sci. USA 109, 3481–3486 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Horenkamp, F. A. et al. Legionella pneumophila subversion of host vesicular transport by SidC effector proteins. Traffic 15, 488–499 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. O'Connor, T. J., Boyd, D., Dorer, M. S. & Isberg, R. R. Aggravating genetic interactions allow a solution to redundancy in a bacterial pathogen. Science 338, 1440–1444 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mousnier, A. et al. A new method to determine in vivo interactomes reveals binding of the Legionella pneumophila effector PieE to multiple Rab GTPases. mBio 5, e01148-14 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Nagai, H., Kagan, J. C., Zhu, X., Kahn, R. A. & Roy, C. R. A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science 295, 679–682 (2002). This is the first study to show that L. pneumophila targets a host cell vesicle-trafficking factor (ARF1) through the action of a T4SS-translocated substrate.

    Article  CAS  PubMed  Google Scholar 

  84. Kagan, J. C. & Roy, C. R. Legionella phagosomes intercept vesicular traffic from endoplasmic reticulum exit sites. Nat. Cell Biol. 4, 945–954 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Folly-Klan, M. et al. A novel membrane sensor controls the localization and ArfGEF activity of bacterial RalF. PLoS Pathog. 9, e1003747 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Finsel, I. et al. The Legionella effector RidL inhibits retrograde trafficking to promote intracellular replication. Cell Host Microbe 14, 38–50 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Boschiroli, M. L. et al. Type IV secretion and Brucella virulence. Vet. Microbiol. 90, 341–348 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Celli, J., Salcedo, S. P. & Gorvel, J. P. Brucella coopts the small GTPase Sar1 for intracellular replication. Proc. Natl Acad. Sci. USA 102, 1673–1678 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. de Barsy, M. et al. Identification of a Brucella spp. secreted effector specifically interacting with human small GTPase Rab2. Cell. Microbiol. 13, 1044–1058 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Dohmer, P. H., Valguarnera, E., Czibener, C. & Ugalde, J. E. Identification of a type IV secretion substrate of Brucella abortus that participates in the early stages of intracellular survival. Cell. Microbiol. 16, 396–410 (2014).

    Article  PubMed  CAS  Google Scholar 

  91. Myeni, S. et al. Brucella modulates secretory trafficking via multiple type IV secretion effector proteins. PLoS Pathog. 9, e1003556 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Heuer, D. et al. Chlamydia causes fragmentation of the Golgi compartment to ensure reproduction. Nature 457, 731–735 (2009). This work provides evidence that bacteria interact with the Golgi apparatus in epithelial cells and thereby enhance lipid acquisition by and development of the pathogen.

    Article  CAS  PubMed  Google Scholar 

  93. Capmany, A. & Damiani, M. T. Chlamydia trachomatis intercepts Golgi-derived sphingolipids through a Rab14-mediated transport required for bacterial development and replication. PLoS ONE 5, e14084 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Moorhead, A. M., Jung, J. Y., Smirnov, A., Kaufer, S. & Scidmore, M. A. Multiple host proteins that function in phosphatidylinositol-4-phosphate metabolism are recruited to the chlamydial inclusion. Infect. Immun. 78, 1990–2007 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hackstadt, T., Scidmore-Carlson, M. A., Shaw, E. I. & Fischer, E. R. The Chlamydia trachomatis IncA protein is required for homotypic vesicle fusion. Cell. Microbiol. 1, 119–130 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Delevoye, C. et al. SNARE protein mimicry by an intracellular bacterium. PLoS Pathog. 4, e1000022 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Agaisse, H. & Derre, I. Expression of the effector protein IncD in Chlamydia trachomatis mediates recruitment of the lipid transfer protein CERT and the endoplasmic reticulum-resident protein VAPB to the inclusion membrane. Infect. Immun. 82, 2037–2047 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Elwell, C. A. et al. Chlamydia trachomatis co-opts GBF1 and CERT to acquire host sphingomyelin for distinct roles during intracellular development. PLoS Pathog. 7, e1002198 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Scidmore, M. A. & Hackstadt, T. Mammalian 14-3-3β associates with the Chlamydia trachomatis inclusion membrane via its interaction with IncG. Mol. Microbiol. 39, 1638–1650 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Verbeke, P. et al. Recruitment of BAD by the Chlamydia trachomatis vacuole correlates with host-cell survival. PLoS Pathog. 2, e45 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Cortes, C., Rzomp, K. A., Tvinnereim, A., Scidmore, M. A. & Wizel, B. Chlamydia pneumoniae inclusion membrane protein Cpn0585 interacts with multiple Rab GTPases. Infect. Immun. 75, 5586–5596 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Rzomp, K. A., Moorhead, A. R. & Scidmore, M. A. The GTPase Rab4 interacts with Chlamydia trachomatis inclusion membrane protein CT229. Infect. Immun. 74, 5362–5373 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Moest, T. P. & Meresse, S. Salmonella T3SSs: successful mission of the secret(ion) agents. Curr. Opin. Microbiol. 16, 38–44 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Ramsden, A. E., Holden, D. W. & Mota, L. J. Membrane dynamics and spatial distribution of Salmonella-containing vacuoles. Trends Microbiol. 15, 516–524 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Salcedo, S. P. & Holden, D. W. SseG, a virulence protein that targets Salmonella to the Golgi network. EMBO J. 22, 5003–5014 (2003). This investigation shows that S . Typhimurium interacts with the Golgi network in epithelial cells; it also identifies the effector protein required for the intracellular localization of the bacterium.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Abrahams, G. L., Muller, P. & Hensel, M. Functional dissection of SseF, a type III effector protein involved in positioning the Salmonella-containing vacuole. Traffic 7, 950–965 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Deiwick, J. et al. The translocated Salmonella effector proteins SseF and SseG interact and are required to establish an intracellular replication niche. Infect. Immun. 74, 6965–6972 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Domingues, L., Holden, D. W. & Mota, L. J. The Salmonella effector SteA contributes to the control of membrane dynamics of Salmonella-containing vacuoles. Infect. Immun. 82, 2923–2934 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Kuhle, V., Abrahams, G. L. & Hensel, M. Intracellular Salmonella enterica redirect exocytic transport processes in a Salmonella pathogenicity island 2-dependent manner. Traffic 7, 716–730 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Schroeder, N., Mota, L. J. & Meresse, S. Salmonella-induced tubular networks. Trends Microbiol. 19, 268–277 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Harrison, R. E. et al. Salmonella impairs RILP recruitment to Rab7 during maturation of invasion vacuoles. Mol. Biol. Cell 15, 3146–3154 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Stein, M. A., Leung, K. Y., Zwick, M., Garcia-del Portillo, F. & Finlay, B. B. Identification of a Salmonella virulence gene required for formation of filamentous structures containing lysosomal membrane glycoproteins within epithelial cells. Mol. Microbiol. 20, 151–164 (1996).

    Article  CAS  PubMed  Google Scholar 

  113. Boucrot, E., Henry, T., Borg, J. P., Gorvel, J. P. & Meresse, S. The intracellular fate of Salmonella depends on the recruitment of kinesin. Science 308, 1174–1178 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Dumont, A. et al. SKIP, the host target of the Salmonella virulence factor SifA, promotes kinesin-1-dependent vacuolar membrane exchanges. Traffic 11, 899–911 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. Ohlson, M. B. et al. Structure and function of Salmonella SifA indicate that its interactions with SKIP, SseJ, and RhoA family GTPases induce endosomal tubulation. Cell Host Microbe 4, 434–446 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. McGourty, K. et al. Salmonella inhibits retrograde trafficking of mannose-6-phosphate receptors and lysosome function. Science 338, 963–967 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. McEwan, D. G. et al. PLEKHM1 regulates autophagosome–lysosome fusion through HOPS complex and LC3/GABARAP proteins. Mol. Cell 57, 39–54 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. McEwan, D. G. et al. PLEKHM1 regulates Salmonella-containing vacuole biogenesis and infection. Cell Host Microbe 17, 58–71 (2015).

    Article  CAS  PubMed  Google Scholar 

  119. Mallo, G. V. et al. SopB promotes phosphatidylinositol 3-phosphate formation on Salmonella vacuoles by recruiting Rab5 and Vps34. J. Cell Biol. 182, 741–752 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Braun, V. et al. Sorting nexin 3 (SNX3) is a component of a tubular endosomal network induced by Salmonella and involved in maturation of the Salmonella-containing vacuole. Cell. Microbiol. 12, 1352–1367 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Bujny, M. V. et al. Sorting nexin-1 defines an early phase of Salmonella-containing vacuole-remodeling during Salmonella infection. J. Cell Sci. 121, 2027–2036 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Bakowski, M. A. et al. The phosphoinositide phosphatase SopB manipulates membrane surface charge and trafficking of the Salmonella-containing vacuole. Cell Host Microbe 7, 453–462 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Chan, D. C. Fusion and fission: interlinked processes critical for mitochondrial health. Annu. Rev. Genet. 46, 265–287 (2012).

    Article  CAS  PubMed  Google Scholar 

  124. West, A. P., Shadel, G. S. & Ghosh, S. Mitochondria in innate immune responses. Nat. Rev. Immunol. 11, 389–402 (2011). This excellent review summarizes the role of mitochondria during innate immune responses against pathogens.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Rudel, T., Kepp, O. & Kozjak-Pavlovic, V. Interactions between bacterial pathogens and mitochondrial cell death pathways. Nat. Rev. Microbiol. 8, 693–705 (2010).

    Article  CAS  PubMed  Google Scholar 

  126. Neupert, W. & Herrmann, J. M. Translocation of proteins into mitochondria. Annu. Rev. Biochem. 76, 723–749 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Meyer, D. F. et al. Searching algorithm for type IV secretion system effectors 1.0: a tool for predicting type IV effectors and exploring their genomic context. Nucleic Acids Res. 41, 9218–9229 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Moreno-Altamirano, M. M. et al. Bioinformatic identification of Mycobacterium tuberculosis proteins likely to target host cell mitochondria: virulence factors? Microb. Inform. Exp. 2, 9 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lucattini, R., Likic, V. A. & Lithgow, T. Bacterial proteins predisposed for targeting to mitochondria. Mol. Biol. Evol. 21, 652–658 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Hicks, S. W. & Galan, J. E. Exploitation of eukaryotic subcellular targeting mechanisms by bacterial effectors. Nat. Rev. Microbiol. 11, 316–326 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Kozjak-Pavlovic, V., Ross, K. & Rudel, T. Import of bacterial pathogenicity factors into mitochondria. Curr. Opin. Microbiol. 11, 9–14 (2008).

    Article  CAS  PubMed  Google Scholar 

  132. Mukhopadhyay, A., Ni, L., Yang, C. S. & Weiner, H. Bacterial signal peptide recognizes HeLa cell mitochondrial import receptors and functions as a mitochondrial leader sequence. Cell. Mol. Life Sci. 62, 1890–1899 (2005).

    Article  CAS  PubMed  Google Scholar 

  133. Kenny, B. & Jepson, M. Targeting of an enteropathogenic Escherichia coli (EPEC) effector protein to host mitochondria. Cell. Microbiol. 2, 579–590 (2000). This study describes the first translocated bacterial effector known to target mitochondria.

    Article  CAS  PubMed  Google Scholar 

  134. Papatheodorou, P. et al. The enteropathogenic Escherichia coli (EPEC) Map effector is imported into the mitochondrial matrix by the TOM/Hsp70 system and alters organelle morphology. Cell. Microbiol. 8, 677–689 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Nagai, T., Abe, A. & Sasakawa, C. Targeting of enteropathogenic Escherichia coli EspF to host mitochondria is essential for bacterial pathogenesis: critical role of the 16th leucine residue in EspF. J. Biol. Chem. 280, 2998–3011 (2005).

    Article  CAS  PubMed  Google Scholar 

  136. Nougayrede, J. P. & Donnenberg, M. S. Enteropathogenic Escherichia coli EspF is targeted to mitochondria and is required to initiate the mitochondrial death pathway. Cell. Microbiol. 6, 1097–1111 (2004).

    Article  CAS  PubMed  Google Scholar 

  137. Shifflett, D. E., Clayburgh, D. R., Koutsouris, A., Turner, J. R. & Hecht, G. A. Enteropathogenic E. coli disrupts tight junction barrier function and structure in vivo. Lab. Invest. 85, 1308–1324 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Dolezal, P. et al. Legionella pneumophila secretes a mitochondrial carrier protein during infection. PLoS Pathog. 8, e1002459 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Shin, O. S. et al. Type III secretion is essential for the rapidly fatal diarrheal disease caused by non-O1, non-O139 Vibrio cholerae. mBio 2, e00106-11 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Suzuki, M., Danilchanka, O. & Mekalanos, J. J. Vibrio cholerae T3SS effector VopE modulates mitochondrial dynamics and innate immune signaling by targeting Miro GTPases. Cell Host Microbe 16, 581–591 (2014). This important research demonstrates how a bacterial T3SS effector modulates mitochondrial dynamics and affects the host immune response.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Niu, H., Kozjak-Pavlovic, V., Rudel, T. & Rikihisa, Y. Anaplasma phagocytophilum Ats-1 is imported into host cell mitochondria and interferes with apoptosis induction. PLoS Pathog. 6, e1000774 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Niu, H., Xiong, Q., Yamamoto, A., Hayashi-Nishino, M. & Rikihisa, Y. Autophagosomes induced by a bacterial Beclin 1 binding protein facilitate obligatory intracellular infection. Proc. Natl Acad. Sci. USA 109, 20800–20807 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Huang, J. & Brumell, J. H. Bacteria–autophagy interplay: a battle for survival. Nat. Rev. Microbiol. 12, 101–114 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Khweek, A. A. et al. A bacterial protein promotes the recognition of the Legionella pneumophila vacuole by autophagy. Eur. J. Immunol. 43, 1333–1344 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Choy, A. et al. The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation. Science 338, 1072–1076 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Keyser, P., Elofsson, M., Rosell, S. & Wolf-Watz, H. Virulence blockers as alternatives to antibiotics: type III secretion inhibitors against Gram-negative bacteria. J. Intern. Med. 264, 17–29 (2008).

    Article  CAS  PubMed  Google Scholar 

  147. Liu, S. et al. Parkinson's disease-associated kinase PINK1 regulates Miro protein level and axonal transport of mitochondria. PLoS Genet. 8, e1002537 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Goh, Y. L., He, H. & March, J. C. Engineering commensal bacteria for prophylaxis against infection. Curr. Opin. Biotechnol. 23, 924–930 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Rolando, M. et al. Legionella pneumophila effector RomA uniquely modifies host chromatin to repress gene expression and promote intracellular bacterial replication. Cell Host Microbe 13, 395–405 (2013). This study characterizes the first bacterial effector shown to directly modify host chromatin during infection; this modification is due to the histone methyltransferase activity, which is of eukaryotic origin.

    Article  CAS  PubMed  Google Scholar 

  150. Costa, T. R. et al. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat. Rev. Microbiol. 13, 343–359 (2015).

    Article  CAS  PubMed  Google Scholar 

  151. Christie, P. J. Type IV secretion: intercellular transfer of macromolecules by systems ancestrally related to conjugation machines. Mol. Microbiol. 40, 294–305 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Hamon, M. A. et al. Histone modifications induced by a family of bacterial toxins. Proc. Natl Acad. Sci. USA 104, 13467–13472 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Stavru, F., Bouillaud, F., Sartori, A., Ricquier, D. & Cossart, P. Listeria monocytogenes transiently alters mitochondrial dynamics during infection. Proc. Natl Acad. Sci. USA 108, 3612–3617 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Dyall, S. D., Brown, M. T. & Johnson, P. J. Ancient invasions: from endosymbionts to organelles. Science 304, 253–257 (2004).

    Article  CAS  PubMed  Google Scholar 

  155. Fuchs, Y. & Steller, H. Live to die another way: modes of programmed cell death and the signals emanating from dying cells. Nat. Rev. Mol. Cell Biol. 16, 329–344 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Reed, J. C. Dysregulation of apoptosis in cancer. J. Clin. Oncol. 17, 2941–2953 (1999).

    Article  CAS  PubMed  Google Scholar 

  157. Creagh, E. M. Caspase crosstalk: integration of apoptotic and innate immune signalling pathways. Trends Immunol. 35, 631–640 (2014).

    Article  CAS  PubMed  Google Scholar 

  158. Yuan, S. & Akey, C. W. Apoptosome structure, assembly, and procaspase activation. Structure 21, 501–515 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank S. Gordon for critical reading of the manuscript. Work in the C.B. laboratory is financed by the Institut Pasteur, the Institut Carnot Pasteur Maladies Infectieuses, the French Region Ile de France (through the DIM Malinf programme) and the Infect-ERA project EUGENPATH (grant ANR-13-IFEC-0003-02). S.M. is financed by the French Agence Nationale de la Recherche (grant ANR-10-LABX- 62-IBEID). P.E. is funded by the Fondation pour la Recherche Médicale (grant DEQ20120323697).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Buchrieser.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Effector proteins

Bacterial proteins that are translocated by specific secretion systems into the eukaryotic host cell to promote the survival and replication of the pathogen by modulating the host response.

Secretion systems

Macromolecular structures that deliver proteins or DNA across the cell membrane in bacteria. Seven secretion systems have been identified to date (types 1 through 7). In particular, type 3 secretion systems and type 4 secretion systems inject effector molecules into the cytosol of eukaryotic host cells to manipulate host functions to the pathogen's advantage.

Horizontal gene transfer

(HGT). The transmission of DNA between different genomes of prokaryotes and/or eukaryotes, or between the three DNA-containing organelles of eukaryotes (the nucleus, the mitochondrion and the chloroplast).

Ubiquitin pathway

A reversible post-translational modification pathway involving an enzymatic cascade in which three different enzymes activate, transfer and link ubiquitin on the target protein. This common process of ubiquitylation occurs in a wide range of cell signalling pathways in eukaryotes; one of the most common is the targeting of a protein to the proteasome, in which ubiquitin conjugation is a signal for hydrolysis.

Localization signals

Protein motifs that target proteins to specific compartments within the cell, such as the nucleus or the mitochondria.

Pathogen-associated molecular patterns

(PAMPs). Structurally conserved molecules that are common to all pathogens and are recognized by host pattern recognition receptors (PRRs) to drive immune responses. Examples are microbial products such as lipopolysaccharide, lipoteichoic acid and flagellin.

Histone deacetylases

(HDACs). Specialized enzymes that remove the acetyl group from the lysine residues of histones.

Interferon-stimulated genes

(ISGs).Genes harbouring promoters that are responsive to interferons, a group of signalling proteins made and released by host cells in response to the presence of pathogens.

Apoptosis

A type of programmed cell death in which the cell dies without causing inflammatory reactions.

Histone acetyltransferase

(HAT). An enzyme that catalyses the addition of an acetyl group to the lysine residues of histones. This neutralizes the positive charge of the amino group of the lysine side chain, thereby promoting gene expression.

Elementary body

(EB). The infectious, extracellular form of Chlamydia spp. The EB possesses reduced metabolic activity and is unable to divide. This is the form released after disruption of infected cells.

Reticulate body

(RB). The non-infectious, intracellular form of Chlamydia spp. The RB is a replicative form that actively divides and is unable to initiate a new infection cycle.

Ribosomal DNA

(rDNA). The DNA sequence that encodes rRNA, which participates in protein synthesis.

Anterograde trafficking

A membrane-trafficking pathway in which a linear assembly of membrane-bound compartments facilitates cargo movement from the endoplasmic reticulum towards the cell surface.

Retrograde Golgi–ER transport

The trafficking of vesicles in a direction that starts from the host cell surface and ends in the endoplasmic reticulum (ER).

Legionella-containing vacuole

(LCV). A plasma membrane-derived organelle that avoids maturation into a phagosome, providing a niche wherein Legionella spp. replicate.

AMPylation

The covalent transfer of an AMP moiety from ATP to a hydroxyl side-chain of a protein (at threonine or tyrosine residues); this alters the activity of the protein.

Brucella-containing vacuole

(BCV). A membrane-bound compartment wherein intracellular Brucella spp. reside and multiply.

Chlamydial inclusion

An intracellular membrane-enclosed organelle that supports the intracellular growth of Chlamydia spp.

Salmonella-containing vacuole

(SCV). A membrane-bound compartment wherein intracellular Salmonella spp. reside and multiply. The SCV undergoes various surface modifications that distinguish it morphologically.

Salmonella-induced filaments

(SIFs). Tubules that are induced by infection with Salmonella spp. and are enriched in host late-endocytic proteins, such as LAMP1, and Salmonella pathogenicity island 2 (SPI-2) effectors.

Mitochondrial membrane potential

(Δψm). The potential generated by the mitochondrial electron transport chain, which drives a proton flow from the matrix through the inner mitochondrial membrane. As the proton concentration increases in the intermembrane space, a strong electrochemical gradient is established across the inner membrane. This gradient is used by the ATP synthase complex to produce ATP via oxidative phosphorylation.

Dominant-negative phenotype

A phenotype caused by a mutation of a gene or the expression of a protein that cannot be rescued by the wild-type genotype.

Pilus

A hair-like appendage present on the surface of many bacteria. Pili are polymers of pilin subunits and are essential for virulence of many bacteria, as they mediate a wide range of functions, including motility, microcolony and biofilm formation, and immune escape.

MAVS

(Mitochondrial antiviral-signalling protein). A protein that is localized in the mitochondrial outer membrane and aggregates after cytoplasmic detection of viral or bacterial RNA, leading to the production of interferons and other pro-inflammatory cytokines by the infected cell.

Autophagosome

A double-membraned vesicle, formed from small membrane structures, that engulfs undesirable cellular components or organelles, including invading microorganisms. After their formation, autophagosomes deliver their contents to the lysosomes, where hydrolases degrade both the contents and the autophagosome inner membrane.

Autophagy

A catabolic process by which the eukaryotic cell degrades undesirable or dysfunctional cellular components. It promotes cellular survival during starvation by maintaining cellular energy levels. When the cellular autophagy machinery is used to remove intracellular pathogens, the process is called xenophagy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escoll, P., Mondino, S., Rolando, M. et al. Targeting of host organelles by pathogenic bacteria: a sophisticated subversion strategy. Nat Rev Microbiol 14, 5–19 (2016). https://doi.org/10.1038/nrmicro.2015.1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro.2015.1

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology