Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

DNA replication origin activation in space and time

Key Points

  • Activation of initiation of DNA replication occurs at only a subset of replication origins that were previously assembled in the G1 phase of the cell cycle. This is achieved through a highly regulated sequential two-step process: origin licensing in the G1 phase and origin activation during the S phase.

  • DNA replication origins from Saccharomyces cerevisiae have a sequence consensus, whereas metazoan origins are more plastic and are determined by both sequence preferences, such as G-rich elements, and epigenetic features. Chromosomal environment and transcriptional status also influence the activation of origins.

  • Origins selected in adjacent replication units are synchronously activated and form replication domains, which are activated at specific times during the S phase. Replication timing domains correlate with topologically associated domains (TADs).

  • Replication timing is regulated by specific proteins and chromatin marks.

  • The activation of DNA replication origins is developmentally controlled.

  • Specific checkpoints regulate the initiation of DNA replication in response to replication stress.

Abstract

DNA replication begins with the assembly of pre-replication complexes (pre-RCs) at thousands of DNA replication origins during the G1 phase of the cell cycle. At the G1–S-phase transition, pre-RCs are converted into pre-initiation complexes, in which the replicative helicase is activated, leading to DNA unwinding and initiation of DNA synthesis. However, only a subset of origins are activated during any S phase. Recent insights into the mechanisms underlying this choice reveal how flexibility in origin usage and temporal activation are linked to chromosome structure and organization, cell growth and differentiation, and replication stress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Formation and activation of DNA replication origins.
Figure 2: Organization of replication origins and origin flexibility.
Figure 3: Nuclear organization and replication timing in mammals.
Figure 4: Local activation and global inhibition of origin activation following replication stress.

Similar content being viewed by others

References

  1. Abbas, T., Keaton, M. A. & Dutta, A. Genomic instability in cancer. Cold Spring Harb. Perspect. Biol. 5, a012914 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Flach, J. et al. Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells. Nature 512, 198–202 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Marahrens, Y. & Stillman, B. A yeast chromosomal origin of DNA replication defined by multiple functional elements. Science 255, 817–823 (1992). This article defined the multipartite nature of a S. cerevisiae replication origin.

    Article  CAS  PubMed  Google Scholar 

  4. Leonard, A. C. & Méchali, M. DNA replication origins. Cold Spring Harb. Perspect. Biol. 5, a010116 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cayrou, C. et al. Genome-scale analysis of metazoan replication origins reveals their organization in specific but flexible sites defined by conserved features. Genome Res. 21, 1438–1449 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Friedman, K. L., Brewer, B. J. & Fangman, W. L. Replication profile of Saccharomyces cerevisiae chromosome VI. Genes Cells 2, 667–678 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Heichinger, C., Penkett, C. J., Bahler, J. & Nurse, P. Genome-wide characterization of fission yeast DNA replication origins. EMBO J. 25, 5171–5179 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Méchali, M. Eukaryotic DNA replication origins: many choices for appropriate answers. Nature Rev. Mol. Cell Biol. 11, 728–738 (2010).

    Article  CAS  Google Scholar 

  9. Yeeles, J. T., Deegan, T. D., Janska, A., Early, A. & Diffley, J. F. Regulated eukaryotic DNA replication origin firing with purified proteins. Nature 519, 431–435 (2015). The first in vitro reconstitution of regulated DNA replication from purified S. cerevisiae proteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Masai, H., Matsumoto, S., You, Z., Yoshizawa-Sugata, N. & Oda, M. Eukaryotic chromosome DNA replication: where, when, and how? Annu. Rev. Biochem. 79, 89–130 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Tanaka, S. & Diffley, J. F. Interdependent nuclear accumulation of budding yeast Cdt1 and Mcm2–7 during G1 phase. Nature Cell Biol. 4, 198–207 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Remus, D. et al. Concerted loading of Mcm2–7 double hexamers around DNA during DNA replication origin licensing. Cell 139, 719–730 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. You, Z. & Masai, H. Cdt1 forms a complex with the minichromosome maintenance protein (MCM) and activates its helicase activity. J. Biol. Chem. 283, 24469–24477 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Maiorano, D., Moreau, J. & Méchali, M. XCDT1 is required for the assembly of pre-replicative complexes in Xenopus laevis. Nature 404, 622–625 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Maiorano, D., Rul, W. & Méchali, M. Cell cycle regulation of the licensing activity of Cdt1 in Xenopus laevis. Exp. Cell Res. 295, 138–149 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Blow, J. J. & Gillespie, P. J. Replication licensing and cancer — a fatal entanglement? Nature Rev. Cancer 8, 799–806 (2008).

    Article  CAS  Google Scholar 

  17. Siddiqui, K., On, K. F. & Diffley, J. F. Regulating DNA replication in eukarya. Cold Spring Harb. Perspect. Biol. 5, a012930 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. DePamphilis, M. L. Origins of DNA replication in metazoan chromosomes. J. Biol. Chem. 268, 1–4 (1993).

    CAS  PubMed  Google Scholar 

  19. Taylor, J. H. Increase in DNA replication sites in cells held at the beginning of S phase. Chromosoma 62, 291–300 (1977).

    Article  CAS  PubMed  Google Scholar 

  20. Blumenthal, A. B., Kriegstein, H. J. & Hogness, D. S. The units of DNA replication in Drosophila melanogaster chromosomes. Cold Spring Harb. Symp. Quant. Biol. 38, 205–223 (1974).

    Article  CAS  PubMed  Google Scholar 

  21. Callan, H. G. DNA replication in the chromosomes of eukaryotes. Cold Spring Harb. Symp. Quant. Biol. 38, 195–203 (1974). References 20 and 21 were the first to describe the increased number of replication origins activated in early D. melanogaster and amphibian embryos.

    Article  CAS  PubMed  Google Scholar 

  22. Kang, S., Warner, M. D. & Bell, S. P. Multiple functions for Mcm2–7 ATPase motifs during replication initiation. Mol. Cell 55, 655–665 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Heller, R. C. et al. Eukaryotic origin-dependent DNA replication in vitro reveals sequential action of DDK and S-CDK kinases. Cell 146, 80–91 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tanaka, S. et al. CDK-dependent phosphorylation of Sld2 and Sld3 initiates DNA replication in budding yeast. Nature 445, 328–332 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Jares, P. & Blow, J. J. Xenopus cdc7 function is dependent on licensing but not on XORC, XCdc6, or CDK activity and is required for XCdc45 loading. Genes Dev. 14, 1528–1540 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Masumoto, H., Muramatsu, S., Kamimura, Y. & Araki, H. S-Cdk-dependent phosphorylation of Sld2 essential for chromosomal DNA replication in budding yeast. Nature 415, 651–655 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Zegerman, P. & Diffley, J. F. Phosphorylation of Sld2 and Sld3 by cyclin-dependent kinases promotes DNA replication in budding yeast. Nature 445, 281–285 (2007). References 23–27 describe the phosphorylation events during the activation of replication origins.

  28. Ilves, I., Petojevic, T., Pesavento, J. J. & Botchan, M. R. Activation of the MCM2–7 helicase by association with Cdc45 and GINS proteins. Mol. Cell 37, 247–258 (2010). This paper shows that the DNA helicase function of the MCM complex is activated by formation of a new complex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. On, K. F. et al. Prereplicative complexes assembled in vitro support origin-dependent and independent DNA replication. EMBO J. 33, 605–620 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kumagai, A., Shevchenko, A. & Dunphy, W. G. Treslin collaborates with TopBP1 in triggering the initiation of DNA replication. Cell 140, 349–359 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Boos, D. et al. Regulation of DNA replication through Sld3–Dpb11 interaction is conserved from yeast to humans. Curr. Biol. 21, 1152–1157 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Kumagai, A., Shevchenko, A. & Dunphy, W. G. Direct regulation of treslin by cyclin-dependent kinase is essential for the onset of DNA replication. J. Cell Biol. 193, 995–1007 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Thu, Y. M. & Bielinsky, A. K. Enigmatic roles of Mcm10 in DNA replication. Trends Biochem. Sci. 38, 184–194 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Im, J. S. et al. Assembly of the Cdc45–Mcm2–7–GINS complex in human cells requires the Ctf4/And-1, RecQL4, and Mcm10 proteins. Proc. Natl Acad. Sci. USA 106, 15628–15632 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gros, J., Devbhandari, S. & Remus, D. Origin plasticity during budding yeast DNA replication in vitro. EMBO J. 33, 621–636 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Delgado, S., Gomez, M., Bird, A. & Antequera, F. Initiation of DNA replication at CpG islands in mammalian chromosomes. EMBO J. 17, 2426–2435 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cadoret, J. C. et al. Genome-wide studies highlight indirect links between human replication origins and gene regulation. Proc. Natl Acad. Sci. USA 105, 15837–15842 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Costas, C. et al. Genome-wide mapping of Arabidopsis thaliana origins of DNA replication and their associated epigenetic marks. Nature Struct. Mol. Biol. 18, 395–400 (2011).

    Article  CAS  Google Scholar 

  39. Besnard, E. et al. Unraveling cell type-specific and reprogrammable human replication origin signatures associated with G-quadruplex consensus motifs. Nature Struct. Mol. Biol. 19, 837–844 (2012).

    Article  CAS  Google Scholar 

  40. Smith, O. K. & Aladjem, M. I. Chromatin structure and replication origins: determinants of chromosome replication and nuclear organization. J. Mol. Biol. 426, 3330–3341 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cayrou, C. et al. New insights into replication origin characteristics in metazoans. Cell Cycle 11, 658–667 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Valton, A. L. et al. G4 motifs affect origin positioning and efficiency in two vertebrate replicators. EMBO J. 33, 732–746 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xu, J. et al. Genome-wide identification and characterization of replication origins by deep sequencing. Genome Biol. 13, R27 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kohzaki, H. & Murakami, Y. Transcription factors and DNA replication origin selection. Bioessays 27, 1107–1116 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Goldman, M. A., Holmquist, G. P., Grey, M. C., Caston, L. A. & Nag, A. Replication timing of genes and middle repetitive sequences. Science 224, 686–692 (1984).

    Article  CAS  PubMed  Google Scholar 

  46. Martin, M. M. et al. Genome-wide depletion of replication initiation events in highly transcribed regions. Genome Res. 21, 1822–1832 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sequeira-Mendes, J. et al. Transcription initiation activity sets replication origin efficiency in mammalian cells. PLoS Genet. 5, e1000446 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lunyak, V. V., Ezrokhi, M., Smith, H. S. & Gerbi, S. A. Developmental changes in the sciara II/9A initiation zone for DNA replication. Mol. Cell. Biol. 22, 8426–8437 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Deaton, A. M. & Bird, A. CpG islands and the regulation of transcription. Genes Dev. 25, 1010–1022 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Danis, E. et al. Specification of a DNA replication origin by a transcription complex. Nature Cell Biol. 6, 721–730 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Knott, S. R. et al. Forkhead transcription factors establish origin timing and long-range clustering in S. cerevisiae. Cell 148, 99–111 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Belleli, R. et al. NCOA4 transcriptional coactivator inhibits activation of DNA replication origins. Mol. Cell 55, 123–137 (2014).

    Article  CAS  Google Scholar 

  53. MacAlpine, H. K., Gordan, R., Powell, S. K., Hartemink, A. J. & MacAlpine, D. M. Drosophila ORC localizes to open chromatin and marks sites of cohesin complex loading. Genome Res. 20, 201–211 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Berbenetz, N. M., Nislow, C. & Brown, G. W. Diversity of eukaryotic DNA replication origins revealed by genome-wide analysis of chromatin structure. PLoS Genet. 6, e1001092 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Eaton, M. L., Galani, K., Kang, S., Bell, S. P. & MacAlpine, D. M. Conserved nucleosome positioning defines replication origins. Genes Dev. 24, 748–753 (2010). This study shows that the replication origin sequence is sufficient to establish a nucleosome-free region, but that ORC is necessary for precise nucleosome positioning at adjacent regions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lubelsky, Y. et al. Pre-replication complex proteins assemble at regions of low nucleosome occupancy within the Chinese hamster dihydrofolate reductase initiation zone. Nucleic Acids Res. 39, 3141–3155 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Givens, R. M. et al. Chromatin architectures at fission yeast transcriptional promoters and replication origins. Nucleic Acids Res. 40, 7176–7189 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hizume, K., Yagura, M. & Araki, H. Concerted interaction between origin recognition complex (ORC), nucleosomes and replication origin DNA ensures stable ORC-origin binding. Genes Cells 18, 764–779 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Liu, J., McConnell, K., Dixon, M. & Calvi, B. R. Analysis of model replication origins in Drosophila reveals new aspects of the chromatin landscape and its relationship to origin activity and the prereplicative complex. Mol. Biol. Cell 23, 200–212 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lombrana, R. et al. High-resolution analysis of DNA synthesis start sites and nucleosome architecture at efficient mammalian replication origins. EMBO J. 32, 2631–2644 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Iizuka, M., Matsui, T., Takisawa, H. & Smith, M. M. Regulation of replication licensing by acetyltransferase Hbo1. Mol. Cell. Biol. 26, 1098–1108 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Miotto, B. & Struhl, K. HBO1 histone acetylase activity is essential for DNA replication licensing and inhibited by geminin. Mol. Cell 37, 57–66 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Burke, T. W., Cook, J. G., Asano, M. & Nevins, J. R. Replication factors MCM2 and ORC1 interact with the histone acetyltransferase HBO1. J. Biol. Chem. 276, 15397–15408 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Tardat, M. et al. The histone H4 Lys 20 methyltransferase PR-Set7 regulates replication origins in mammalian cells. Nature Cell Biol. 12, 1086–1093 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Beck, D. B. et al. The role of PR-Set7 in replication licensing depends on Suv4–20h. Genes Dev. 26, 2580–2589 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kuo, A. J. et al. The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier–Gorlin syndrome. Nature 484, 115–119 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Picard, F. et al. The spatiotemporal program of DNA replication is associated with specific combinations of chromatin marks in human cells. PLoS Genet. 10, e1004282 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yu, Y. et al. Histone H3 lysine 56 methylation regulates DNA replication through its interaction with PCNA. Mol. Cell 46, 7–17 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fu, H. et al. Methylation of histone H3 on lysine 79 associates with a group of replication origins and helps limit DNA replication once per cell cycle. PLoS Genet. 9, e1003542 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Stroud, H. et al. Genome-wide analysis of histone H3.1 and H3.3 variants in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 109, 5370–5375 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Pak, D. T. et al. Association of the origin recognition complex with heterochromatin and HP1 in higher eukaryotes. Cell 91, 311–323 (1997).

    Article  CAS  PubMed  Google Scholar 

  72. Prasanth, S. G., Shen, Z., Prasanth, K. V. & Stillman, B. Human origin recognition complex is essential for HP1 binding to chromatin and heterochromatin organization. Proc. Natl Acad. Sci. USA 107, 15093–15098 (2010). References 71 and 72 show the relationships between ORC and HP1.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Nagano, T. & Fraser, P. No-nonsense functions for long noncoding RNAs. Cell 145, 178–181 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Mohammad, M. M., Donti, T. R., Sebastian Yakisich, J., Smith, A. G. & Kapler, G. M. Tetrahymena ORC contains a ribosomal RNA fragment that participates in rDNA origin recognition. EMBO J. 26, 5048–5060 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Norseen, J. et al. RNA-dependent recruitment of the origin recognition complex. EMBO J. 27, 3024–3035 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Norseen, J., Johnson, F. B. & Lieberman, P. M. Role for G-quadruplex RNA binding by Epstein–Barr virus nuclear antigen 1 in DNA replication and metaphase chromosome attachment. J. Virol. 83, 10336–10346 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hoshina, S. et al. Human origin recognition complex binds preferentially to G-quadruplex-preferable RNA and single-stranded DNA. J. Biol. Chem. 288, 30161–30171 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Christov, C. P., Gardiner, T. J., Szuts, D. & Krude, T. Functional requirement of noncoding Y RNAs for human chromosomal DNA replication. Mol. Cell. Biol. 26, 6993–7004 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Collart, C., Christov, C. P., Smith, J. C. & Krude, T. The midblastula transition defines the onset of Y RNA-dependent DNA replication in Xenopus laevis. Mol. Cell. Biol. 31, 3857–3870 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Newport, J. & Spann, T. Disassembly of the nucleus in mitotic extracts: membrane vesicularization, lamin disassembly, and chromosome condensation are independent processes. Cell 48, 219–230 (1987).

    Article  CAS  PubMed  Google Scholar 

  81. Sheehan, M. A., Mills, A. D., Sleeman, A. M., Laskey, R. A. & Blow, J. J. Steps in the assembly of replication-competent nuclei in a cell-free system from Xenopus eggs. J. Cell Biol. 106, 1–12 (1988).

    Article  CAS  PubMed  Google Scholar 

  82. Coue, M., Kearsey, S. E. & Méchali, M. Chromatin binding, nuclear localization and phosphorylation of Xenopus cdc21 are cell-cycle dependent and associated with the control of initiation of DNA replication. EMBO J. 15, 1085–1097 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Walter, J., Sun, L. & Newport, J. Regulated chromosomal DNA replication in the absence of a nucleus. Mol. Cell 1, 519–529 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Guelen, L. et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453, 948–951 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Goldberg, M., Jenkins, H., Allen, T., Whitfield, W. G. & Hutchison, C. J. Xenopus lamin B3 has a direct role in the assembly of a replication competent nucleus: evidence from cell-free egg extracts. J. Cell Sci. 108, 3451–3461 (1995).

    CAS  PubMed  Google Scholar 

  86. Wilson, R. H. & Coverley, D. Relationship between DNA replication and the nuclear matrix. Genes Cells 18, 17–31 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Huberman, J. A. & Riggs, A. D. On the mechanism of DNA replication in mammalian chromosomes. J. Mol. Biol. 32, 327–341 (1968). This is a classical paper describing the replication unit clusters.

    Article  CAS  PubMed  Google Scholar 

  88. Nagano, T. et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502, 59–64 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Brewer, B. J. & Fangman, W. L. Initiation at closely spaced replication origins in a yeast chromosome. Science 262, 1728–1731 (1993). This paper describes replication origin interference in S. cerevisiae.

    Article  CAS  PubMed  Google Scholar 

  90. Lebofsky, R., Heilig, R., Sonnleitner, M., Weissenbach, J. & Bensimon, A. DNA replication origin interference increases the spacing between initiation events in human cells. Mol. Biol. Cell 17, 5337–5345 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Marheineke, K. & Hyrien, O. Control of replication origin density and firing time in Xenopus egg extracts: role of a caffeine-sensitive, ATR-dependent checkpoint. J. Biol. Chem. 279, 28071–28081 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Buongiorno-Nardelli, M., Micheli, G., Carri, M. T. & Marilley, M. A relationship between replicon size and supercoiled loop domains in the eukaryotic genome. Nature 298, 100–102 (1982).

    Article  CAS  PubMed  Google Scholar 

  93. Lemaitre, J. M., Danis, E., Pasero, P., Vassetzky, Y. & Méchali, M. Mitotic remodeling of the replicon and chromosome structure. Cell 123, 1–15 (2005).

    Article  CAS  Google Scholar 

  94. Courbet, S. et al. Replication fork movement sets chromatin loop size and origin choice in mammalian cells. Nature 455, 557–560 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Berezney, R., Dubey, D. D. & Huberman, J. A. Heterogeneity of eukaryotic replicons, replicon clusters, and replication foci. Chromosoma 108, 471–484 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Cseresnyes, Z., Schwarz, U. & Green, C. M. Analysis of replication factories in human cells by super-resolution light microscopy. BMC Cell Biol. 10, 88 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cardoso, M. C., Schneider, K., Martin, R. M. & Leonhardt, H. Structure, function and dynamics of nuclear subcompartments. Curr. Opin. Cell Biol. 24, 79–85 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Takahashi, T. S., Yiu, P., Chou, M. F., Gygi, S. & Walter, J. C. Recruitment of Xenopus Scc2 and cohesin to chromatin requires the pre-replication complex. Nature Cell Biol. 6, 991–996 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Guillou, E. et al. Cohesin organizes chromatin loops at DNA replication factories. Genes Dev. 24, 2812–2822 (2010). References 53 and 99 report a link between cohesin recruitment and formation of the pre-RCs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Jackson, D. A. & Pombo, A. Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells. J. Cell Biol. 140, 1285–1295 (1998). This is an extensive fluorescence microscopy study of replicon clusters and replication foci.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Moir, R. D., Montaglowy, M. & Goldman, R. D. Dynamic properties of nuclear lamins: lamin B is associated with sites of DNA replication. J. Cell Biol. 125, 1201–1212 (1994).

    Article  CAS  PubMed  Google Scholar 

  102. Moir, R. D., Spann, T. P., Herrmann, H. & Goldman, R. D. Disruption of nuclear lamin organization blocks the elongation phase of DNA replication. J. Cell Biol. 149, 1179–1192 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lebofsky, R., van Oijen, A. M. & Walter, J. C. DNA is a co-factor for its own replication in Xenopus egg extracts. Nucleic Acids Res. 39, 545–555 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Cox, L. S. & Laskey, R. A. DNA replication occurs at discrete sites in pseudonuclei assembled from purified DNA in vitro. Cell 66, 271–275 (1991).

    Article  CAS  PubMed  Google Scholar 

  105. Rhind, N. & Gilbert, D. M. DNA replication timing. Cold Spring Harb. Perspect. Med. 3, 1–26 (2013).

    Google Scholar 

  106. Yoshida, K., Poveda, A. & Pasero, P. Time to be versatile: regulation of the replication timing program in budding yeast. J. Mol. Biol. 425, 4696–4705 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Eaton, M. L. et al. Chromatin signatures of the Drosophila replication program. Genome Res. 21, 164–174 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Dellino, G. I. et al. Genome-wide mapping of human DNA-replication origins: levels of transcription at ORC1 sites regulate origin selection and replication timing. Genome Res. 23, 1–11 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Letessier, A. et al. Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site. Nature 470, 120–123 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Barlow, J. H. et al. Identification of early replicating fragile sites that contribute to genome instability. Cell 152, 620–632 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hansen, R. S. et al. Sequencing newly replicated DNA reveals widespread plasticity in human replication timing. Proc. Natl Acad. Sci. USA 107, 139–144 (2010).

    Article  PubMed  Google Scholar 

  112. Ryba, T. et al. Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types. Genome Res. 20, 761–770 (2010). This study reports the close relationship between replication domains and chromosome domains.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Pope, B. D. et al. Topologically associating domains are stable units of replication-timing regulation. Nature 515, 402–405 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hayano, M. et al. Rif1 is a global regulator of timing of replication origin firing in fission yeast. Genes Dev. 26, 137–150 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Cornacchia, D. et al. Mouse Rif1 is a key regulator of the replication-timing programme in mammalian cells. EMBO J. 31, 3678–3690 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yamazaki, S. et al. Rif1 regulates the replication timing domains on the human genome. EMBO J. 31, 3667–3677 (2012). References 115–117 are the first reports on the role of RIF1 in replication timing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Silverman, J., Takai, H., Buonomo, S. B., Eisenhaber, F. & de Lange, T. Human Rif1, ortholog of a yeast telomeric protein, is regulated by ATM and 53BP1 and functions in the S-phase checkpoint. Genes Dev. 18, 2108–2119 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Buonomo, S. B., Wu, Y., Ferguson, D. & de Lange, T. Mammalian Rif1 contributes to replication stress survival and homology-directed repair. J. Cell Biol. 187, 385–398 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hiraga, S. et al. Rif1 controls DNA replication by directing protein phosphatase 1 to reverse Cdc7-mediated phosphorylation of the MCM complex. Genes Dev. 28, 372–383 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Mattarocci, S. et al. Rif1 controls DNA replication timing in yeast through the PP1 phosphatase Glc7. Cell Rep. 7, 62–69 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Dave, A., Cooley, C., Garg, M. & Bianchi, A. Protein phosphatase 1 recruitment by Rif1 regulates DNA replication origin firing by counteracting DDK activity. Cell Rep. 7, 53–61 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Schwaiger, M., Kohler, H., Oakeley, E. J., Stadler, M. B. & Schubeler, D. Heterochromatin protein 1 (HP1) modulates replication timing of the Drosophila genome. Genome Res. 20, 771–780 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hayashi, M. T., Takahashi, T. S., Nakagawa, T., Nakayama, J. & Masukata, H. The heterochromatin protein Swi6/HP1 activates replication origins at the pericentromeric region and silent mating-type locus. Nature Cell Biol. 11, 357–362 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Figueiredo, M. L., Philip, P., Stenberg, P. & Larsson, J. HP1a recruitment to promoters is independent of H3K9 methylation in Drosophila melanogaster. PLoS Genet. 8, e1003061 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kim, S. M., Dubey, D. D. & Huberman, J. A. Early-replicating heterochromatin. Genes Dev. 17, 330–335 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Casas-Delucchi, C. S. et al. Histone hypoacetylation is required to maintain late replication timing of constitutive heterochromatin. Nucleic Acids Res. 40, 159–169 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Tazumi, A. et al. Telomere-binding protein Taz1 controls global replication timing through its localization near late replication origins in fission yeast. Genes Dev. 26, 2050–2062 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Cooper, J. P., Nimmo, E. R., Allshire, R. C. & Cech, T. R. Regulation of telomere length and function by a Myb-domain protein in fission yeast. Nature 385, 744–747 (1997).

    Article  CAS  PubMed  Google Scholar 

  130. Wu, P. Y. & Nurse, P. Establishing the program of origin firing during S phase in fission yeast. Cell 136, 852–864 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wong, P. G. et al. Cdc45 limits replicon usage from a low density of preRCs in mammalian cells. PLoS ONE 6, e17533 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Patel, P. K. et al. The Hsk1(Cdc7) replication kinase regulates origin efficiency. Mol. Biol. Cell 19, 5550–5558 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Mantiero, D., Mackenzie, A., Donaldson, A. & Zegerman, P. Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast. EMBO J. 30, 4805–4814 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kwan, E. X. et al. A natural polymorphism in rDNA replication origins links origin activation with calorie restriction and lifespan. PLoS Genet. 9, e1003329 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Yoshida, K. et al. The histone deacetylases Sir2 and Rpd3 act on ribosomal DNA to control the replication program in budding yeast. Mol. Cell 54, 691–697 (2014).

    Article  CAS  PubMed  Google Scholar 

  136. Koren, A. et al. Genetic variation in human DNA replication timing. Cell 159, 1015–1026 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hiratani, I. et al. Global reorganization of replication domains during embryonic stem cell differentiation. PLoS Biol. 6, e245 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hiratani, I. et al. Genome-wide dynamics of replication timing revealed by in vitro models of mouse embryogenesis. Genome Res. 20, 155–169 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Hyrien, O., Maric, C. & Méchali, M. Transition in specification of embryonic metazoan DNA replication origins. Science 270, 994–997 (1995).

    Article  CAS  PubMed  Google Scholar 

  140. Sasaki, T., Sawado, T., Yamaguchi, M. & Shinomiya, T. Specification of regions of DNA replication initiation during embryogenesis in the 65-kilobase DNApolα-dE2F locus of Drosophila melanogaster. Mol. Cell. Biol. 19, 547–555 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Norio, P. et al. Progressive activation of DNA replication initiation in large domains of the immunoglobulin heavy chain locus during B cell development. Mol. Cell 20, 575–587 (2005).

    Article  CAS  PubMed  Google Scholar 

  142. Errico, A. & Costanzo, V. Mechanisms of replication fork protection: a safeguard for genome stability. Crit. Rev. Biochem. Mol. Biol. 47, 222–235 (2012).

    Article  CAS  PubMed  Google Scholar 

  143. Tercero, J. A. & Diffley, J. F. Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint. Nature 412, 553–557 (2001).

    Article  CAS  PubMed  Google Scholar 

  144. Yekezare, M., Gomez-Gonzalez, B. & Diffley, J. F. Controlling DNA replication origins in response to DNA damage — inhibit globally, activate locally. J. Cell Sci. 126, 1297–1306 (2013).

    Article  CAS  PubMed  Google Scholar 

  145. McIntosh, D. & Blow, J. J. Dormant origins, the licensing checkpoint, and the response to replicative stresses. Cold Spring Harb. Perspect. Biol. 4, a012955 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Bartek, J., Lukas, C. & Lukas, J. Checking on DNA damage in S phase. Nature Rev. Mol. Cell Biol. 5, 792–804 (2004).

    Article  CAS  Google Scholar 

  147. Donzelli, M. & Draetta, G. F. Regulating mammalian checkpoints through Cdc25 inactivation. EMBO Rep. 4, 671–677 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Takizawa, C. G. & Morgan, D. O. Control of mitosis by changes in the subcellular location of cyclin-B1–Cdk1 and Cdc25C. Curr. Opin. Cell Biol. 12, 658–665 (2000).

    Article  CAS  PubMed  Google Scholar 

  149. Karnani, N. & Dutta, A. The effect of the intra-S-phase checkpoint on origins of replication in human cells. Genes Dev. 25, 621–633 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Liu, H. et al. Phosphorylation of MLL by ATR is required for execution of mammalian S-phase checkpoint. Nature 467, 343–346 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Boos, D., Yekezare, M. & Diffley, J. F. Identification of a heteromeric complex that promotes DNA replication origin firing in human cells. Science 340, 981–984 (2013).

    Article  CAS  PubMed  Google Scholar 

  152. Lopez-Mosqueda, J. et al. Damage-induced phosphorylation of Sld3 is important to block late origin firing. Nature 467, 479–483 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Zegerman, P. & Diffley, J. F. Checkpoint-dependent inhibition of DNA replication initiation by Sld3 and Dbf4 phosphorylation. Nature 467, 474–478 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Anglana, M., Apiou, F., Bensimon, A. & Debatisse, M. Dynamics of DNA replication in mammalian somatic cells: nucleotide pool modulates origin choice and interorigin spacing. Cell 114, 385–394 (2003).

    Article  CAS  PubMed  Google Scholar 

  155. Syljuasen, R. G. et al. Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage. Mol. Cell. Biol. 25, 3553–3562 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Allen, J. B., Zhou, Z., Siede, W., Friedberg, E. C. & Elledge, S. J. The SAD1/RAD53 protein kinase controls multiple checkpoints and DNA damage-induced transcription in yeast. Genes Dev. 8, 2401–2415 (1994).

    Article  CAS  PubMed  Google Scholar 

  157. Kato, R. & Ogawa, H. An essential gene, ESR1, is required for mitotic cell growth, DNA repair and meiotic recombination in Saccharomyces cerevisiae. Nucleic Acids Res. 22, 3104–3112 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Liu, Q. et al. Chk1 is an essential kinase that is regulated by Atr and required for the G2/M DNA damage checkpoint. Genes Dev. 14, 1448–1459 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Takai, H. et al. Aberrant cell cycle checkpoint function and early embryonic death in Chk1−/− mice. Genes Dev. 14, 1439–1447 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Brown, E. J. & Baltimore, D. ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev. 14, 397–402 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Maya-Mendoza, A., Petermann, E., Gillespie, D. A., Caldecott, K. W. & Jackson, D. A. Chk1 regulates the density of active replication origins during the vertebrate S phase. EMBO J. 26, 2719–2731 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Zhao, H., Watkins, J. L. & Piwnica-Worms, H. Disruption of the checkpoint kinase 1/cell division cycle 25A pathway abrogates ionizing radiation-induced S and G2 checkpoints. Proc. Natl Acad. Sci. USA 99, 14795–14800 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Sorensen, C. S. et al. Chk1 regulates the S phase checkpoint by coupling the physiological turnover and ionizing radiation-induced accelerated proteolysis of Cdc25A. Cancer Cell 3, 247–258 (2003).

    Article  CAS  PubMed  Google Scholar 

  164. Maya-Mendoza, A., Olivares-Chauvet, P., Shaw, A. & Jackson, D. A. S phase progression in human cells is dictated by the genetic continuity of DNA foci. PLoS Genet. 6, e1000900 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Ge, X. Q. & Blow, J. J. Chk1 inhibits replication factory activation but allows dormant origin firing in existing factories. J. Cell Biol. 191, 1285–1297 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Vaziri, C. et al. A p53-dependent checkpoint pathway prevents rereplication. Mol. Cell 11, 997–1008 (2003).

    Article  CAS  PubMed  Google Scholar 

  167. Neelsen, K. J. et al. Deregulated origin licensing leads to chromosomal breaks by rereplication of a gapped DNA template. Genes Dev. 27, 2537–2542 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Melixetian, M. et al. Loss of geminin induces rereplication in the presence of functional p53. J. Cell Biol. 165, 473–482 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Zhu, W., Chen, Y. & Dutta, A. Rereplication by depletion of geminin is seen regardless of p53 status and activates a G2/M checkpoint. Mol. Cell. Biol. 24, 7140–7150 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Tada, S., Li, A., Maiorano, D., Méchali, M. & Blow, J. J. Repression of origin assembly in metaphase depends on inhibition of RLF-B/Cdt1 by geminin. Nature Cell Biol. 3, 107–113 (2001).

    Article  CAS  PubMed  Google Scholar 

  171. Wohlschlegel, J. A. et al. Inhibition of eukaryotic DNA replication by geminin binding to Cdt1. Science 290, 2309–2312 (2000).

    Article  CAS  PubMed  Google Scholar 

  172. Nguyen, V. Q., Co, C., Irie, K. & Li, J. J. Clb/Cdc28 kinases promote nuclear export of the replication initiator proteins Mcm2–7. Curr. Biol. 10, 195–205 (2000).

    Article  CAS  PubMed  Google Scholar 

  173. Saha, T., Ghosh, S., Vassilev, A. & DePamphilis, M. L. Ubiquitylation, phosphorylation and Orc2 modulate the subcellular location of Orc1 and prevent it from inducing apoptosis. J. Cell Sci. 119, 1371–1382 (2006).

    Article  CAS  PubMed  Google Scholar 

  174. Petersen, B. O., Lukas, J., Sorensen, C. S., Bartek, J. & Helin, K. Phosphorylation of mammalian CDC6 by cyclin A/CDK2 regulates its subcellular localization. EMBO J. 18, 396–410 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Coulombe, P., Gregoire, D., Tsanov, N. & Méchali, M. A spontaneous Cdt1 mutation in 129 mouse strains reveals a regulatory domain restraining replication licensing. Nature Commun. 4, 2065 (2013).

    Article  CAS  Google Scholar 

  176. Sugimoto, N. et al. Cdt1 phosphorylation by cyclin A-dependent kinases negatively regulates its function without affecting geminin binding. J. Biol. Chem. 279, 19691–19697 (2004).

    Article  CAS  PubMed  Google Scholar 

  177. Mendez, J. et al. Human origin recognition complex large subunit is degraded by ubiquitin-mediated proteolysis after initiation of DNA replication. Mol. Cell 9, 481–491 (2002).

    Article  CAS  PubMed  Google Scholar 

  178. Li, X., Zhao, Q., Liao, R., Sun, P. & Wu, X. The SCFSkp2 ubiquitin ligase complex interacts with the human replication licensing factor Cdt1 and regulates Cdt1 degradation. J. Biol. Chem. 278, 30854–30858 (2003).

    Article  CAS  PubMed  Google Scholar 

  179. Higa, L. A., Mihaylov, I. S., Banks, D. P., Zheng, J. & Zhang, H. Radiation-mediated proteolysis of CDT1 by CUL4–ROC1 and CSN complexes constitutes a new checkpoint. Nature Cell Biol. 5, 1008–1015 (2003).

    Article  CAS  PubMed  Google Scholar 

  180. Arias, E. E. & Walter, J. C. PCNA functions as a molecular platform to trigger Cdt1 destruction and prevent re-replication. Nature Cell Biol. 8, 84–90 (2006).

    Article  CAS  PubMed  Google Scholar 

  181. McGarry, T. J. & Kirschner, M. W. Geminin, an inhibitor of DNA replication, is degraded during mitosis. Cell 93, 1043–1053 (1998).

    Article  CAS  PubMed  Google Scholar 

  182. Petersen, B. O. et al. Cell cycle- and cell growth-regulated proteolysis of mammalian CDC6 is dependent on APC–CDH1. Genes Dev. 14, 2330–2343 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Sugimoto, N. et al. Identification of novel human Cdt1-binding proteins by a proteomics approach: proteolytic regulation by APC/CCdh1. Mol. Biol. Cell 19, 1007–1021 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Liu, E. et al. The ATR-mediated S phase checkpoint prevents rereplication in mammalian cells when licensing control is disrupted. J. Cell Biol. 179, 643–657 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Zielke, N., Edgar, B. A. & DePamphilis, M. L. Endoreplication. Cold Spring Harb. Perspect. Biol. 5, a012948 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Kim, J. C. et al. Integrative analysis of gene amplification in Drosophila follicle cells: parameters of origin activation and repression. Genes Dev. 25, 1384–1398 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Aggarwal, B. D. & Calvi, B. R. Chromatin regulates origin activity in Drosophila follicle cells. Nature 430, 372–376 (2004).

    Article  CAS  PubMed  Google Scholar 

  188. Gonzalez, S. et al. Oncogenic activity of Cdc6 through repression of the INK4/ARF locus. Nature 440, 702–706 (2006).

    Article  CAS  PubMed  Google Scholar 

  189. Seo, J. et al. Cdt1 transgenic mice develop lymphoblastic lymphoma in the absence of p53. Oncogene 24, 8176–8186 (2005).

    Article  CAS  PubMed  Google Scholar 

  190. Zhu, W. & Depamphilis, M. L. Selective killing of cancer cells by suppression of geminin activity. Cancer Res. 69, 4870–4877 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Ge, X. Q., Jackson, D. A. & Blow, J. J. Dormant origins licensed by excess Mcm2–7 are required for human cells to survive replicative stress. Genes Dev. 21, 3331–3341 (2007). This study shows that during replication stress, the excess of the MCM complex can be used to activate DNA replication origins that are not used in a normal cell cycle.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Cayrou, C., Coulombe, P. & Méchali, M. Programming DNA replication origins and chromosome organization. Chromosome Res. 18, 137–145 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research in the authors' laboratory was supported by the European Research Council (FP7/2007-2013 Grant Agreement no. 233339). This work was also supported by the ARC and the 'Ligue Nationale Contre le Cancer' (LNCC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Méchali.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Replication forks

Structures that are created by unwinding of the double helix at a replication origin, from which DNA synthesis will progress in opposite directions.

CpG islands

Short DNA sequences (at least 200 bp) with a high occurence of CpG dinucleotides (for example, a ratio of CpG observed to CpG expected >0.6). In vertebrates, these sequences are often present near the transcription initiation sites of housekeeping genes.

G quadruplexes

(G4s). Guanine-rich sequences that form a four-stranded DNA structure with tetrads of guanine stacking on top of each other. These have been well studied in telomere regions.

Open chromatin

A loose or partly decondensed chromatin structure, found in euchromatin regions that are permissive for transcription.

Proliferating cell nuclear antigen

(PCNA). A homotrimer that is involved in the processivity of DNA polymerases during DNA replication, as well as having a role in DNA repair.

DNA combing

A method in which single DNA molecules are stretched on silanized glass. This method allows the detection of genomic abnormalities such as DNA rearrangements and is also a powerful technique for detecting the spacing between replication origins and the replication fork speed.

Cohesin

A protein complex that mediates the cohesion between the sister chromatids resulting from DNA replication and is also involved in their segregation during mitosis.

Hi-C

A method to detect interactions between chromatin domains in the nucleus.

Episomal vectors

Extrachromosomal DNA molecules that are able to replicate autonomously in the cell and persist without being integrated in the chromosomes. They can permit retention and expression of transgenes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fragkos, M., Ganier, O., Coulombe, P. et al. DNA replication origin activation in space and time. Nat Rev Mol Cell Biol 16, 360–374 (2015). https://doi.org/10.1038/nrm4002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm4002

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing