Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The nuclear lamins: flexibility in function

Key Points

  • The nuclear lamina is an important structural determinant for the nuclear envelope as a whole, and its functions include attaching chromatin domains to the nuclear periphery and localizing some nuclear membrane proteins. The major components of the lamina are the A-type and B-type lamins, which are members of the intermediate filament protein family.

  • The expression of A-type lamins is developmentally regulated, and at least 12 distinct disorders, including Emery–Dreifuss muscular dystrophy (EDMD), are now linked to lamin A (LMNA) mutations. Studies in mice have provided insights into the tissue-specific functions of lamin A and the basis of cellular toxicity when it is mutated.

  • B-type lamins, as a class, are found in all cells and have been linked to several cellular processes, including transcription, replication, spindle assembly, chromatin organization and most recently to resistance to oxidative stress. This led to a previous model in which B-type lamins were thought to be essential in all cell types.

  • Knockout studies have now indicated that B-type lamins are dispensable in certain cell types and that neither A-type nor B-type lamins may be required in early embryos or embryonic stem cells. Thus, A-type and B-type lamins seem to have multiple cellular roles, and different combinations of lamin functions may be used to varying extents in different tissues.

Abstract

The nuclear lamina is an important structural determinant for the nuclear envelope as a whole, attaching chromatin domains to the nuclear periphery and localizing some nuclear envelope proteins. The major components of the lamina are the A-type and B-type lamins, which are members of the intermediate filament protein family. Whereas the expression of A-type lamins is developmentally regulated, B-type lamins, as a class, are found in all cells. The association of B-type lamins with many aspects of nuclear function has led to the view that these are essential proteins, and there is growing evidence suggesting that they regulate cellular senescence. However, B-type lamins are dispensable in certain cell types in vivo, and neither A-type nor B-type lamins may be required in early embryos or embryonic stem cells. The picture that is beginning to emerge is of a complex network of interactions at the nuclear periphery that may be defined by cell- and tissue-specific functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The structure and carboxy-terminal processing of A-type and B-type lamins.
Figure 2: Nuclear positioning during neurogenesis.
Figure 3: The role of lamin B1 and reactive oxygen species in cellular senescence.

Similar content being viewed by others

References

  1. Gruenbaum, Y., Margalit, A., Goldman, R. D., Shumaker, D. K. & Wilson, K. L. The nuclear lamina comes of age. Nature Rev. Mol. Cell Biol. 6, 21–31 (2005).

    Article  CAS  Google Scholar 

  2. Deniaud, E. & Bickmore, W. A. Transcription and the nuclear periphery: edge of darkness? Curr. Opin. Genet. Dev. 19, 187–191 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Towbin, B. D., Meister, P. & Gasser, S. M. The nuclear envelope — a scaffold for silencing? Curr. Opin. Genet. Dev. 19, 180–186 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Worman, H.J. & Bonne, G. “Laminopathies”: a wide spectrum of human diseases. Exp. Cell Res. 313, 2121–2133 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Worman, H. J., Fong, L. G., Muchir, A. & Young, S. G. Laminopathies and the long strange trip from basic cell biology to therapy. J. Clin. Invest. 119, 1825–1836 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Broers, J. L. et al. Decreased mechanical stiffness in LMNA−/− cells is caused by defective nucleo-cytoskeletal integrity: implications for the development of laminopathies. Hum. Mol. Genet. 13, 2567–2580 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Hale, C. M. et al. Dysfunctional connections between the nucleus and the actin and microtubule networks in laminopathic models. Biophys. J. 95, 5462–5475 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lammerding, J. et al. Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J. Clin. Invest. 113, 370–378 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lombardi, M. L. et al. The interaction between nesprins and sun proteins at the nuclear envelope is critical for force transmission between the nucleus and cytoskeleton. J. Biol. Chem. 286, 26743–26753 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stewart, C. L., Roux, K. J. & Burke, B. Blurring the boundary: the nuclear envelope extends its reach. Science 318, 1408–1412 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Grossman, E., Medalia, O. & Zwerger, M. Functional architecture of the nuclear pore complex. Annu. Rev. Biophys. 41, 557–584 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Schirmer, E. C. et al. Nuclear membrane proteins with potential disease links found by subtractive proteomics. Science 301, 1380–1382 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Chen, I. H., Huber, M., Guan, T., Bubeck, A. & Gerace, L. Nuclear envelope transmembrane proteins (NETs) that are up-regulated during myogenesis. BMC Cell Biol. 7, 38 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Datta, K., Guan, T. & Gerace, L. NET37, a nuclear envelope transmembrane protein with glycosidase homology, is involved in myoblast differentiation. J. Biol. Chem. 284, 29666–29676 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Korfali, N. et al. The leukocyte nuclear envelope proteome varies with cell activation and contains novel transmembrane proteins that affect genome architecture. Mol. Cell. Proteomics 9, 2571–2585 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu, G. H. et al. Regulation of myoblast differentiation by the nuclear envelope protein NET39. Mol. Cell. Biol. 29, 5800–5812 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wilkie, G. S. et al. Several novel nuclear envelope transmembrane proteins identified in skeletal muscle have cytoskeletal associations. Mol. Cell. Proteomics 10, M110 003129 (2011).

    Article  PubMed  CAS  Google Scholar 

  18. Gerace, L. & Huber, M. D. Nuclear lamina at the crossroads of the cytoplasm and nucleus. J. Struct. Biol. 177, 24–31 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Dwyer, N. & Blobel, G. A modified procedure for the isolation of a pore complex lamina fraction from rat liver nuclei. J. Cell Biol. 70, 581–591 (1976).

    Article  CAS  PubMed  Google Scholar 

  20. Gerace, L. & Blobel, G. The nuclear envelope lamina is reversibly depolymerized during mitosis. Cell 19, 277–287 (1980).

    Article  CAS  PubMed  Google Scholar 

  21. Gerace, L., Blum, A. & Blobel, G. Immunocytochemical localization of the major polypeptides of the nuclear complex–lamina fraction: interphase and mitotic distribution. J. Cell Biol. 79, 546–566 (1978).

    Article  CAS  PubMed  Google Scholar 

  22. Ho, C. Y. & Lammerding, J. Lamins at a glance. J. Cell Sci. 125, 2087–2093 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fisher, D. Z. Chaudhary, N. & Blobel, G. cDNA sequencing of nuclear lamins A and C reveals primary and secondary structural homology to intermediate filament proteins. Proc. Natl Acad. Sci. USA 83, 6450–6454 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. McKeon, F. D., Kirschner, M. W. & Caput, D. Homologies in both primary and secondary structure between nuclear envelope and intermediate filament proteins. Nature 319, 463–468 (1986).

    Article  CAS  PubMed  Google Scholar 

  25. Dhe-Paganon, S., Werner, E. D., Chi, Y. I. & Shoelson, S. E. Structure of the globular tail of nuclear lamin. J. Biol. Chem. 277, 17381–17384 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Krimm, I. et al. The Ig-like structure of the C-terminal domain of lamin A/C, mutated in muscular dystrophies, cardiomyopathy, and partial lipodystrophy. Structure 10, 811–823 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Peter, M. et al. Cloning and sequencing of cDNA clones encoding chicken lamins A and B1 and comparison of the primary structures of vertebrate A- and B-type lamins. J. Mol. Biol. 208, 393–404 (1989).

    Article  CAS  PubMed  Google Scholar 

  28. Vorburger, K., Lehner, C. F., Kitten, G. T., Eppenberger, H. M. & Nigg, E. A. A second higher vertebrate B-type lamin. cDNA sequence determination and in vitro processing of chicken lamin B2. J. Mol. Biol. 208, 405–415 (1989).

    Article  CAS  PubMed  Google Scholar 

  29. Furukawa, K., Inagaki, H. & Hotta, Y. Identification and cloning of an mRNA coding for a germ cell-specific A-type lamin in mice. Exp. Cell Res. 212, 426–430 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Lin, F. & Worman, H. J. Structural organization of the human gene encoding nuclear lamin A and nuclear lamin C. J. Biol. Chem. 268, 16321–16326 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Machiels, B. M. et al. An alternative splicing product of the lamin A/C gene lacks exon 10. J. Biol. Chem. 271, 9249–9253 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Lin, F. & Worman, H. J. Structural organization of the human gene (LMNB1) encoding nuclear lamin B1. Genomics 27, 230–236 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Furukawa, K. & Hotta, Y. cDNA cloning of a germ cell-specific lamin B3 from mouse spermatocytes and analysis of its ectopic expression in somatic cells. EMBO J. 12, 97–106 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Beck, L. A., Hosick, T. J. & Sinensky, M. Isoprenylation is required for the processing of the lamin A precursor. J. Cell Biol. 110, 1489–1499 (1990).

    Article  CAS  PubMed  Google Scholar 

  35. Kitten, G. T. & Nigg, E. A. The CaaX motif is required for isoprenylation, carboxy methylation and nuclear membrane association of lamin B2. J. Cell Biol. 113, 13–24 (1991).

    Article  CAS  PubMed  Google Scholar 

  36. Sinensky, M. et al. The processing pathway of prelamin A. J. Cell Sci. 107, 61–67 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Wolda, S. L. & Glomset, J. A. Evidence for modification of lamin B by a product of mevalonic acid. J. Biol. Chem. 263, 5997–6000 (1988).

    Article  CAS  PubMed  Google Scholar 

  38. Holtz, D., Tanaka, R. A., Hartwig, J. & McKeon, F. The CaaX motif of lamin A functions in conjunction with the nuclear localization signal to target assembly to the nuclear envelope. Cell 59, 969–977 (1989).

    Article  CAS  PubMed  Google Scholar 

  39. Corrigan, D. P. et al. Prelamin A endoproteolytic processing in vitro by recombinant Zmpste24. Biochem. J. 387, 129–138 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pendas, A. M. et al. Defective prelamin A processing and muscular and adipocyte alterations in Zmpste24 metalloproteinase-deficient mice. Nature Genet. 31, 94–99 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Gerace, L., Comeau, C. & Benson, M. Organization and modulation of nuclear lamina structure. J. Cell Sci. Suppl. 1, 137–160 (1984).

    Article  CAS  PubMed  Google Scholar 

  42. Weber, K., Plessmann, U. & Traub, P. Maturation of nuclear lamin A involves a specific carboxy-terminal trimming, which removes the polyisoprenylation site from the precursor; implications for the structure of the nuclear lamina. FEBS Lett. 257, 411–414 (1989).

    Article  CAS  PubMed  Google Scholar 

  43. Peter, A. & Stick, R. Evolution of the lamin protein family: what introns can tell. Nucleus 3, 44–59 (2012).

    Article  PubMed  Google Scholar 

  44. Erber, A. et al. Characterization of the Hydra lamin and its gene: a molecular phylogeny of metazoan lamins. J. Mol. Evol. 49, 260–271 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Foeger, N. et al. Solubility properties and specific assembly pathways of the B-type lamin from Caenorhabditis elegans. J. Struct. Biol. 155, 340–350 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Aebi, U., Cohn, J. B., Buhle, L. & Gerace, L. The nuclear lamina is a meshwork of intermediate type filaments. Nature 323, 560–564 (1986).

    Article  CAS  PubMed  Google Scholar 

  47. Ben-Harush, K. et al. The supramolecular organization of the C. elegans nuclear lamin filament. J. Mol. Biol. 386, 1392–1402 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Heitlinger, E. et al. Expression of chicken lamin B2 in Escherichia coli: characterization of its structure, assembly, and molecular interactions. J. Cell Biol. 113, 485–495 (1991).

    Article  CAS  PubMed  Google Scholar 

  49. Strelkov, S. V., Schumacher, J., Burkhard, P., Aebi, U. & Herrmann, H. Crystal structure of the human lamin A coil 2B dimer: implications for the head-to-tail association of nuclear lamins. J. Mol. Biol. 343, 1067–1080 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Goldberg, M. W., Huttenlauch, I., Hutchison, C. J. & Stick, R. Filaments made from A- and B-type lamins differ in structure and organization. J. Cell Sci. 121, 215–225 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Lourim, D., Kempf, A. & Krohne, G. Characterization and quantitation of three B-type lamins in Xenopus oocytes and eggs: increase of lamin LI protein synthesis during meiotic maturation. J. Cell Sci. 109, 1775–1785 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Shimi, T. et al. The A- and B-type nuclear lamin networks: microdomains involved in chromatin organization and transcription. Genes Dev. 22, 3409–3421 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Han, X. et al. Tethering by lamin A stabilizes and targets the ING1 tumour suppressor. Nature Cell Biol. 10, 1333–1340 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Ivorra, C. et al. A mechanism of AP-1 suppression through interaction of c-Fos with lamin A/C. Genes Dev. 20, 307–320 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wilson, K. L. & Foisner, R. Lamin-binding proteins. Cold Spring Harb. Perspect. Biol. 2, a000554 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Stewart, C. & Burke, B. Teratocarcinoma stem cells and early mouse embryos contain only a single major lamin polypeptide closely resembling lamin B. Cell 51, 383–392 (1987).

    Article  CAS  PubMed  Google Scholar 

  57. Röber, R.-A., Weber, K. & Osborn, M. Differential timing of lamin A/C expression in the various organs of the mouse embryo and the young animal: a developmental study. Development 105, 365–378 (1989).

    Article  PubMed  Google Scholar 

  58. Röber, R. A., Sauter, H., Weber, K. & Osborn, M. Cells of the cellular immune and hemopoietic system of the mouse lack lamins A/C: distinction versus other somatic cells. J. Cell Sci. 95, 587–598 (1990).

    Article  PubMed  Google Scholar 

  59. Bione, S. et al. Identification of a novel X-linked gene responsible for Emery–Dreifuss muscular dystrophy. Nature Genet. 8, 323–327 (1994).

    Article  CAS  PubMed  Google Scholar 

  60. Bonne, G. et al. Mutations in the gene encoding lamin A/C cause autosomal dominant Emery–Dreifuss muscular dystrophy. Nature Genet. 21, 285–288 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Sullivan, T. et al. Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J. Cell Biol. 147, 913–920 (1999). Demonstration in a knockout mouse model that A-type lamins are not required for normal embryonic development. However, mice lacking a functional Lmna gene develop a syndrome that bears a striking resemblance to human EDMD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Raharjo, W. H., Enarson, P., Sullivan, T., Stewart, C. L. & Burke, B. Nuclear envelope defects associated with LMNA mutations cause dilated cardiomyopathy and Emery–Dreifuss muscular dystrophy. J. Cell Sci. 114, 4447–4457 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Hernandez, L. et al. Functional coupling between the extracellular matrix and nuclear lamina by Wnt signaling in progeria. Dev. Cell 19, 413–425 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Muchir, A. et al. Activation of MAPK pathways links LMNA mutations to cardiomyopathy in Emery–Dreifuss muscular dystrophy. J. Clin. Invest. 117, 1282–1293 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pan, D. et al. The integral inner nuclear membrane protein MAN1 physically interacts with the R-Smad proteins to repress signaling by the transforming growth factor-β superfamily of cytokines. J. Biol. Chem. 280, 15992–16001 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Scaffidi, P. & Misteli, T. Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Nature Cell Biol. 10, 452–459 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Cao, H. & Hegele, R. A. LMNA is mutated in Hutchinson–Gilford progeria (MIM 176670) but not in Wiedemann–Rautenstrauch progeroid syndrome (MIM 264090). J. Hum. Genet. 48, 271–274 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. De Sandre-Giovannoli, A. et al. Lamin a truncation in Hutchinson–Gilford progeria. Science 300, 2055 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Eriksson, M. et al. Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome. Nature 423, 293–298 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Zhang, J. et al. A human iPSC model of Hutchinson Gilford progeria reveals vascular smooth muscle and mesenchymal stem cell defects. Cell Stem Cell 8, 31–45 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Espada, J. et al. Nuclear envelope defects cause stem cell dysfunction in premature-aging mice. J. Cell Biol. 181, 27–35 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Navarro, C. L. et al. Loss of ZMPSTE24 (FACE-1) causes autosomal recessive restrictive dermopathy and accumulation of Lamin A precursors. Hum. Mol. Genet. 14, 1503–1513 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Navarro, C. L. et al. Lamin A and ZMPSTE24 (FACE-1) defects cause nuclear disorganization and identify restrictive dermopathy as a lethal neonatal laminopathy. Hum. Mol. Genet. 13, 2493–2503 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Bergo, M. O. et al. Zmpste24 deficiency in mice causes spontaneous bone fractures, muscle weakness, and a prelamin A processing defect. Proc. Natl Acad. Sci. USA 99, 13049–13054 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Fong, L. G. et al. Heterozygosity for Lmna deficiency eliminates the progeria-like phenotypes in Zmpste24-deficient mice. Proc. Natl Acad. Sci. USA 101, 18111–18116 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Davies, B. S. et al. An accumulation of non-farnesylated prelamin A causes cardiomyopathy but not progeria. Hum. Mol. Genet. 19, 2682–2694 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yang, S. H., Andres, D. A., Spielmann, H. P., Young, S. G. & Fong, L. G. Progerin elicits disease phenotypes of progeria in mice whether or not it is farnesylated. J. Clin. Invest. 118, 3291–3300 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yang, S. H. et al. Absence of progeria-like disease phenotypes in knock-in mice expressing a non-farnesylated version of progerin. Hum. Mol. Genet. 20, 436–444 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Fong, L. G. et al. A protein farnesyltransferase inhibitor ameliorates disease in a mouse model of progeria. Science 311, 1621–1623 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Yang, S. H. et al. A farnesyltransferase inhibitor improves disease phenotypes in mice with a Hutchinson–Gilford progeria syndrome mutation. J. Clin. Invest. 116, 2115–2121 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Taimen, P. et al. A progeria mutation reveals functions for lamin A in nuclear assembly, architecture, and chromosome organization. Proc. Natl Acad. Sci. USA 106, 20788–20793 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kubben, N. et al. Mapping of lamin A- and progerin-interacting genome regions. Chromosoma 121, 447–464 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tilgner, K., Wojciechowicz, K., Jahoda, C., Hutchison, C. & Markiewicz, E. Dynamic complexes of A-type lamins and emerin influence adipogenic capacity of the cell via nucleocytoplasmic distribution of β-catenin. J. Cell Sci. 122, 401–413 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Speese, S. D. et al. Nuclear envelope budding enables large ribonucleoprotein particle export during synaptic Wnt signaling. Cell 149, 832–846 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Morrison, L. A. & Delassus, G. S. Breach of the nuclear lamina during assembly of herpes simplex viruses. Nucleus 2, 271–276 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Kubben, N. et al. Post-natal myogenic and adipogenic developmental: defects and metabolic impairment upon loss of A-type lamins. Nucleus 2, 195–207 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Wolf, C. M. et al. Lamin A/C haploinsufficiency causes dilated cardiomyopathy and apoptosis-triggered cardiac conduction system disease. J. Mol. Cell. Cardiol. 44, 293–303 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Coffinier, C. et al. Direct synthesis of lamin A, bypassing prelamin a processing, causes misshapen nuclei in fibroblasts but no detectable pathology in mice. J. Biol. Chem. 285, 20818–20826 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fong, L. G. et al. Prelamin A and lamin A appear to be dispensable in the nuclear lamina. J. Clin. Invest. 116, 743–752 (2006). A very surprising finding at the time suggesting that lamin C could perform all of the functions of A-type lamins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jung, H. J. et al. Regulation of prelamin A but not lamin C by miR-9, a brain-specific microRNA. Proc. Natl Acad. Sci. USA 109, E423–E431 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Harborth, J., Elbashir, S. M., Bechert, K., Tuschl, T. & Weber, K. Identification of essential genes in cultured mammalian cells using small interfering RNAs. J. Cell Sci. 114, 4557–4565 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Freund, A., Laberge, R. M., Demaria, M. & Campisi, J. Lamin B1 loss is a senescence-associated biomarker. Mol. Biol. Cell 23, 2066–2075 (2012). Reinforces the view that loss of lamin B1 expression in fibroblasts is associated with senescence.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Shimi, T. et al. The role of nuclear lamin B1 in cell proliferation and senescence. Genes Dev. 25, 2579–2593 (2011). Demonstrates that loss of lamin B1 is an important driver of replicative- and oncogene-induced senescence. Presents the surprising finding that a decrease in lamin B1 expression could be inhibited by ROS generation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Dechat, T., Adam, S. A., Taimen, P., Shimi, T. & Goldman, R. D. Nuclear lamins. Cold Spring Harb. Perspect. Biol. 2, a000547 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Vergnes, L., Péterfy, M., Bergo, M. O., Young, S. G. & Reue, K. Lamin B1 is required for mouse development and nuclear integrity. Proc. Natl Acad. Sci. USA 101, 10428–10433 (2004). An important paper that prompted a re-evaluation of the role of B-type lamins as essential proteins. It is the first report showing the inactivation of Lmnb1 using a gene trap approach.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Coffinier, C. et al. Deficiencies in lamin B1 and lamin B2 cause neurodevelopmental defects and distinct nuclear shape abnormalities in neurons. Mol. Biol. Cell 22, 4683–4693 (2011). A comprehensive description of the roles of lamin B1 and lamin B2 in neurogenesis. Evidence is presented that B-type lamins have an essential role in neuronal migration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kim, Y. et al. Mouse B-type lamins are required for proper organogenesis but not by embryonic stem cells. Science 334, 1706–1710 (2011). This description of the targeted disruption of the Lmnb1 and Lmnb2 genes has prompted a major rethink in the roles of B-type lamins. It is now clear that these proteins are dispensable in many cell types. Indeed, it is possible that early embryonic cells, including ES cells, may survive in the absence of a functional lamina.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tsai, M. Y. et al. A mitotic lamin B matrix induced by RanGTP required for spindle assembly. Science 311, 1887–1893 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Coffinier, C. et al. Abnormal development of the cerebral cortex and cerebellum in the setting of lamin B2 deficiency. Proc. Natl Acad. Sci. USA 107, 5076–5081 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yang, S. H. et al. An absence of both lamin B1 and lamin B2 in keratinocytes has no effect on cell proliferation or the development of skin and hair. Hum. Mol. Genet. 20, 3537–3544 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yang, S. H., Jung, H. J., Coffinier, C., Fong, L. G. & Young, S. G. Are B-type lamins essential in all mammalian cells? Nucleus 2, 562–569 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Padiath, Q. S. et al. Lamin B1 duplications cause autosomal dominant leukodystrophy. Nature Genet. 38, 1114–1123 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Ballester, M. et al. The nuclear localization of WAP and CSN genes is modified by lactogenic hormones in HC11 cells. J. Cell. Biochem. 105, 262–270 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Kosak, S. T. et al. Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science 296, 158–162 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Pickersgill, H. et al. Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nature Genet. 38, 1005–1014 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Williams, R. R. et al. Neural induction promotes large-scale chromatin reorganisation of the Mash1 locus. J. Cell Sci. 119, 132–140 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Finlan, L. E. et al. Recruitment to the nuclear periphery can alter expression of genes in human cells. PLoS Genet. 4, e1000039 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Reddy, K. L., Zullo, J. M., Bertolino, E. & Singh, H. Transcriptional repression mediated by repositioning of genes to the nuclear lamina. Nature 452, 243–247 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Kumaran, R. I. & Spector, D. L. A genetic locus targeted to the nuclear periphery in living cells maintains its transcriptional competence. J. Cell Biol. 180, 51–65 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Guelen, L. et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453, 948–951 (2008). Uses DamID to define nuclear lamina-associated chromatin domains. A clear demonstration of gene-poor regions associated with the nuclear periphery.

    Article  CAS  PubMed  Google Scholar 

  111. Ludérus, M. E. E. et al. Binding of matrix attachment regions to lamin B1 . Cell 70, 949–959 (1992).

    Article  PubMed  Google Scholar 

  112. Mattout, A., Goldberg, M., Tzur, Y., Margalit, A. & Gruenbaum, Y. Specific and conserved sequences in D. melanogaster and C. elegans lamins and histone H2A mediate the attachment of lamins to chromosomes. J. Cell Sci. 120, 77–85 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Taniura, H., Glass, C. & Gerace, L. A chromatin binding site in the tail domain of nuclear lamins that interacts with core histones. J. Cell Biol. 131, 33–44 (1995).

    Article  CAS  PubMed  Google Scholar 

  114. van Steensel, B. & Henikoff, S. Identification of in vivo DNA targets of chromatin proteins using tethered Dam methyltransferase. Nature Biotech. 18, 424–428 (2000).

    Article  CAS  Google Scholar 

  115. Ye, Q., Callebaut, I., Pezhman, A., Courvalin, J. C. & Worman, H. J. Domain-specific interactions of human HP1-type chromodomain proteins and inner nuclear membrane protein LBR. J. Biol. Chem. 272, 14983–14989 (1997).

    Article  CAS  PubMed  Google Scholar 

  116. Shumaker, D. K., Lee, K. K., Tanhehco, Y. C., Craigie, R. & Wilson, K. L. LAP2 binds to BAF.DNA complexes: requirement for the LEM domain and modulation by variable regions. EMBO J. 20, 1754–1764 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Liu, J. et al. MAN1 and emerin have overlapping function(s) essential for chromosome segregation and cell division in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 100, 4598–4603 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lee, K. K. et al. Distinct functional domains in emerin bind lamin A and DNA-bridging protein BAF. J. Cell Sci. 114, 4567–4573 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Patterson, K. et al. The functions of Klarsicht and nuclear lamin in developmentally regulated nuclear migrations of photoreceptor cells in the Drosophila eye. Mol. Biol. Cell 15, 600–610 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Starr, D. A. & Han, M. Role of ANC-1 in tethering nuclei to the actin cytoskeleton. Science 298, 406–409 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Lee, K. K. et al. Lamin-dependent localization of UNC-84, a protein required for nuclear migration in Caenorhabditis elegans. Mol. Biol. Cell 13, 892–901 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Crisp, M. et al. Coupling of the nucleus and cytoplasm: role of the LINC complex. J. Cell Biol. 172, 41–53 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Haque, F. et al. SUN1 interacts with nuclear lamin A and cytoplasmic nesprins to provide a physical connection between the nuclear lamina and the cytoskeleton. Mol. Cell. Biol. 26, 3738–3751 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Padmakumar, V. C. et al. The inner nuclear membrane protein Sun1 mediates the anchorage of Nesprin-2 to the nuclear envelope. J. Cell Sci. 118, 3419–3430 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Sosa, B. A., Rothballer, A., Kutay, U. & Schwartz, T. U. LINC complexes form by binding of three KASH peptides to domain interfaces of trimeric SUN proteins. Cell 149, 1035–1047 (2012). Defines the molecular interactions between SUN and KASH domain proteins in LINC complex assembly. Demonstrates that SUN proteins form native trimers. A picture is worth a thousand words.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kracklauer, M. P., Banks, S. M., Xie, X., Wu, Y. & Fischer, J. A. Drosophila klaroid encodes a SUN domain protein required for Klarsicht localization to the nuclear envelope and nuclear migration in the eye. Fly (Austin) 1, 75–85 (2007).

    Article  Google Scholar 

  127. Simon, D. N. & Wilson, K. L. The nucleoskeleton as a genome-associated dynamic 'network of networks'. Nature Rev. Mol. Cell Biol. 12, 695–708 (2011).

    Article  CAS  Google Scholar 

  128. Burke, B. & Roux, K. J. Nuclei take a position: managing nuclear location. Dev. Cell 17, 587–597 (2009).

    Article  CAS  PubMed  Google Scholar 

  129. Apel, E. D., Lewis, R. M., Grady, R. M. & Sanes, J. R. Syne-1, a dystrophin- and Klarsicht-related protein associated with synaptic nuclei at the neuromuscular junction. J. Biol. Chem. 275, 31986–31995 (2000).

    Article  CAS  PubMed  Google Scholar 

  130. Mislow, J. M., Kim, M. S., Davis, D. B. & McNally, E. M. Myne-1, a spectrin repeat transmembrane protein of the myocyte inner nuclear membrane, interacts with lamin A/C. J. Cell Sci. 115, 61–70 (2002).

    Article  CAS  PubMed  Google Scholar 

  131. Roux, K. J. et al. Nesprin 4 is an outer nuclear membrane protein that can induce kinesin-mediated cell polarization. Proc. Natl Acad. Sci. USA 106, 2194–2199 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wilhelmsen, K. et al. Nesprin-3, a novel outer nuclear membrane protein, associates with the cytoskeletal linker protein plectin. J. Cell Biol. 171, 799–810 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhang, Q. et al. Nesprins: a novel family of spectrin-repeat-containing proteins that localize to the nuclear membrane in multiple tissues. J. Cell Sci. 114, 4485–4498 (2001).

    Article  CAS  PubMed  Google Scholar 

  134. Schneider, M. et al. Molecular mechanisms of centrosome and cytoskeleton anchorage at the nuclear envelope. Cell. Mol. Life Sci. 68, 1593–1610 (2011).

    Article  CAS  PubMed  Google Scholar 

  135. Zhang, X. et al. SUN1/2 and Syne/Nesprin-1/2 complexes connect centrosome to the nucleus during neurogenesis and neuronal migration in mice. Neuron 64, 173–187 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Young, S. G., Jung, H. J., Coffinier, C. & Fong, L. Understanding the roles of nuclear A- and B-type lamins in brain development. J. Biol. Chem. 287, 16103–16110 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wilson, K. L. Nuclear envelope and lamin B2 function in the central nervous system. Proc. Natl Acad. Sci. USA 107, 6121–6122 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Yoon, B. C. et al. Local translation of extranuclear lamin B promotes axon maintenance. Cell 148, 752–764 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Johnson, R. P. & Kramer, J. M. Neural maintenance roles for the matrix receptor dystroglycan and the nuclear anchorage complex in Caenorhabditis elegans. Genetics 190, 1365–1377 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Barascu, A. et al. Oxidative stress induces an ATM-independent senescence pathway through p38 MAPK-mediated lamin B1 accumulation. EMBO J. 31, 1080–1094 (2012). Suggests that increased lamin B1 expression, mediated by ROS generation, is linked to senescence in AT fibroblasts. The results presented in this study are in contrast to the results obtained in normal fibroblasts described in reference 93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Pekovic, V. et al. Conserved cysteine residues in the mammalian lamin A tail are essential for cellular responses to ROS generation. Aging Cell 10, 1067–1079 (2011).

    Article  CAS  PubMed  Google Scholar 

  142. Hutchison, C. J. B-type lamins and their elusive roles in metazoan cell proliferation and senescence. EMBO J. 31, 1058–1059 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Dauer, W. T. & Worman, H. J. The nuclear envelope as a signaling node in development and disease. Dev. Cell 17, 626–638 (2009).

    Article  CAS  PubMed  Google Scholar 

  144. Roux, K. J., Kim, D. I., Raida, M. & Burke, B. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J. Cell Biol. 196, 801–810 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Zhou, Z. et al. Structure of Sad1–UNC84 homology (SUN) domain defines features of molecular bridge in nuclear envelope. J. Biol. Chem. 287, 5317–5326 (2012).

    Article  CAS  PubMed  Google Scholar 

  146. Tsai, J. W., Lian, W. N., Kemal, S., Kriegstein, A. R. & Vallee, R. B. Kinesin 3 and cytoplasmic dynein mediate interkinetic nuclear migration in neural stem cells. Nature Neurosci. 13, 1463–1471 (2010).

    Article  CAS  PubMed  Google Scholar 

  147. Vallee, R. B., McKenney, R. J. & Ori-McKenney, K. M. Multiple modes of cytoplasmic dynein regulation. Nature Cell Biol. 14, 224–230 (2012).

    Article  CAS  PubMed  Google Scholar 

  148. Lambert de Rouvroit, C. & Goffinet, A. M. Neuronal migration. Mech. Dev. 105, 47–56 (2001).

    Article  CAS  PubMed  Google Scholar 

  149. Dujardin, D. L. et al. A role for cytoplasmic dynein and LIS1 in directed cell movement. J. Cell Biol. 163, 1205–1211 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Bellion, A., Baudoin, J. P., Alvarez, C., Bornens, M. & Metin, C. Nucleokinesis in tangentially migrating neurons comprises two alternating phases: forward migration of the Golgi/centrosome associated with centrosome splitting and myosin contraction at the rear. J. Neurosci. 25, 5691–5699 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Schaar, B. T. & McConnell, S. K. Cytoskeletal coordination during neuronal migration. Proc. Natl Acad. Sci. USA 102, 13652–13657 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Tsai, J. W., Bremner, K. H. & Vallee, R. B. Dual subcellular roles for LIS1 and dynein in radial neuronal migration in live brain tissue. Nature Neurosci. 10, 970–979 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors were supported by the Singapore Biomedical Research Council and the Singapore Agency for Science, Technology and Research (A*STAR). They thank O. Dreesen for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Burke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Brian Burke's homepage

Colin Stewart's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burke, B., Stewart, C. The nuclear lamins: flexibility in function. Nat Rev Mol Cell Biol 14, 13–24 (2013). https://doi.org/10.1038/nrm3488

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3488

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing