Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The evolving understanding of COPI vesicle formation

Abstract

The coat protein I (COPI) complex is considered to be one of the best-characterized coat complexes. Studies on how it functions in vesicle formation have provided seminal contributions to the general paradigm in vesicular transport that the ADP-ribosylation factor (ARF) small GTPases are key regulators of coat complexes. Here, we discuss emerging evidence that suggests the need to revise some long-held views on how COPI vesicle formation is achieved.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathways of vesicular transport by the better characterized coat proteins.
Figure 2: A model for COPI vesicle formation.

Similar content being viewed by others

References

  1. Springer, S., Spang, A. & Schekman, R. A primer on vesicle budding. Cell 97, 145–148 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Bonifacino, J. S. & Glick, B. S. The mechanisms of vesicle budding and fusion. Cell 116, 153–166 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. McMahon, H. T. & Mills, I. G. COP and clathrin-coated vesicle budding: different pathways, common approaches. Curr. Opin. Cell Biol. 16, 379–391 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Bonifacino, J. S. & Lippincott-Schwartz, J. Coat proteins: shaping membrane transport. Nature Rev. Mol. Cell Biol. 4, 409–414 (2003).

    Article  CAS  Google Scholar 

  5. Lee, M. C., Miller, E. A., Goldberg, J., Orci, L. & Schekman, R. Bi-directional protein transport between the ER and Golgi. Annu. Rev. Cell Dev. Biol. 20, 87–123 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Rabouille, C. & Klumperman, J. The maturing role of COPI vesicles in intra-Golgi transport. Nature Rev. Mol. Cell Biol. 6, 812–817 (2005).

    Article  CAS  Google Scholar 

  7. Orci, L., Palmer, D. J., Amherdt, M. & Rothman, J. E. Coated vesicle assembly in the Golgi requires only coatomer and ARF proteins from the cytosol. Nature 364, 732–734 (1993).

    Article  CAS  Google Scholar 

  8. Casanova, J. E. Regulation of Arf activation: the Sec7 family of guanine nucleotide exchange factors. Traffic 8, 1476–1485 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Inoue, H. & Randazzo, P. A. Arf GAPs and their interacting proteins. Traffic 8, 1465–1475 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Donaldson, J. G., Finazzi, D. & Klausner, R. D. Brefeldin A inhibits Golgi membrane-catalysed exchange of guanine nucleotide onto ARF protein. Nature 360, 350–352 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Helms, J. B. & Rothman, J. E. Inhibition by brefeldin A of a Golgi membrane enzyme that catalyses exchange of guanine nucleotide bound to ARF. Nature 360, 352–354 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Donaldson, J. G., Cassel, D., Kahn, R. A. & Klausner, R. D. ADP-ribosylation factor, a small GTP-binding protein, is required for binding of the coatomer protein β-COP to Golgi membranes. Proc. Natl Acad. Sci. USA 89, 6408–6412 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Palmer, D. J., Helms, J. B., Beckers, C. J., Orci, L. & Rothman, J. E. Binding of coatomer to Golgi membranes requires ADP-ribosylation factor. J. Biol. Chem. 268, 12083–12089 (1993).

    CAS  PubMed  Google Scholar 

  14. Orci, L. et al. Brefeldin A, a drug that blocks secretion, prevents the assembly of non-clathrin-coated buds on Golgi cisternae. Cell 64, 1183–1195 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Tanigawa, G. et al. Hydrolysis of bound GTP by ARF protein triggers uncoating of Golgi-derived COP-coated vesicles. J. Cell Biol. 123, 1365–1371 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Nickel, W. et al. Uptake by COPI-coated vesicles of both anterograde and retrograde cargo is inhibited by GTPγS in vitro. J. Cell Sci. 111, 3081–3090 (1998).

    CAS  PubMed  Google Scholar 

  17. Lanoix, J. et al. GTP hydrolysis by arf-1 mediates sorting and concentration of Golgi resident enzymes into functional COP I vesicles. EMBO J. 18, 4935–4948 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pepperkok, R., Whitney, J. A., Gomez, M. & Kreis, T. E. COPI vesicles accumulating in the presence of a GTP restricted arf1 mutant are depleted of anterograde and retrograde cargo. J. Cell Sci. 113, 135–144 (2000).

    CAS  PubMed  Google Scholar 

  19. Cukierman, E., Huber, I., Rotman, M. & Cassel, D. The ARF1–GTPase-activating protein: zinc finger motif and Golgi complex localization. Science 270, 1999–2002 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Goldberg, J. Decoding of sorting signals by coatomer through a GTPase switch in the COPI coat complex. Cell 100, 671–679 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Lanoix, J. et al. Sorting of Golgi resident proteins into different subpopulations of COPI vesicles: a role for ArfGAP1. J. Cell Biol. 155, 1199–1212 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang, J. S. et al. ARFGAP1 promotes the formation of COPI vesicles, suggesting function as a component of the coat. J. Cell Biol. 159, 69–78 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee, S. Y., Yang, J. S., Hong, W., Premont, R. T. & Hsu, V. W. ARFGAP1 plays a central role in coupling COPI cargo sorting with vesicle formation. J. Cell Biol. 168, 281–290 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Serafini, T. et al. ADP-ribosylation factor is a subunit of the coat of Golgi-derived COP-coated vesicles: a novel role for a GTP-binding protein. Cell 67, 239–253 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Serafini, T. & Rothman, J. E. Purification of Golgi cisternae-derived non-clathrin-coated vesicles. Methods Enzymol. 219, 286–299 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Weidman, P., Roth, R. & Heuser, J. Golgi membrane dynamics imaged by freeze-etch electron microscopy: views of different membrane coatings involved in tubulation versus vesiculation. Cell 75, 123–133 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Reinhard, C., Schweikert, M., Wieland, F. T. & Nickel, W. Functional reconstitution of COPI coat assembly and disassembly using chemically defined components. Proc. Natl Acad. Sci. USA 100, 8253–8257 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bigay, J., Gounon, P., Robineau, S. & Antonny, B. Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature. Nature 426, 563–566 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Bremser, M. et al. Coupling of coat assembly and vesicle budding to packaging of putative cargo receptors. Cell 96, 495–506 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Majoul, I., Straub, M., Hell, S. W., Duden, R. & Soling, H. D. KDEL-cargo regulates interactions between proteins involved in COPI vesicle traffic: measurements in living cells using FRET. Dev. Cell 1, 139–153 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Yang, J. S. et al. A role for BARS at the fission step of COPI vesicle formation from Golgi membrane. EMBO J. 24, 4133–4143 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chinnadurai, G. CtBP, an unconventional transcriptional corepressor in development and oncogenesis. Mol. Cell 9, 213–224 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Corda, D., Colanzi, A. & Luini, A. The multiple activities of CtBP/BARS proteins: the Golgi view. Trends Cell Biol. 16, 167–173 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Hosobuchi, M., Kreis, T. & Schekman, R. SEC21 is a gene required for ER to Golgi protein transport that encodes a subunit of a yeast coatomer. Nature 360, 603–605 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Guo, Q., Vasile, E. & Krieger, M. Disruptions in Golgi structure and membrane traffic in a conditional lethal mammalian cell mutant are corrected by epsilon-COP. J. Cell Biol. 125, 1213–1224 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Hildebrand, J. D. & Soriano, P. Overlapping and unique roles for C-terminal binding protein 1 (CtBP1) and CtBP2 during mouse development. Mol. Cell. Biol. 22, 5296–5307 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Weigert, R. et al. CtBP/BARS induces fission of Golgi membranes by acylating lysophosphatidic acid. Nature 402, 429–433 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Yang, J. S. et al. Key components of the fission machinery are interchangeable. Nature Cell Biol. 8, 1376–1382 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Gallop, J. L., Butler, P. J. & McMahon, H. T. Endophilin and CtBP/BARS are not acyl transferases in endocytosis or Golgi fission. Nature 438, 675–678 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Farsad, K. et al. Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J. Cell Biol. 155, 193–200 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang, J. S. et al. A role for phosphatidic acid in COPI vesicle fission yields insights into Golgi maintenance. Nature Cell Biol. 10, 1146–1153 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Presley, J. F. et al. ER-to-Golgi transport visualized in living cells. Nature 389, 81–85 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Liu, W., Duden, R., Phair, R. D. & Lippincott-Schwartz, J. ArfGAP1 dynamics and its role in COPI coat assembly on Golgi membranes of living cells. J. Cell Biol. 168, 1053–1063 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Aguilera-Romero, A., Kaminska, J., Spang, A., Riezman, H. & Muniz, M. The yeast p24 complex is required for the formation of COPI retrograde transport vesicles from the Golgi apparatus. J. Cell Biol. 180, 713–720 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Guo, Y., Punj, V., Sengupta, D. & Linstedt, A. D. Coat-tether interaction in Golgi organization. Mol. Biol. Cell 19, 2830–2843 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Barlowe, C. et al. COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77, 895–907 (1994).

    Article  CAS  PubMed  Google Scholar 

  47. Jackson, T. R. et al. ACAPs are Arf6 GTPase-activating proteins that function in the cell periphery. J. Cell Biol. 151, 627–638 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li, J. et al. An ACAP1-containing clathrin coat complex for endocytic recycling. J. Cell Biol. 178, 453–464 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Balch, W. E., Dunphy, W. G., Braell, W. A. & Rothman, J. E. Reconstitution of the transport of protein between successive compartments of the Golgi measured by the coupled incorporation of N-acetylglucosamine. Cell 39, 405–416 (1984).

    Article  CAS  PubMed  Google Scholar 

  50. Orci, L., Glick, B. S. & Rothman, J. E. A new type of coated vesicular carrier that appears not to contain clathrin: its possible role in protein transport within the Golgi stack. Cell 46, 171–184 (1986).

    Article  CAS  PubMed  Google Scholar 

  51. Malhotra, V., Serafini, T., Orci, L., Shepherd, J. C. & Rothman, J. E. Purification of a novel class of coated vesicles mediating biosynthetic protein transport through the Golgi stack. Cell 58, 329–336 (1989).

    Article  CAS  PubMed  Google Scholar 

  52. Waters, M. G., Serafini, T. & Rothman, J. E. 'Coatomer': a cytosolic protein complex containing subunits of non-clathrin-coated Golgi transport vesicles. Nature 349, 248–251 (1991).

    Article  CAS  PubMed  Google Scholar 

  53. Serafini, T. et al. A coat subunit of Golgi-derived non-clathrin-coated vesicles with homology to the clathrin-coated vesicle coat protein β-adaptin. Nature 349, 215–220 (1991).

    Article  CAS  PubMed  Google Scholar 

  54. Duden, R., Griffiths, G., Frank, R., Argos, P. & Kreis, T. E. β-COP, a 110 kd protein associated with non-clathrin-coated vesicles and the Golgi complex, shows homology to β-adaptin. Cell 64, 649–665 (1991).

    Article  CAS  PubMed  Google Scholar 

  55. Stenbeck, G. et al. Beta′ COP, a novel subunit of coatomer. EMBO J. 12, 2841–2845 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Harrison-Lavoie, K. J. et al. A 102 kDa subunit of a Golgi-associated particle has homology to beta subunits of trimeric G proteins. EMBO J. 12, 2847–2853 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Waters, M. G., Beckers, C. J. & Rothman, J. E. Purification of coat protomers. Methods Enzymol. 219, 331–337 (1992).

    Article  CAS  PubMed  Google Scholar 

  58. Hara-Kuge, S. et al. En bloc incorporation of coatomer subunits during the assembly of COP-coated vesicles. J. Cell Biol. 124, 883–892 (1994); erratum 126, 589 (1994).

    Article  CAS  PubMed  Google Scholar 

  59. Orci, L. et al. Bidirectional transport by distinct populations of COPI-coated vesicles. Cell 90, 335–349 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Fiedler, K., Veit, M., Stamnes, M. A. & Rothman, J. E. Bimodal interaction of coatomer with the p24 family of putative cargo receptors. Science 273, 1396–1399 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. Sohn, K. et al. A major transmembrane protein of Golgi-derived COPI-coated vesicles involved in coatomer binding. J. Cell Biol. 135, 1239–1248 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Dominguez, M. et al. gp25L/emp24/p24 protein family members of the cis-Golgi network bind both COP I and II coatomer. J. Cell Biol. 140, 751–765 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Beck, R. et al. Membrane curvature induced by Arf1-GTP is essential for vesicle formation. Proc. Natl Acad. Sci. USA 105, 11731–11736 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Krauss, M. et al. Arf1-GTP-induced tubule formation suggests a function of Arf family proteins in curvature acquisition at sites of vesicle budding. J. Biol. Chem. 283, 27717–27723 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lundmark, R., Doherty, G. J., Vallis, Y., Peter, B. J. & McMahon, H. T. Arf family GTP loading is activated by, and generates, positive membrane curvature. Biochem. J. 414, 189–194 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Luini, R. Premont, J. Li and M. Bai for discussions. This work is funded by the National Institutes of Health. We apologize for not being able to cite all recent advances in COPI vesicle formation owing to the focused nature of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor W. Hsu.

Related links

Related links

FURTHER INFORMATION

Victor W. Hsu's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, V., Lee, S. & Yang, JS. The evolving understanding of COPI vesicle formation. Nat Rev Mol Cell Biol 10, 360–364 (2009). https://doi.org/10.1038/nrm2663

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2663

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing