Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Epsins: adaptors in endocytosis?

Abstract

Endocytic adaptor proteins select specific cargo for internalization by endocytosis through clathrin-coated pits or vesicles. Recent studies indicate that epsins might also be classified as adaptors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Endocytic adaptor proteins.
Figure 2: Epsin domain structure.
Figure 3: Functions of ubiquitin-interacting motifs.

Similar content being viewed by others

References

  1. Kirchhausen, T. Clathrin. Annu. Rev. Biochem. 69, 699–727 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Brodsky, F. M., Chen, C. Y., Knuehl, C., Towler, M. C. & Wakeham, D. E. Biological basket weaving: formation and function of clathrin-coated vesicles. Annu. Rev. Cell Dev. Biol. 17, 517–568 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Pearse, B. M. Receptors compete for adaptors found in plasma membrane coated pits. EMBO J. 7, 3331–3336 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kirchhausen, T. Adaptors for clathrin-mediated traffic. Annu. Rev. Cell Dev. Biol. 15, 705–732 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Gaidarov, I., Krupnick, J. G., Falck, J. R., Benovic, J. L. & Keen, J. H. Arrestin function in G protein-coupled receptor endocytosis requires phosphoinositide binding. EMBO J. 18, 871–881 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Goodman, O. B. Jr. et al. β-arrestin acts as a clathrin adaptor in endocytosis of the β2-adrenergic receptor. Nature 383, 447–450 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Chen, H. et al. Epsin is an EH-domain-binding protein implicated in clathrin-mediated endocytosis. Nature 394, 793–797 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Wendland, B., Steece, K. E. & Emr, S. D. Yeast epsins contain an essential N-terminal ENTH domain, bind clathrin and are required for endocytosis. EMBO J. 18, 4383–4393 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mishra, S. K. et al. Disabled-2 exhibits the properties of a cargo-selective endocytic clathrin adaptor. EMBO J. 21, 4915–4926 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. De Camilli, P. et al. The ENTH domain. FEBS Lett. 513, 11–18 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Shih, S. C. et al. Epsins and Vps27p/Hrs contain ubiquitin-binding domains that function in receptor endocytosis. Nature Cell Biol. 4, 389–393 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Kay, B. K., Yamabhai, M., Wendland, B. & Emr, S. D. Identification of a novel domain shared by putative components of the endocytic and cytoskeletal machinery. Protein Sci. 8, 435–438 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Itoh, T. et al. Role of the ENTH domain in phosphatidylinositol-4,5-bisphosphate binding and endocytosis. Science 291, 1047–1051 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Hyman, J., Chen, H., Di Fiore, P. P., De Camilli, P. & Brunger, A. T. Epsin 1 undergoes nucleocytosolic shuttling and its eps15 interactor NH2-terminal homology (ENTH) domain, structurally similar to Armadillo and HEAT repeats, interacts with the transcription factor promyelocytic leukemia Zn2+ finger protein (PLZF). J. Cell Biol. 149, 537–546 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ford, M. G. et al. Curvature of clathrin-coated pits driven by epsin. Nature 419, 361–366 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Lohi, O. & Lehto, V. P. VHS domain marks a group of proteins involved in endocytosis and vesicular trafficking. FEBS Lett. 440, 255–257 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Puertollano, R., Aguilar, R. C., Gorshkova, I., Crouch, R. J. & Bonifacino, J. S. Sorting of mannose 6-phosphate receptors mediated by the GGAs. Science 292, 1712–1716 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Takatsu, H., Katoh, Y., Shiba, Y. & Nakayama, K. Golgi-localizing, γ-adaptin ear homology domain, ADP-ribosylation factor-binding (GGA) proteins interact with acidic dileucine sequences within the cytoplasmic domains of sorting receptors through their Vps27p/Hrs/STAM (VHS) domains. J. Biol. Chem. 276, 28541–28545 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Hofmann, K. & Falquet, L. A ubiquitin-interacting motif conserved in components of the proteasomal and lysosomal protein degradation systems. Trends Biochem. Sci. 26, 347–350 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Oldham, C. E., Mohney, R. P., Miller, S. L., Hanes, R. N. & O'Bryan, J. P. The ubiquitin-interacting motifs target the endocytic adaptor protein epsin for ubiquitination. Curr. Biol. 12, 1112–1116 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Klapisz, E. et al. A ubiquitin–interacting motif (UIM) is essential for Eps15 and Eps15R ubiquitination. J. Biol. Chem. 34, 30746–30753 (2002).

    Article  Google Scholar 

  22. Polo, S. et al. A single motif responsible for ubiquitin recognition and monoubiquitination in endocytic proteins. Nature 416, 451–455 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Hofmann, K. & Bucher, P. The UBA domain: a sequence motif present in multiple enzyme classes of the ubiquitination pathway. Trends Biochem. Sci. 21, 172–173 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Buchberger, A. From UBA to UBX: new words in the ubiquitin vocabulary. Trends Cell Biol. 12, 216–221 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Dell'Angelica, E. C. Clathrin-binding proteins: got a motif? Join the network! Trends Cell Biol. 11, 315–318 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Lafer, E. M. Clathrin-protein interactions. Traffic 3, 513–520 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Salcini, A. E. et al. Binding specificity and in vivo targets of the EH domain, a novel protein–protein interaction module. Genes Dev. 11, 2239–2249 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brett, T. J., Traub, L. M. & Fremont, D. H. Accessory protein recruitment motifs in clathrin-mediated endocytosis. Structure (Camb.) 10, 797–809 (2002).

    Article  CAS  Google Scholar 

  29. Kalthoff, C., Alves, J., Urbanke, C., Knorr, R. & Ungewickell, E. J. Unusual structural organization of the endocytic proteins AP180 and epsin 1. J. Biol. Chem. 277, 8209–8216 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. ter Haar, E., Musacchio, A., Harrison, S. C. & Kirchhausen, T. Atomic structure of clathrin: a β propeller terminal domain joins an α zigzag linker. Cell 95, 563–573 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pearse, B. M. & Robinson, M. S. Purification and properties of 100-kd proteins from coated vesicles and their reconstitution with clathrin. EMBO J. 3, 1951–1957 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ahle, S. & Ungewickell, E. Purification and properties of a new clathrin assembly protein. EMBO J. 5, 3143–3149 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Beck, K. A. & Keen, J. H. Interaction of phosphoinositide cycle intermediates with the plasma membrane-associated clathrin assembly protein AP-2. J. Biol. Chem. 266, 4442–4447 (1991).

    CAS  PubMed  Google Scholar 

  34. Norris, F. A., Ungewickell, E. & Majerus, P. W. Inositol hexakisphosphate binds to clathrin assembly protein 3 (AP- 3/AP180) and inhibits clathrin cage assembly in vitro. J. Biol. Chem. 270, 214–217 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Ye, W., Ali, N., Bembenek, M. E., Shears, S. B. & Lafer, E. M. Inhibition of clathrin assembly by high affinity binding of specific inositol polyphosphates to the synapse-specific clathrin assembly protein AP-3. J. Biol. Chem. 270, 1564–1568 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Yamabhai, M. et al. Intersectin, a novel adaptor protein with two Eps15 homology and five Src homology 3 domains. J. Biol. Chem. 273, 31401–31407 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Chen, H., Slepnev, V. I., Di Fiore, P. P. & De Camilli, P. The interaction of epsin and Eps15 with the clathrin adaptor AP-2 is inhibited by mitotic phosphorylation and enhanced by stimulation-dependent dephosphorylation in nerve terminals. J. Biol. Chem. 274, 3257–3260 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Kariya, K. et al. Regulation of complex formation of POB1/epsin/adaptor protein complex 2 by mitotic phosphorylation. J. Biol. Chem. 275, 18399–18406 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Watson, H. A., Cope, M. J., Groen, A. C., Drubin, D. G. & Wendland, B. In vivo role for actin-regulating kinases in endocytosis and yeast epsin phosphorylation. Mol. Biol. Cell 12, 3668–3679 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Traub, L. M., Downs, M. A., Westrich, J. L. & Fremont, D. H. Crystal structure of the α appendage of AP-2 reveals a recruitment platform for clathrin-coat assembly. Proc. Natl Acad. Sci. USA 96, 8907–8912 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Owen, D. J. et al. A structural explanation for the binding of multiple ligands by the α-adaptin appendage domain. Cell 97, 805–815 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Zeng, G. & Cai, M. Regulation of the actin cytoskeleton organization in yeast by a novel serine/threonine kinase Prk1p. J Cell Biol 144, 71–82 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yeung, B. G., Phan, H. L. & Payne, G. S. Adaptor complex-independent clathrin function in yeast. Mol. Biol. Cell 10, 3643–3659 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wendland, B. & Emr, S. D. Pan1p, yeast eps15, functions as a multivalent adaptor that coordinates protein–protein interactions essential for endocytosis. J. Cell Biol. 141, 71–84 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Baggett, J. J. & Wendland, B. Clathrin function in yeast endocytosis. Traffic 2, 297–302 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Huang, K. M., D'Hondt, K., Riezman, H. & Lemmon, S. K. Clathrin functions in the absence of heterotetrameric adaptors and AP180-related proteins in yeast. EMBO J. 18, 3897–3908. (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mullins, C. & Bonifacino, J. S. Structural requirements for function of yeast GGAs in vacuolar protein sorting, α-factor maturation, and interactions with clathrin. Mol. Cell. Biol. 21, 7981–7994 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Costaguta, G., Stefan, C. J., Bensen, E. S., Emr, S. D. & Payne, G. S. Yeast Gga coat proteins function with clathrin in Golgi to endosome transport. Mol. Biol. Cell 12, 1885–1896 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cadavid, A. L., Ginzel, A. & Fischer, J. A. The function of the Drosophila fat facets deubiquitinating enzyme in limiting photoreceptor cell number is intimately associated with endocytosis. Development 127, 1727–1736 (2000).

    CAS  PubMed  Google Scholar 

  50. Chen, X., Zhang, B. & Fischer, J. A. A specific protein substrate for a deubiquitinating enzyme: Liquid facets is the substrate of Fat facets. Genes Dev. 16, 289–294 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Nelson, K. K. & Lemmon, S. K. Suppressors of clathrin deficiency: overexpression of ubiquitin rescues lethal strains of clathrin-deficient Saccharomyces cerevisiae. Mol. Cell. Biol. 13, 521–532 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Collins, B. M., McCoy, A. J., Kent, H. M., Evans, P. R. & Owen, D. J. Molecular architecture and functional model of the endocytic AP2 complex. Cell 109, 523–535 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Tebar, F., Sorkina, T., Sorkin, A., Ericsson, M. & Kirchhausen, T. Eps15 is a component of clathrin-coated pits and vesicles and is located at the rim of coated pits. J. Biol. Chem. 271, 28727–28730 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Takei, K., McPherson, P. S., Schmid, S. L. & De Camilli, P. Tubular membrane invaginations coated by dynamin rings are induced by GTP-γ S in nerve terminals. Nature 374, 186–190 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Riezman, H. Cell biology: the ubiquitin connection. Nature 416, 381–383 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Ikeda, M., Ishida, O., Hinoi, T., Kishida, S. & Kikuchi, A. Identification and characterization of a novel protein interacting with Ral-binding protein 1, a putative effector protein of Ral. J. Biol. Chem. 273, 814–821 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Morinaka, K. et al. Epsin binds to the EH domain of POB1 and regulates receptor-mediated endocytosis. Oncogene 18, 5915–5922 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Nakashima, S. et al. Small G protein Ral and its downstream molecules regulate endocytosis of EGF and insulin receptors. EMBO J. 18, 3629–3642 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Piros, E. T., Shen, L. & Huang, X. Y. Purification of an EH domain-binding protein from rat brain that modulates the gating of the rat ether-à-go-go channel. J. Biol. Chem. 274, 33677–33683 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Pardo, L. A., Bruggemann, A., Camacho, J. & Stuhmer, W. Cell cycle-related changes in the conducting properties of r-eag K+ channels. J. Cell Biol. 143, 767–775 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ludwig, J., Owen, D. & Pongs, O. Carboxy-terminal domain mediates assembly of the voltage-gated rat ether-à-go-go potassium channel. EMBO J. 16, 6337–6345 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Poupon, V. et al. Differential nucleocytoplasmic trafficking between the related endocytic proteins Eps15 and Eps15R. J Biol Chem 277, 8941–8948 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Boronenkov, I. V., Loijens, J. C., Umeda, M. & Anderson, R. A. Phosphoinositide signaling pathways in nuclei are associated with nuclear speckles containing pre-mRNA processing factors. Mol. Biol. Cell 9, 3547–3560 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Matunis, M. J., Wu, J. & Blobel, G. SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAP1, to the nuclear pore complex. J. Cell Biol. 140, 499–509 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Davis, C., Dube, P. & Konopka, J. B. Afr1p regulates the Saccharomyces cerevisiae α-factor receptor by a mechanism that is distinct from receptor phosphorylation and endocytosis. Genetics 148, 625–635 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Misra, S., Puertollano, R., Kato, Y., Bonifacino, J. S. & Hurley, J. H. Structural basis for acidic-cluster-dileucine sorting-signal recognition by VHS domains. Nature 415, 933–937 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Tebar, F., Bohlander, S. K. & Sorkin, A. Clathrin assembly lymphoid myeloid leukemia (CALM) protein: localization in endocytic-coated pits, interactions with clathrin, and the impact of overexpression on clathrin-mediated traffic. Mol. Biol. Cell 10, 2687–2702 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Legendre-Guillemin, V. et al. HIP1 and HIP12 display differential binding to F-actin, AP2, and clathrin. Identification of a novel interaction with clathrin light chain. J. Biol. Chem. 277, 19897–19904 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Henry, K. R. et al. Scd5p and clathrin function are important for cortical actin organization, endocytosis, and localization of sla2p in yeast. Mol. Biol. Cell 13, 2607–2625 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Engqvist-Goldstein, A. E., Kessels, M. M., Chopra, V. S., Hayden, M. R. & Drubin, D. G. An actin-binding protein of the Sla2/Huntingtin interacting protein 1 family is a novel component of clathrin-coated pits and vesicles. J. Cell Biol. 147, 1503–1518 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yang, S., Cope, M. J. & Drubin, D. G. Sla2p is associated with the yeast cortical actin cytoskeleton via redundant localization signals. Mol. Biol. Cell 10, 2265–2283 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Raiborg, C., Bache, K. G., Mehlum, A., Stang, E. & Stenmark, H. Hrs recruits clathrin to early endosomes. Embo J. 20, 5008–5021 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bean, A. J. et al. Hrs-2 regulates receptor-mediated endocytosis via interactions with Eps15. J. Biol. Chem. 275, 15271–15278. (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Boehm, M. & Bonifacino, J. S. Adaptins: the final recount. Mol. Biol. Cell 12, 2907–2920 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Boman, A. L., Zhang, C., Zhu, X. & Kahn, R. A. A family of ADP-ribosylation factor effectors that can alter membrane transport through the trans-Golgi. Mol. Biol. Cell 11, 1241–1255 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I apologize to those whose work could not be cited because of space restrictions. I would like to thank the members of my laboratory for stimulating discussions, and for critical reading of the manuscript I thank Pietro De Camilli, Kyle Cunningham, Ruben Claudio Aguilar, Hadiya Watson and J. Michael McCaffery. My laboratory is generously supported by grants from the National Institutes of Health, the Burroughs Wellcome Fund and the Human Frontiers Scientific Program.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

InterPro

EH

ENTH

UBA

UIM

VHS

LocusLink

AP2

<i>Saccharomyces</i> Genome Database

Apl3

Ede1

Ent1

Ent2

Pan1

Swiss-Prot

AP180

β-arrestin

epsin 1

Eps15

Fat facets

GFP

intersectin

Liquid facets

POB1

Ral

RalBP1

FURTHER INFORMATION

Beverly Wendland's laboratory

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wendland, B. Epsins: adaptors in endocytosis?. Nat Rev Mol Cell Biol 3, 971–977 (2002). https://doi.org/10.1038/nrm970

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm970

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing