Spindle checkpoint signals (generated by checkpoint proteins, including MAD1 and the RZZ (Rod–Zw10–Zwilch) complex) arrest mitosis until all kinetochores are correctly attached to spindle microtubules, whereupon checkpoint proteins are removed in a dynein-dependent manner. Matson and Stukenberg report that the centromeric protein CENPI is required for the stable association of MAD1 and RZZ with kinetochores. CENPI cooperated with Aurora B in the recruitment of MAD1 and RZZ. Moreover, CENPI prevented their premature removal by dynein in an Aurora B-independent manner. Thus, CENPI and Aurora B create and maintain a robust checkpoint signal until all spindle attachments are correctly formed.