Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Environmental sensing through focal adhesions

Key Points

  • The aim of this Review is to discuss how molecular research into the complex interplay between cell adhesion and the cytoskeleton, combined with advanced surface nanoengineering technologies, can shed light on the mechanisms by which cells sense the neighbouring microenvironment and nanoenvironment.

  • Cells demonstrate an extraordinary capacity to respond to a wide range of features of the surrounding matrix, including its chemical nature and physical properties.

  • Contemporary methods of microfabrication and nanofabrication enable the production of substrates with well-defined topography, rigidity, ligand spacing and anisotropy. Plating cells on surfaces with diverse physical properties has revealed the exquisite capacity of cells to sense, and differentially respond, to such adhesive matrices.

  • Mechanical modulation of the various adhesion complexes leads to the generation of integrin-mediated signals that affect multiple features of cell shape, activity and fate.

  • The mechanosensitivity of integrin-based adhesions (focal adhesions) is attributable to the complexity and modularity of the adhesion complexes, and their different functional modules. Specifically, mechanosensitive elements can be found in essentially every structural–functional module of the adhesion sites, including the extracellular matrix itself, the integrin receptors, the actin-linking and actin polymerization machinery, and the signal-generating and transducing modules.

  • Owing to the overall, combined mechanosensitivity of focal adhesions, cytoskeleton-generated forces affect the initiation, maturation and further growth of these structures.

  • In turn, the pre-existing integrin adhesions determine the organization of the actin cytoskeleton by creating boundary conditions that determine the spatial organization of the cytoskeleton; by inducing actin polymerization at the local level; and by global signalling, mainly through the Rho pathways, thereby regulating the overall assembly of the actin-containing structures.

  • Focal adhesions seem to be responsible for the spatio-temporal coordination of the multiple signalling events that are triggered by cell–extracellular matrix interactions.


Recent progress in the design and application of artificial cellular microenvironments and nanoenvironments has revealed the extraordinary ability of cells to adjust their cytoskeletal organization, and hence their shape and motility, to minute changes in their immediate surroundings. Integrin-based adhesion complexes, which are tightly associated with the actin cytoskeleton, comprise the cellular machinery that recognizes not only the biochemical diversity of the extracellular neighbourhood, but also its physical and topographical characteristics, such as pliability, dimensionality and ligand spacing. Here, we discuss the mechanisms of such environmental sensing, based on the finely tuned crosstalk between the assembly of one type of integrin-based adhesion complex, namely focal adhesions, and the forces that are at work in the associated cytoskeletal network owing to actin polymerization and actomyosin contraction.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: A multidimensional space of environmental parameters.
Figure 2: Signalling by nanopatterned substrates.
Figure 3: Actin cytoskeleton–focal adhesion interplay.
Figure 4: Focal adhesion formation and the lamellipodium–lamella boundary.


  1. 1

    Geiger, B. & Bershadsky, A. Exploring the neighborhood: adhesion-coupled cell mechanosensors. Cell 110, 139–142 (2002).

    CAS  PubMed  Google Scholar 

  2. 2

    Bershadsky, A. D., Balaban, N. Q. & Geiger, B. Adhesion-dependent cell mechanosensitivity. Annu. Rev. Cell Dev. Biol. 19, 677–695 (2003).

    CAS  PubMed  Google Scholar 

  3. 3

    Chen, C. S. Mechanotransduction — a field pulling together? J. Cell Sci. 121, 3285–3292 (2008).

    CAS  PubMed  Google Scholar 

  4. 4

    Curtis, A. & Riehle, M. Tissue engineering: the biophysical background. Phys. Med. Biol. 46, R47–R65 (2001).

    CAS  PubMed  Google Scholar 

  5. 5

    Spatz, J. P. & Geiger, B. Molecular engineering of cellular environments: cell adhesion to nano-digital surfaces. Methods Cell Biol. 83, 89–111 (2007).

    CAS  PubMed  Google Scholar 

  6. 6

    Vogel, V. & Sheetz, M. Local force and geometry sensing regulate cell functions. Nature Rev. Mol. Cell Biol. 7, 265–275 (2006).

    CAS  Google Scholar 

  7. 7

    Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    CAS  Google Scholar 

  8. 8

    Discher, D. E., Janmey, P. & Wang, Y. L. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005).

    CAS  PubMed  Google Scholar 

  9. 9

    Thery, M. et al. Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity. Proc. Natl Acad. Sci. USA 103, 19771–19776 (2006). Shapes of adhesive islands determine the localization of lamellipodial extensions and the organization of the microtubule system in the attached cells.

    CAS  PubMed  Google Scholar 

  10. 10

    Xia, N. et al. Directional control of cell motility through focal adhesion positioning and spatial control of Rac activation. FASEB J. 22, 1649–1659 (2008).

    CAS  PubMed  Google Scholar 

  11. 11

    Lock, J. G., Wehrle-Haller, B. & Stromblad, S. Cell–matrix adhesion complexes: master control machinery of cell migration. Semin. Cancer Biol. 18, 65–76 (2008).

    CAS  PubMed  Google Scholar 

  12. 12

    Delon, I. & Brown, N. H. Integrins and the actin cytoskeleton. Curr. Opin. Cell Biol. 19, 43–50 (2007).

    CAS  PubMed  Google Scholar 

  13. 13

    Tilghman, R. W. & Parsons, J. T. Focal adhesion kinase as a regulator of cell tension in the progression of cancer. Semin. Cancer Biol. 18, 45–52 (2008).

    CAS  PubMed  Google Scholar 

  14. 14

    Berrier, A. L. & Yamada, K. M. Cell–matrix adhesion. J. Cell. Physiol. 213, 565–573 (2007).

    CAS  PubMed  Google Scholar 

  15. 15

    Bershadsky, A., Kozlov, M. & Geiger, B. Adhesion-mediated mechanosensitivity: a time to experiment, and a time to theorize. Curr. Opin. Cell Biol. 18, 472–481 (2006).

    CAS  PubMed  Google Scholar 

  16. 16

    Zaidel-Bar, R., Itzkovitz, S., Ma'ayan, A., Iyengar, R. & Geiger, B. Functional atlas of the integrin adhesome. Nature Cell Biol. 9, 858–867 (2007). Bioinformatics analysis of all available experimental data revealed functional interactions between proteins that form integrin-mediated adhesion complexes and unravelled the prevalent network motifs in the protein interaction map.

    CAS  PubMed  Google Scholar 

  17. 17

    Giannone, G. & Sheetz, M. P. Substrate rigidity and force define form through tyrosine phosphatase and kinase pathways. Trends Cell Biol. 16, 213–223 (2006).

    CAS  PubMed  Google Scholar 

  18. 18

    Nayal, A., Webb, D. J. & Horwitz, A. F. Talin: an emerging focal point of adhesion dynamics. Curr. Opin. Cell Biol. 16, 94–98 (2004).

    CAS  PubMed  Google Scholar 

  19. 19

    Hersel, U., Dahmen, C. & Kessler, H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24, 4385–4415 (2003).

    CAS  PubMed  Google Scholar 

  20. 20

    Arnold, M. et al. Activation of integrin function by nanopatterned adhesive interfaces. ChemPhysChem 5, 383–388 (2004).

    CAS  PubMed  Google Scholar 

  21. 21

    Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M. & Ingber, D. E. Geometric control of cell life and death. Science 276, 1425–1428 (1997).

    CAS  PubMed  Google Scholar 

  22. 22

    Dalby, M. J., Riehle, M. O., Johnstone, H., Affrossman, S. & Curtis, A. S. In vitro reaction of endothelial cells to polymer demixed nanotopography. Biomaterials 23, 2945–2954 (2002).

    CAS  PubMed  Google Scholar 

  23. 23

    Chen, C. S., Tan, J. & Tien, J. Mechanotransduction at cell–matrix and cell–cell contacts. Annu. Rev. Biomed. Eng. 6, 275–302 (2004).

    CAS  PubMed  Google Scholar 

  24. 24

    Rumpler, M., Woesz, A., Dunlop, J. W., van Dongen, J. T. & Fratzl, P. The effect of geometry on three-dimensional tissue growth. J. R. Soc. Interface (2008).

  25. 25

    Cukierman, E., Pankov, R., Stevens, D. R. & Yamada, K. M. Taking cell–matrix adhesions to the third dimension. Science 294, 1708–1712 (2001).

    CAS  PubMed  Google Scholar 

  26. 26

    Blummel, J. et al. Protein repellent properties of covalently attached PEG coatings on nanostructured SiO2-based interfaces. Biomaterials 28, 4739–4747 (2007).

    PubMed  Google Scholar 

  27. 27

    Elbert, D. L. & Hubbell, J. A. Conjugate addition reactions combined with free-radical cross-linking for the design of materials for tissue engineering. Biomacromolecules 2, 430–441 (2001).

    CAS  PubMed  Google Scholar 

  28. 28

    Maheshwari, G., Brown, G., Lauffenburger, D. A., Wells, A. & Griffith, L. G. Cell adhesion and motility depend on nanoscale RGD clustering. J. Cell Sci. 113, 1677–1686 (2000).

    CAS  PubMed  Google Scholar 

  29. 29

    Mrksich, M., Dike, L. E., Tien, J., Ingber, D. E. & Whitesides, G. M. Using microcontact printing to pattern the attachment of mammalian cells to self-assembled monolayers of alkanethiolates on transparent films of gold and silver. Exp. Cell Res. 235, 305–313 (1997).

    CAS  PubMed  Google Scholar 

  30. 30

    Roberts, C. et al. Using mixed self-assembled monolayers presenting RGD and (EG)3OH groups to characterize long-term attachment of bovine capillary endothelial cells to surfaces J. Am. Chem. Soc. 120, 6548–6555 (1998).

    CAS  Google Scholar 

  31. 31

    Massia, S. P. & Hubbell, J. A. An RGD spacing of 440 nm is sufficient for integrin alpha V beta 3-mediated fibroblast spreading and 140 nm for focal contact and stress fiber formation. J. Cell Biol. 114, 1089–1100 (1991).

    CAS  PubMed  Google Scholar 

  32. 32

    Fratzl, P. et al. Fibrillar structure and mechanical properties of collagen. J. Struct. Biol. 122, 119–122 (1998).

    CAS  PubMed  Google Scholar 

  33. 33

    Jiang, F., Horber, H., Howard, J. & Muller, D. J. Assembly of collagen into microribbons: effects of pH and electrolytes. J. Struct. Biol. 148, 268–278 (2004).

    CAS  PubMed  Google Scholar 

  34. 34

    Meller, D., Peters, K. & Meller, K. Human cornea and sclera studied by atomic force microscopy. Cell Tissue Res. 288, 111–118 (1997).

    CAS  PubMed  Google Scholar 

  35. 35

    Glass, R. et al. Micro-nanostructured interfaces by inorganic block copolymer micellar monolayers as negative resist for electron-beam lithography. Adv. Funct. Mater. 13, 569–575 (2003).

    CAS  Google Scholar 

  36. 36

    Glass, R. et al. Block copolymer micelle nanolithography on non-conductive substrates. New J. Phys. 6, 101 (2004).

    Google Scholar 

  37. 37

    Glass, R., Möller, M. & Spatz, J. P. Micellar nanolithography. Nanotechnology 14, 1153–1160 (2003).

    CAS  Google Scholar 

  38. 38

    Spatz, J. P. et al. Metal and metaloxide nanodot pattern by means of a diblock copolymer template. Langmuir 16, 407–415 (2000).

    CAS  Google Scholar 

  39. 39

    Cavalcanti-Adam, E. A. et al. Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. Biophys. J. 92, 2964–2974 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Arnold, M. et al. Induction of cell polarization and migration by a gradient of nanoscale variations in adhesive ligand spacing. Nano Lett. 8, 2063–2069 (2008). References 39 and 40 were the first rigorous analyses of the differential cellular response to the spacing of integrin ligands on a substrate.

    CAS  PubMed  Google Scholar 

  41. 41

    Smith, M. L. et al. Force-induced unfolding of fibronectin in the extracellular matrix of living cells. PLoS Biol. 5, e268 (2007). Fluorescence resonance energy transfer analysis revealed that cell-generated mechanical forces induce unfolding of type III modules in the mechanosensory matrix protein fibronectin.

    PubMed  PubMed Central  Google Scholar 

  42. 42

    Little, W. C., Smith, M. L., Ebneter, U. & Vogel, V. Assay to mechanically tune and optically probe fibrillar fibronectin conformations from fully relaxed to breakage. Matrix Biol. 27, 451–461 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Collin, O. et al. Self-organized podosomes are dynamic mechanosensors. Curr. Biol. 18, 1288–1294 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Alexander, N. R. et al. Extracellular matrix rigidity promotes invadopodia activity. Curr. Biol. 18, 1295–1299 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Geiger, B., Bershadsky, A., Pankov, R. & Yamada, K. M. Transmembrane extracellular matrix–cytoskeleton crosstalk. Nature Rev. Mol. Cell Biol. 2, 793–805 (2001).

    CAS  Google Scholar 

  46. 46

    Brown, N. H. et al. Talin is essential for integrin function in Drosophila. Dev. Cell 3, 569–579 (2002).

    CAS  PubMed  Google Scholar 

  47. 47

    Zervas, C. G., Gregory, S. L. & Brown, N. H. Drosophila integrin-linked kinase is required at sites of integrin adhesion to link the cytoskeleton to the plasma membrane. J. Cell Biol. 152, 1007–1018 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Clark, K. A., McGrail, M. & Beckerle, M. C. Analysis of PINCH function in Drosophila demonstrates its requirement in integrin-dependent cellular processes. Development 130, 2611–2621 (2003).

    CAS  PubMed  Google Scholar 

  49. 49

    Torgler, C. N. et al. Tensin stabilizes integrin adhesive contacts in Drosophila. Dev. Cell 6, 357–369 (2004).

    CAS  PubMed  Google Scholar 

  50. 50

    Loer, B. et al. The NHL-domain protein Wech is crucial for the integrin–cytoskeleton link. Nature Cell Biol. 10, 422–428 (2008).

    PubMed  Google Scholar 

  51. 51

    Monkley, S. J., Pritchard, C. A. & Critchley, D. R. Analysis of the mammalian talin2 gene TLN2. Biochem. Biophys. Res. Commun. 286, 880–885 (2001).

    CAS  PubMed  Google Scholar 

  52. 52

    Zhang, X. et al. Talin depletion reveals independence of initial cell spreading from integrin activation and traction. Nature Cell Biol. 10, 1062–1068 (2008). Depletion of both talin 1 and talin 2 prevents the formation of focal adhesions, but permits the formation of unstable lamellipodial extensions in spreading cells.

    CAS  Google Scholar 

  53. 53

    Montanez, E. et al. Kindlin-2 controls bidirectional signaling of integrins. Genes Dev. 22, 1325–1330 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Moser, M., Nieswandt, B., Ussar, S., Pozgajova, M. & Fassler, R. Kindlin-3 is essential for integrin activation and platelet aggregation. Nature Med. 14, 325–330 (2008).

    CAS  PubMed  Google Scholar 

  55. 55

    Ma, Y. Q., Qin, J., Wu, C. & Plow, E. F. Kindlin-2 (Mig-2): a co-activator of β3 integrins. J. Cell Biol. 181, 439–446 (2008). References 53–55 clearly demonstrate that kindlin 2 or kindlin 3 are required as co-activators of integrin working in concert with talin.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Tanentzapf, G., Martin-Bermudo, M. D., Hicks, M. S. & Brown, N. H. Multiple factors contribute to integrin–talin interactions in vivo. J. Cell Sci. 119, 1632–1644 (2006).

    CAS  PubMed  Google Scholar 

  57. 57

    Smith, S. J. & McCann, R. O. A C-terminal dimerization motif is required for focal adhesion targeting of Talin1 and the interaction of the Talin1 I/LWEQ module with F-actin. Biochemistry 46, 10886–10898 (2007).

    CAS  PubMed  Google Scholar 

  58. 58

    Gingras, A. R. et al. The structure of the C-terminal actin-binding domain of talin. EMBO J. 27, 458–469 (2008).

    CAS  PubMed  Google Scholar 

  59. 59

    Jiang, G., Giannone, G., Critchley, D. R., Fukumoto, E. & Sheetz, M. P. Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin. Nature 424, 334–337 (2003).

    CAS  PubMed  Google Scholar 

  60. 60

    Humphries, J. D. et al. Vinculin controls focal adhesion formation by direct interactions with talin and actin. J. Cell Biol. 179, 1043–1057 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Galbraith, C. G., Yamada, K. M. & Sheetz, M. P. The relationship between force and focal complex development. J. Cell Biol. 159, 695–705 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Alexandrova, A. Y. et al. Comparative dynamics of retrograde actin flow and focal adhesions: formation of nascent adhesions triggers transition from fast to slow flow. PLoS ONE 3, e3234 (2008). Focal complexes (nascent adhesions) are formed underneath the lamellipodial extensions and subsequently determine the formation of a boundary between lamellipodia and lamella.

    PubMed  PubMed Central  Google Scholar 

  63. 63

    Choi, C. K. et al. Actin and α-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner. Nature Cell Biol. 10, 1039–1050 (2008). Nascent adhesions are formed underneath the lamellipodial extensions, and early stages of their maturation depend on the crosslinking activity of α-actinin and myosin II.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Nobes, C. D. & Hall, A. Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62 (1995).

    CAS  Google Scholar 

  65. 65

    Shroff, H., Galbraith, C. G., Galbraith, J. A. & Betzig, E. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nature Methods 5, 417–423 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Shroff, H. et al. Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc. Natl Acad. Sci. USA 104, 20308–20313 (2007).

    CAS  PubMed  Google Scholar 

  67. 67

    Giannone, G. et al. Lamellipodial actin mechanically links myosin activity with adhesion-site formation. Cell 128, 561–575 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Ponti, A., Machacek, M., Gupton, S. L., Waterman-Storer, C. M. & Danuser, G. Two distinct actin networks drive the protrusion of migrating cells. Science 305, 1782–1786 (2004).

    CAS  PubMed  Google Scholar 

  69. 69

    Zaidel-Bar, R., Ballestrem, C., Kam, Z. & Geiger, B. Early molecular events in the assembly of matrix adhesions at the leading edge of migrating cells. J. Cell Sci. 116, 4605–4613 (2003).

    CAS  PubMed  Google Scholar 

  70. 70

    Small, J. V., Stradal, T., Vignal, E. & Rottner, K. The lamellipodium: where motility begins. Trends Cell Biol. 12, 112–120 (2002).

    CAS  PubMed  Google Scholar 

  71. 71

    Borisy, G. G. & Svitkina, T. M. Actin machinery: pushing the envelope. Curr. Opin. Cell Biol. 12, 104–112 (2000).

    CAS  PubMed  Google Scholar 

  72. 72

    Cramer, L. P. Molecular mechanism of actin-dependent retrograde flow in lamellipodia of motile cells. Front. Biosci. 2, d260–d270 (1997).

    CAS  PubMed  Google Scholar 

  73. 73

    Vallotton, P., Danuser, G., Bohnet, S., Meister, J. J. & Verkhovsky, A. B. Tracking retrograde flow in keratocytes: news from the front. Mol. Biol. Cell 16, 1223–1231 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Vallotton, P., Gupton, S. L., Waterman-Storer, C. M. & Danuser, G. Simultaneous mapping of filamentous actin flow and turnover in migrating cells by quantitative fluorescent speckle microscopy. Proc. Natl Acad. Sci. USA 101, 9660–9665 (2004).

    CAS  PubMed  Google Scholar 

  75. 75

    Cai, Y. et al. Nonmuscle myosin IIA-dependent force inhibits cell spreading and drives F-actin flow. Biophys. J. 91, 3907–3920 (2006). Myosin IIA, rather than myosin IIB, is responsible for overall cell contractility and retrograde flow in lamella.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Hu, K., Ji, L., Applegate, K. T., Danuser, G. & Waterman-Storer, C. M. Differential transmission of actin motion within focal adhesions. Science 315, 111–115 (2007). Retrograde actin flow induces the correlated centripetal movement of focal adhesion proteins, thereby revealing a hierarchy in their association with non-mobile integrins.

    CAS  PubMed  Google Scholar 

  77. 77

    Guo, W. H. & Wang, Y. L. Retrograde fluxes of focal adhesion proteins in response to cell migration and mechanical signals. Mol. Biol. Cell 18, 4519–4527 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Galbraith, C. G., Yamada, K. M. & Galbraith, J. A. Polymerizing actin fibers position integrins primed to probe for adhesion sites. Science 315, 992–995 (2007). Spatial correlation between integrin activation and actin polymerization in lamellipodia and filopodia is revealed.

    CAS  PubMed  Google Scholar 

  79. 79

    Grosheva, I. et al. Caldesmon effects on the actin cytoskeleton and cell adhesion in cultured HTM cells. Exp. Eye Res. 82, 945–958 (2006).

    CAS  PubMed  Google Scholar 

  80. 80

    Riveline, D. et al. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J. Cell Biol. 153, 1175–1186 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Vicente-Manzanares, M., Zareno, J., Whitmore, L., Choi, C. K. & Horwitz, A. F. Regulation of protrusion, adhesion dynamics, and polarity by myosins IIA and IIB in migrating cells. J. Cell Biol. 176, 573–580 (2007). This study, along with references 75, 92, 93 and 95, established that myosin IIA and myosin IIB have different roles in the organization of cell adhesion and motility.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Zaidel-Bar, R., Milo, R., Kam, Z. & Geiger, B. A paxillin tyrosine phosphorylation switch regulates the assembly and form of cell–matrix adhesions. J. Cell Sci. 120, 137–148 (2007).

    CAS  PubMed  Google Scholar 

  83. 83

    Ballestrem, C. et al. Molecular mapping of tyrosine-phosphorylated proteins in focal adhesions using fluorescence resonance energy transfer. J. Cell Sci. 119, 866–875 (2006).

    CAS  PubMed  Google Scholar 

  84. 84

    Zamir, E., Geiger, B. & Kam, Z. Quantitative multicolor compositional imaging resolves molecular domains in cell–matrix adhesions. PLoS ONE 3, e1901 (2008).

    PubMed  PubMed Central  Google Scholar 

  85. 85

    Cluzel, C. et al. The mechanisms and dynamics of αvβ3 integrin clustering in living cells. J. Cell Biol. 171, 383–392 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Ballestrem, C., Hinz, B., Imhof, B. A. & Wehrle-Haller, B. Marching at the front and dragging behind: differential αvβ3-integrin turnover regulates focal adhesion behavior. J. Cell Biol. 155, 1319–1332 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Pellegrin, S. & Mellor, H. Actin stress fibres. J. Cell Sci. 120, 3491–3499 (2007).

    CAS  PubMed  Google Scholar 

  88. 88

    Kumar, S. et al. Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys. J. 90, 3762–3773 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    Peterson, L. J. et al. Simultaneous stretching and contraction of stress fibers in vivo. Mol. Biol. Cell 15, 3497–3508 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Katoh, K. et al. Rho-kinase-mediated contraction of isolated stress fibers. J. Cell Biol. 153, 569–584 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Balaban, N. Q. et al. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nature Cell Biol. 3, 466–472 (2001).

    CAS  PubMed  Google Scholar 

  92. 92

    Even-Ram, S. et al. Myosin IIA regulates cell motility and actomyosin–microtubule crosstalk. Nature Cell Biol. 9, 299–309 (2007). Myosin IIA, rather than myosin IIB, is required for focal adhesion maturation. However, in some situations (microtubule disruption), myosin IIB-dependent focal adhesion maturation can occur.

    CAS  PubMed  Google Scholar 

  93. 93

    Vicente-Manzanares, M., Koach, M. A., Whitmore, L., Lamers, M. L. & Horwitz, A. F. Segregation and activation of myosin IIB creates a rear in migrating cells. J. Cell Biol. 183, 543–554 (2008). Myosin IIB is required for the formation of stress fibres and focal adhesions at the cell rear.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Meshel, A. S., Wei, Q., Adelstein, R. S. & Sheetz, M. P. Basic mechanism of three-dimensional collagen fibre transport by fibroblasts. Nature Cell Biol. 7, 157–164 (2005).

    CAS  PubMed  Google Scholar 

  95. 95

    Sandquist, J. C. & Means, A. R. The C-terminal tail region of nonmuscle myosin II directs isoform-specific distribution in migrating cells. Mol. Biol. Cell 19, 5156–5167 (2008). Differential localization of myosin IIA and IIB depends on a specific sequence at the C terminus.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Gingras, A. R. et al. Structural and dynamic characterization of a vinculin binding site in the talin rod. Biochemistry 45, 1805–1817 (2006).

    CAS  PubMed  Google Scholar 

  97. 97

    Papagrigoriou, E. et al. Activation of a vinculin-binding site in the talin rod involves rearrangement of a five-helix bundle. EMBO J. 23, 2942–2951 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98

    Hytonen, V. P. & Vogel, V. How force might activate talin's vinculin binding sites: SMD reveals a structural mechanism. PLoS Comput. Biol. 4, e24 (2008).

    PubMed  PubMed Central  Google Scholar 

  99. 99

    Lee, S. E., Kamm, R. D. & Mofrad, M. R. Force-induced activation of talin and its possible role in focal adhesion mechanotransduction. J. Biomech. 40, 2096–2106 (2007).

    PubMed  Google Scholar 

  100. 100

    Johnson, C. P., Tang, H. Y., Carag, C., Speicher, D. W. & Discher, D. E. Forced unfolding of proteins within cells. Science 317, 663–666 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101

    Vogel, V. Mechanotransduction involving multimodular proteins: converting force into biochemical signals. Annu. Rev. Biophys. Biomol. Struct. 35, 459–488 (2006).

    CAS  PubMed  Google Scholar 

  102. 102

    Sawada, Y. et al. Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127, 1015–1026 (2006). A novel mechanosensory mechanism that is based on stretch-induced opening of a phosphorylation site in p130CAS is described.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103

    Puklin-Faucher, E., Gao, M., Schulten, K. & Vogel, V. How the headpiece hinge angle is opened: new insights into the dynamics of integrin activation. J. Cell Biol. 175, 349–60 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104

    Hayakawa, K., Tatsumi, H. & Sokabe, M. Actin stress fibers transmit and focus force to activate mechanosensitive channels. J. Cell Sci. 121, 496–503 (2008). Pulling force applied through stress fibres can locally activate mechanosensitive channels.

    CAS  PubMed  Google Scholar 

  105. 105

    Shemesh, T., Geiger, B., Bershadsky, A. D. & Kozlov, M. M. Focal adhesions as mechanosensors: a physical mechanism. Proc. Natl Acad. Sci. USA 102, 12383–12388 (2005).

    CAS  PubMed  Google Scholar 

  106. 106

    Ingber, D. E. Cellular mechanotransduction: putting all the pieces together again. FASEB J. 20, 811–827 (2006).

    CAS  PubMed  Google Scholar 

  107. 107

    Bershadsky, A. D. et al. Assembly and mechanosensory function of focal adhesions: experiments and models. Eur. J. Cell Biol. 85, 165–173 (2006).

    CAS  PubMed  Google Scholar 

  108. 108

    Thery, M., Pepin, A., Dressaire, E., Chen, Y. & Bornens, M. Cell distribution of stress fibres in response to the geometry of the adhesive environment. Cell. Motil. Cytoskeleton 63, 341–355 (2006).

    CAS  PubMed  Google Scholar 

  109. 109

    Lehnert, D. et al. Cell behaviour on micropatterned substrata: limits of extracellular matrix geometry for spreading and adhesion. J. Cell Sci. 117, 41–52 (2004).

    CAS  PubMed  Google Scholar 

  110. 110

    Parker, K. K. et al. Directional control of lamellipodia extension by constraining cell shape and orienting cell tractional forces. FASEB J. 16, 1195–1204 (2002).

    CAS  PubMed  Google Scholar 

  111. 111

    Wang, Y. L. Exchange of actin subunits at the leading edge of living fibroblasts: possible role of treadmilling. J. Cell Biol. 101, 597–602 (1985).

    CAS  PubMed  Google Scholar 

  112. 112

    Endlich, N., Otey, C. A., Kriz, W. & Endlich, K. Movement of stress fibers away from focal adhesions identifies focal adhesions as sites of stress fiber assembly in stationary cells. Cell. Motil. Cytoskeleton 64, 966–976 (2007).

    CAS  PubMed  Google Scholar 

  113. 113

    Hotulainen, P. & Lappalainen, P. Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J. Cell Biol. 173, 383–394 (2006). This study, together with reference 112, demonstrates stress fibre growth from a focal adhesion based on local actin polymerization.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114

    Gupton, S. L., Eisenmann, K., Alberts, A. S. & Waterman-Storer, C. M. mDia2 regulates actin and focal adhesion dynamics and organization in the lamella for efficient epithelial cell migration. J. Cell Sci. 120, 3475–3487 (2007).

    CAS  PubMed  Google Scholar 

  115. 115

    Butler, B., Gao, C., Mersich, A. T. & Blystone, S. D. Purified integrin adhesion complexes exhibit actin-polymerization activity. Curr. Biol. 16, 242–251 (2006). Formin, rather than Arp2/3, is responsible for the nucleation of actin polymerization by integrin-based adhesion complexes.

    CAS  PubMed  Google Scholar 

  116. 116

    Takeya, R., Taniguchi, K., Narumiya, S. & Sumimoto, H. The mammalian formin FHOD1 is activated through phosphorylation by ROCK and mediates thrombin-induced stress fibre formation in endothelial cells. EMBO J. 27, 618–628 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117

    Kozlov, M. M. & Bershadsky, A. D. Processive capping by formin suggests a force-driven mechanism of actin polymerization. J. Cell Biol. 167, 1011–1017 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118

    Hirata, H., Tatsumi, H. & Sokabe, M. Mechanical forces facilitate actin polymerization at focal adhesions in a zyxin-dependent manner. J. Cell Sci. 121, 2795–2804 (2008). Reveals the involvement of zyxin in the force-dependent actin polymerization from the focal adhesion.

    CAS  PubMed  Google Scholar 

  119. 119

    Yoshigi, M., Hoffman, L. M., Jensen, C. C., Yost, H. J. & Beckerle, M. C. Mechanical force mobilizes zyxin from focal adhesions to actin filaments and regulates cytoskeletal reinforcement. J. Cell Biol. 171, 209–215 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120

    Lele, T. P. et al. Mechanical forces alter zyxin unbinding kinetics within focal adhesions of living cells. J. Cell. Physiol. 207, 187–194 (2006).

    CAS  PubMed  Google Scholar 

  121. 121

    Hoffman, L. M. et al. Genetic ablation of zyxin causes Mena/VASP mislocalization, increased motility, and deficits in actin remodeling. J. Cell Biol. 172, 771–782 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122

    Legate, K. R., Montanez, E., Kudlacek, O. & Fassler, R. ILK, PINCH and parvin: the tIPP of integrin signalling. Nature Rev. Mol. Cell Biol. 7, 20–31 (2006).

    CAS  Google Scholar 

  123. 123

    Moissoglu, K. & Schwartz, M. A. Integrin signalling in directed cell migration. Biol. Cell 98, 547–555 (2006).

    CAS  PubMed  Google Scholar 

  124. 124

    Wiesner, S., Legate, K. R. & Fassler, R. Integrin–actin interactions. Cell. Mol. Life Sci. 62, 1081–1099 (2005).

    CAS  PubMed  Google Scholar 

  125. 125

    Burridge, K. & Wennerberg, K. Rho and Rac take center stage. Cell 116, 167–179 (2004).

    CAS  PubMed  Google Scholar 

  126. 126

    Lu, M. & Ravichandran, K. S. Dock180–ELMO cooperation in Rac activation. Methods Enzymol. 406, 388–402 (2006).

    CAS  PubMed  Google Scholar 

  127. 127

    Zaidel-Bar, R., Kam, Z. & Geiger, B. Polarized downregulation of the paxillin–p130CAS–Rac1 pathway induced by shear flow. J. Cell Sci. 118, 3997–4007 (2005).

    CAS  PubMed  Google Scholar 

  128. 128

    Dubash, A. D. et al. A novel role for Lsc/p115 RhoGEF and LARG in regulating RhoA activity downstream of adhesion to fibronectin. J. Cell Sci. 120, 3989–3998 (2007).

    CAS  PubMed  Google Scholar 

  129. 129

    Lim, Y. et al. PyK2 and FAK connections to p190Rho guanine nucleotide exchange factor regulate RhoA activity, focal adhesion formation, and cell motility. J. Cell Biol. 180, 187–203 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130

    Bass, M. D. et al. p190RhoGAP is the convergence point of adhesion signals from α5β1 integrin and syndecan-4. J. Cell Biol. 181, 1013–1026 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. 131

    Arthur, W. T., Petch, L. A. & Burridge, K. Integrin engagement suppresses RhoA activity via a c-Src-dependent mechanism. Curr. Biol. 10, 719–722 (2000).

    CAS  PubMed  Google Scholar 

  132. 132

    Hildebrand, J. D., Taylor, J. M. & Parsons, J. T. An SH3 domain-containing GTPase-activating protein for Rho and Cdc42 associates with focal adhesion kinase. Mol. Cell. Biol. 16, 3169–3178 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133

    Schober, M. et al. Focal adhesion kinase modulates tension signaling to control actin and focal adhesion dynamics. J. Cell Biol. 176, 667–680 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. 134

    Danen, E. H., Sonneveld, P., Brakebusch, C., Fassler, R. & Sonnenberg, A. The fibronectin-binding integrins α5β1 and αvβ3 differentially modulate RhoA–GTP loading, organization of cell matrix adhesions, and fibronectin fibrillogenesis. J. Cell Biol. 159, 1071–1086 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. 135

    Danen, E. H. et al. Integrins control motile strategy through a Rho–cofilin pathway. J. Cell Biol. 169, 515–526 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. 136

    Katz, B. Z. et al. Physical state of the extracellular matrix regulates the structure and molecular composition of cell–matrix adhesions. Mol. Biol. Cell 11, 1047–1060 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. 137

    McCann, R. O. & Craig, S. W. The I/LWEQ module: a conserved sequence that signifies F-actin binding in functionally diverse proteins from yeast to mammals. Proc. Natl Acad. Sci. USA 94, 5679–5684 (1997).

    CAS  PubMed  Google Scholar 

  138. 138

    Calderwood, D. A. et al. Integrin β cytoplasmic domain interactions with phosphotyrosine-binding domains: a structural prototype for diversity in integrin signaling. Proc. Natl Acad. Sci. USA 100, 2272–2277 (2003).

    CAS  PubMed  Google Scholar 

  139. 139

    Garcia-Alvarez, B. et al. Structural determinants of integrin recognition by talin. Mol. Cell 11, 49–58 (2003).

    CAS  PubMed  Google Scholar 

  140. 140

    Tadokoro, S. et al. Talin binding to integrin β tails: a final common step in integrin activation. Science 302, 103–106 (2003).

    CAS  PubMed  Google Scholar 

  141. 141

    Calderwood, D. A. Integrin activation. J. Cell Sci. 117, 657–666 (2004).

    CAS  PubMed  Google Scholar 

  142. 142

    Tanentzapf, G. & Brown, N. H. An interaction between integrin and the talin FERM domain mediates integrin activation but not linkage to the cytoskeleton. Nature Cell Biol. 8, 601–606 (2006).

    CAS  PubMed  Google Scholar 

  143. 143

    Wegener, K. L. et al. Structural basis of integrin activation by talin. Cell 128, 171–182 (2007).

    CAS  PubMed  Google Scholar 

  144. 144

    Banno, A. & Ginsberg, M. H. Integrin activation. Biochem. Soc. Trans. 36, 229–234 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. 145

    Ussar, S., Wang, H. V., Linder, S., Fassler, R. & Moser, M. The kindlins: subcellular localization and expression during murine development. Exp. Cell Res. 312, 3142–3151 (2006).

    CAS  PubMed  Google Scholar 

  146. 146

    Tu, Y., Wu, S., Shi, X., Chen, K. & Wu, C. Migfilin and Mig-2 link focal adhesions to filamin and the actin cytoskeleton and function in cell shape modulation. Cell 113, 37–47 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. 147

    Yamada, K. M., Pankov, R. & Cukierman, E. Dimensions and dynamics in integrin function. Braz. J. Med. Biol. Res. 36, 959–966 (2003).

    CAS  PubMed  Google Scholar 

  148. 148

    Morgan, M. R., Humphries, M. J. & Bass, M. D. Synergistic control of cell adhesion by integrins and syndecans. Nature Rev. Mol. Cell Biol. 8, 957–969 (2007).

    CAS  Google Scholar 

Download references


The authors are grateful to K. Yamada for providing the photographs for FIG. 1 and to B. Morgenstern for expert help in preparing this article for publication. The authors' work was partially supported by the Volkswagen Foundation, the National Institutes of Health (NIH; through the NIH Roadmap for Medical Research), the Israel Science Foundation, the Minerva Foundation, the Maurice Janin Fund and the Landesstiftung Baden-Württemberg. B.G. holds the Erwin Neter Professorial Chair in Cell and Tumour Biology. A.D.B. holds the Joseph Moss Professorial Chair in Biomedical Research. J.P.S. is a Weston Visiting Professor at the Weizmann Institute of Science.

Author information



Corresponding author

Correspondence to Alexander D. Bershadsky.

Related links

Related links




Alexander D. Bershadsky's research

Alexander D. Bershadsky's research

The Geiger laboratory

Joachim P. Spatz's homepage

Adhesome FA network


Extracellular matrix

(ECM). The complex, multimolecular material that surrounds cells. The ECM comprises a scaffold on which tissues are organized, provides cellular microenvironments and regulates multiple cellular functions.

Focal adhesion

An integrin-mediated cell–substrate adhesion structure that anchors the ends of actin filaments (stress fibres) and mediates strong attachments to substrates. It also functions as an integrin-signalling platform.

Focal complex

A small (1 μm diameter), dot-like adhesion structure that is formed underneath the lamellipodium.


A ribbon-like, flat protrusion at the periphery of a moving or spreading cell that is enriched with a branched network of actin filaments.


A flat, sheet-like extension that is found at the cell periphery but is more internal than lamellipodia. A fan-shaped lamella is a prominent feature that characterizes the leading edge of a cell that is undergoing locomotion on a flat surface. Actin networks, also containing myosin IIA, are the principal structures in lamellae.


A thin, transient actin protrusion that extends out from the cell surface and is formed by the elongation of bundled actin filaments in its core.

LIM domain

A repeat of 60 amino acids that contains Cys and His residues. The LIM domain is thought to be involved in protein–protein interactions.

Stress fibres

Also termed actin-microfilament bundles, these are arrays of parallel filaments that contain filamentous actin and myosin II, and often stretch between cell attachments as if under stress.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Geiger, B., Spatz, J. & Bershadsky, A. Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 10, 21–33 (2009).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing